ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 1057
Committed: Tue Feb 17 19:23:44 2004 UTC (20 years, 4 months ago) by tim
File size: 17369 byte(s)
Log Message:
adding function shakeF in order to remove the constraint force along bond direction

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2 gezelter 829 #include <stdlib.h>
3     #include <math.h>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10 chuckv 892 #ifdef PROFILE
11     #include "mdProfile.hpp"
12     #endif // profile
13    
14 mmeineke 558 #include "Integrator.hpp"
15     #include "simError.h"
16    
17    
18 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19     ForceFields* the_ff){
20 mmeineke 558 info = theInfo;
21     myFF = the_ff;
22     isFirst = 1;
23    
24     molecules = info->molecules;
25     nMols = info->n_mol;
26    
27     // give a little love back to the SimInfo object
28 tim 725
29     if (info->the_integrator != NULL){
30     delete info->the_integrator;
31     }
32 tim 837
33 mmeineke 558 nAtoms = info->n_atoms;
34    
35     // check for constraints
36 tim 725
37     constrainedA = NULL;
38     constrainedB = NULL;
39 mmeineke 558 constrainedDsqr = NULL;
40 tim 725 moving = NULL;
41     moved = NULL;
42     oldPos = NULL;
43    
44 mmeineke 558 nConstrained = 0;
45    
46     checkConstraints();
47     }
48    
49 tim 725 template<typename T> Integrator<T>::~Integrator(){
50     if (nConstrained){
51 mmeineke 558 delete[] constrainedA;
52     delete[] constrainedB;
53     delete[] constrainedDsqr;
54     delete[] moving;
55     delete[] moved;
56 mmeineke 561 delete[] oldPos;
57 mmeineke 558 }
58     }
59    
60 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
61 mmeineke 558 isConstrained = 0;
62    
63 tim 725 Constraint* temp_con;
64     Constraint* dummy_plug;
65 mmeineke 558 temp_con = new Constraint[info->n_SRI];
66     nConstrained = 0;
67     int constrained = 0;
68 tim 725
69 mmeineke 558 SRI** theArray;
70 tim 725 for (int i = 0; i < nMols; i++){
71 tim 1057
72     theArray = (SRI * *) molecules[i].getMyBonds();
73 tim 725 for (int j = 0; j < molecules[i].getNBonds(); j++){
74 mmeineke 558 constrained = theArray[j]->is_constrained();
75 mmeineke 594
76 tim 725 if (constrained){
77     dummy_plug = theArray[j]->get_constraint();
78     temp_con[nConstrained].set_a(dummy_plug->get_a());
79     temp_con[nConstrained].set_b(dummy_plug->get_b());
80     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
81 mmeineke 594
82 tim 725 nConstrained++;
83     constrained = 0;
84     }
85 mmeineke 558 }
86    
87 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
88     for (int j = 0; j < molecules[i].getNBends(); j++){
89 mmeineke 558 constrained = theArray[j]->is_constrained();
90 tim 725
91     if (constrained){
92     dummy_plug = theArray[j]->get_constraint();
93     temp_con[nConstrained].set_a(dummy_plug->get_a());
94     temp_con[nConstrained].set_b(dummy_plug->get_b());
95     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
96    
97     nConstrained++;
98     constrained = 0;
99 mmeineke 558 }
100     }
101    
102 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
103     for (int j = 0; j < molecules[i].getNTorsions(); j++){
104 mmeineke 558 constrained = theArray[j]->is_constrained();
105 tim 725
106     if (constrained){
107     dummy_plug = theArray[j]->get_constraint();
108     temp_con[nConstrained].set_a(dummy_plug->get_a());
109     temp_con[nConstrained].set_b(dummy_plug->get_b());
110     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
111    
112     nConstrained++;
113     constrained = 0;
114 mmeineke 558 }
115     }
116     }
117    
118 tim 1057
119 tim 725 if (nConstrained > 0){
120 mmeineke 558 isConstrained = 1;
121    
122 tim 725 if (constrainedA != NULL)
123     delete[] constrainedA;
124     if (constrainedB != NULL)
125     delete[] constrainedB;
126     if (constrainedDsqr != NULL)
127     delete[] constrainedDsqr;
128 mmeineke 558
129 tim 725 constrainedA = new int[nConstrained];
130     constrainedB = new int[nConstrained];
131 mmeineke 558 constrainedDsqr = new double[nConstrained];
132 tim 725
133     for (int i = 0; i < nConstrained; i++){
134 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
135     constrainedB[i] = temp_con[i].get_b();
136     constrainedDsqr[i] = temp_con[i].get_dsqr();
137     }
138    
139 tim 725
140 chrisfen 999 // save oldAtoms to check for lode balancing later on.
141 tim 725
142 mmeineke 558 oldAtoms = nAtoms;
143 tim 725
144 mmeineke 558 moving = new int[nAtoms];
145 tim 725 moved = new int[nAtoms];
146 mmeineke 558
147 tim 725 oldPos = new double[nAtoms * 3];
148 mmeineke 558 }
149 tim 725
150 mmeineke 558 delete[] temp_con;
151     }
152    
153    
154 tim 725 template<typename T> void Integrator<T>::integrate(void){
155 mmeineke 558
156 tim 725 double runTime = info->run_time;
157     double sampleTime = info->sampleTime;
158     double statusTime = info->statusTime;
159 mmeineke 558 double thermalTime = info->thermalTime;
160 mmeineke 746 double resetTime = info->resetTime;
161 mmeineke 558
162 mmeineke 746
163 mmeineke 558 double currSample;
164     double currThermal;
165     double currStatus;
166 mmeineke 746 double currReset;
167 tim 837
168 mmeineke 558 int calcPot, calcStress;
169    
170 tim 725 tStats = new Thermo(info);
171     statOut = new StatWriter(info);
172     dumpOut = new DumpWriter(info);
173 mmeineke 558
174 mmeineke 561 atoms = info->atoms;
175    
176     dt = info->dt;
177 mmeineke 558 dt2 = 0.5 * dt;
178    
179 mmeineke 784 readyCheck();
180    
181 mmeineke 558 // initialize the forces before the first step
182    
183 tim 677 calcForce(1, 1);
184 tim 781
185 tim 1035 //temp test
186     tStats->getPotential();
187    
188 tim 781 if (nConstrained){
189     preMove();
190     constrainA();
191 tim 837 calcForce(1, 1);
192 tim 781 constrainB();
193     }
194 mmeineke 843
195 tim 725 if (info->setTemp){
196 tim 677 thermalize();
197 mmeineke 558 }
198 tim 725
199 mmeineke 558 calcPot = 0;
200     calcStress = 0;
201 mmeineke 711 currSample = sampleTime + info->getTime();
202     currThermal = thermalTime+ info->getTime();
203     currStatus = statusTime + info->getTime();
204 mmeineke 746 currReset = resetTime + info->getTime();
205 mmeineke 558
206 tim 725 dumpOut->writeDump(info->getTime());
207     statOut->writeStat(info->getTime());
208 mmeineke 559
209    
210     #ifdef IS_MPI
211 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
212 mmeineke 559 MPIcheckPoint();
213     #endif // is_mpi
214    
215 tim 725 while (info->getTime() < runTime){
216     if ((info->getTime() + dt) >= currStatus){
217 mmeineke 558 calcPot = 1;
218     calcStress = 1;
219     }
220 mmeineke 561
221 chuckv 892 #ifdef PROFILE
222     startProfile( pro1 );
223     #endif
224    
225 tim 725 integrateStep(calcPot, calcStress);
226    
227 chuckv 892 #ifdef PROFILE
228     endProfile( pro1 );
229    
230     startProfile( pro2 );
231     #endif // profile
232    
233 mmeineke 643 info->incrTime(dt);
234 mmeineke 558
235 tim 725 if (info->setTemp){
236     if (info->getTime() >= currThermal){
237     thermalize();
238     currThermal += thermalTime;
239 mmeineke 558 }
240     }
241    
242 tim 725 if (info->getTime() >= currSample){
243     dumpOut->writeDump(info->getTime());
244 mmeineke 558 currSample += sampleTime;
245     }
246    
247 tim 725 if (info->getTime() >= currStatus){
248 tim 837 statOut->writeStat(info->getTime());
249     calcPot = 0;
250 mmeineke 558 calcStress = 0;
251     currStatus += statusTime;
252 tim 837 }
253 mmeineke 559
254 mmeineke 746 if (info->resetIntegrator){
255     if (info->getTime() >= currReset){
256     this->resetIntegrator();
257     currReset += resetTime;
258     }
259     }
260 chuckv 892
261     #ifdef PROFILE
262     endProfile( pro2 );
263     #endif //profile
264 mmeineke 746
265 mmeineke 559 #ifdef IS_MPI
266 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
267 mmeineke 559 MPIcheckPoint();
268     #endif // is_mpi
269 mmeineke 558 }
270    
271 mmeineke 561 delete dumpOut;
272     delete statOut;
273 mmeineke 558 }
274    
275 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
276     int calcStress){
277 mmeineke 558 // Position full step, and velocity half step
278 chuckv 892
279     #ifdef PROFILE
280     startProfile(pro3);
281     #endif //profile
282    
283 tim 725 preMove();
284 mmeineke 558
285 chuckv 892 #ifdef PROFILE
286     endProfile(pro3);
287    
288     startProfile(pro4);
289     #endif // profile
290    
291 mmeineke 558 moveA();
292    
293 chuckv 892 #ifdef PROFILE
294     endProfile(pro4);
295    
296     startProfile(pro5);
297     #endif//profile
298 tim 725
299    
300 mmeineke 614 #ifdef IS_MPI
301 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
302 mmeineke 614 MPIcheckPoint();
303     #endif // is_mpi
304    
305 tim 725
306 mmeineke 558 // calc forces
307    
308 tim 725 calcForce(calcPot, calcStress);
309 mmeineke 558
310 mmeineke 614 #ifdef IS_MPI
311 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
312 mmeineke 614 MPIcheckPoint();
313     #endif // is_mpi
314    
315 chuckv 892 #ifdef PROFILE
316     endProfile( pro5 );
317 tim 725
318 chuckv 892 startProfile( pro6 );
319     #endif //profile
320    
321 mmeineke 558 // finish the velocity half step
322 tim 725
323 mmeineke 558 moveB();
324 tim 725
325 chuckv 892 #ifdef PROFILE
326     endProfile(pro6);
327     #endif // profile
328 tim 725
329 mmeineke 614 #ifdef IS_MPI
330 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
331 mmeineke 614 MPIcheckPoint();
332     #endif // is_mpi
333 mmeineke 558 }
334    
335    
336 tim 725 template<typename T> void Integrator<T>::moveA(void){
337 gezelter 600 int i, j;
338 mmeineke 558 DirectionalAtom* dAtom;
339 gezelter 600 double Tb[3], ji[3];
340     double vel[3], pos[3], frc[3];
341     double mass;
342 mmeineke 558
343 tim 725 for (i = 0; i < nAtoms; i++){
344     atoms[i]->getVel(vel);
345     atoms[i]->getPos(pos);
346     atoms[i]->getFrc(frc);
347 mmeineke 567
348 gezelter 600 mass = atoms[i]->getMass();
349 mmeineke 594
350 tim 725 for (j = 0; j < 3; j++){
351 gezelter 600 // velocity half step
352 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
353 gezelter 600 // position whole step
354     pos[j] += dt * vel[j];
355     }
356 mmeineke 594
357 tim 725 atoms[i]->setVel(vel);
358     atoms[i]->setPos(pos);
359 gezelter 600
360 tim 725 if (atoms[i]->isDirectional()){
361     dAtom = (DirectionalAtom *) atoms[i];
362 mmeineke 558
363     // get and convert the torque to body frame
364 mmeineke 597
365 tim 725 dAtom->getTrq(Tb);
366     dAtom->lab2Body(Tb);
367    
368 mmeineke 558 // get the angular momentum, and propagate a half step
369 gezelter 600
370 tim 725 dAtom->getJ(ji);
371 gezelter 600
372 tim 725 for (j = 0; j < 3; j++)
373 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
374 tim 725
375 mmeineke 778 this->rotationPropagation( dAtom, ji );
376 gezelter 600
377 tim 725 dAtom->setJ(ji);
378     }
379 mmeineke 558 }
380 mmeineke 768
381     if (nConstrained){
382     constrainA();
383     }
384 mmeineke 558 }
385    
386    
387 tim 725 template<typename T> void Integrator<T>::moveB(void){
388 gezelter 600 int i, j;
389 mmeineke 558 DirectionalAtom* dAtom;
390 gezelter 600 double Tb[3], ji[3];
391     double vel[3], frc[3];
392     double mass;
393 mmeineke 558
394 tim 725 for (i = 0; i < nAtoms; i++){
395     atoms[i]->getVel(vel);
396     atoms[i]->getFrc(frc);
397 mmeineke 558
398 gezelter 600 mass = atoms[i]->getMass();
399    
400 mmeineke 558 // velocity half step
401 tim 725 for (j = 0; j < 3; j++)
402     vel[j] += (dt2 * frc[j] / mass) * eConvert;
403 gezelter 600
404 tim 725 atoms[i]->setVel(vel);
405 mmeineke 597
406 tim 725 if (atoms[i]->isDirectional()){
407     dAtom = (DirectionalAtom *) atoms[i];
408    
409 tim 837 // get and convert the torque to body frame
410 gezelter 600
411 tim 725 dAtom->getTrq(Tb);
412     dAtom->lab2Body(Tb);
413 gezelter 600
414     // get the angular momentum, and propagate a half step
415    
416 tim 725 dAtom->getJ(ji);
417 gezelter 600
418 tim 725 for (j = 0; j < 3; j++)
419 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
420 mmeineke 597
421 tim 725
422     dAtom->setJ(ji);
423 mmeineke 558 }
424     }
425 mmeineke 768
426     if (nConstrained){
427     constrainB();
428     }
429 mmeineke 558 }
430    
431 tim 725 template<typename T> void Integrator<T>::preMove(void){
432 gezelter 600 int i, j;
433     double pos[3];
434 mmeineke 558
435 tim 725 if (nConstrained){
436     for (i = 0; i < nAtoms; i++){
437     atoms[i]->getPos(pos);
438 mmeineke 561
439 tim 725 for (j = 0; j < 3; j++){
440     oldPos[3 * i + j] = pos[j];
441 gezelter 600 }
442     }
443 tim 725 }
444 gezelter 600 }
445    
446 tim 645 template<typename T> void Integrator<T>::constrainA(){
447 mmeineke 787 int i, j;
448 mmeineke 558 int done;
449 gezelter 600 double posA[3], posB[3];
450     double velA[3], velB[3];
451 mmeineke 572 double pab[3];
452     double rab[3];
453 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
454 mmeineke 558 double rma, rmb;
455     double dx, dy, dz;
456 mmeineke 561 double rpab;
457 mmeineke 558 double rabsq, pabsq, rpabsq;
458     double diffsq;
459     double gab;
460     int iteration;
461    
462 tim 725 for (i = 0; i < nAtoms; i++){
463 mmeineke 558 moving[i] = 0;
464 tim 725 moved[i] = 1;
465 mmeineke 558 }
466 mmeineke 567
467 mmeineke 558 iteration = 0;
468     done = 0;
469 tim 725 while (!done && (iteration < maxIteration)){
470 mmeineke 558 done = 1;
471 tim 725 for (i = 0; i < nConstrained; i++){
472 mmeineke 558 a = constrainedA[i];
473     b = constrainedB[i];
474 mmeineke 563
475 tim 725 ax = (a * 3) + 0;
476     ay = (a * 3) + 1;
477     az = (a * 3) + 2;
478 mmeineke 563
479 tim 725 bx = (b * 3) + 0;
480     by = (b * 3) + 1;
481     bz = (b * 3) + 2;
482    
483     if (moved[a] || moved[b]){
484     atoms[a]->getPos(posA);
485     atoms[b]->getPos(posB);
486    
487     for (j = 0; j < 3; j++)
488 gezelter 600 pab[j] = posA[j] - posB[j];
489 mmeineke 567
490 tim 725 //periodic boundary condition
491 mmeineke 567
492 tim 725 info->wrapVector(pab);
493 mmeineke 572
494 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
495 mmeineke 558
496 tim 725 rabsq = constrainedDsqr[i];
497     diffsq = rabsq - pabsq;
498 mmeineke 567
499 tim 725 // the original rattle code from alan tidesley
500     if (fabs(diffsq) > (tol * rabsq * 2)){
501     rab[0] = oldPos[ax] - oldPos[bx];
502     rab[1] = oldPos[ay] - oldPos[by];
503     rab[2] = oldPos[az] - oldPos[bz];
504 mmeineke 558
505 tim 725 info->wrapVector(rab);
506 mmeineke 567
507 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
508 mmeineke 558
509 tim 725 rpabsq = rpab * rpab;
510 mmeineke 558
511 mmeineke 563
512 tim 725 if (rpabsq < (rabsq * -diffsq)){
513 mmeineke 558 #ifdef IS_MPI
514 tim 725 a = atoms[a]->getGlobalIndex();
515     b = atoms[b]->getGlobalIndex();
516 mmeineke 558 #endif //is_mpi
517 tim 725 sprintf(painCave.errMsg,
518     "Constraint failure in constrainA at atom %d and %d.\n", a,
519     b);
520     painCave.isFatal = 1;
521     simError();
522     }
523 mmeineke 558
524 tim 725 rma = 1.0 / atoms[a]->getMass();
525     rmb = 1.0 / atoms[b]->getMass();
526 mmeineke 567
527 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
528 mmeineke 567
529 mmeineke 572 dx = rab[0] * gab;
530     dy = rab[1] * gab;
531     dz = rab[2] * gab;
532 mmeineke 558
533 tim 725 posA[0] += rma * dx;
534     posA[1] += rma * dy;
535     posA[2] += rma * dz;
536 mmeineke 558
537 tim 725 atoms[a]->setPos(posA);
538 mmeineke 558
539 tim 725 posB[0] -= rmb * dx;
540     posB[1] -= rmb * dy;
541     posB[2] -= rmb * dz;
542 gezelter 600
543 tim 725 atoms[b]->setPos(posB);
544 gezelter 600
545 mmeineke 558 dx = dx / dt;
546     dy = dy / dt;
547     dz = dz / dt;
548    
549 tim 725 atoms[a]->getVel(velA);
550 mmeineke 558
551 tim 725 velA[0] += rma * dx;
552     velA[1] += rma * dy;
553     velA[2] += rma * dz;
554 mmeineke 558
555 tim 725 atoms[a]->setVel(velA);
556 gezelter 600
557 tim 725 atoms[b]->getVel(velB);
558 gezelter 600
559 tim 725 velB[0] -= rmb * dx;
560     velB[1] -= rmb * dy;
561     velB[2] -= rmb * dz;
562 gezelter 600
563 tim 725 atoms[b]->setVel(velB);
564 gezelter 600
565 tim 725 moving[a] = 1;
566     moving[b] = 1;
567     done = 0;
568     }
569 mmeineke 558 }
570     }
571 tim 725
572     for (i = 0; i < nAtoms; i++){
573 mmeineke 558 moved[i] = moving[i];
574     moving[i] = 0;
575     }
576    
577     iteration++;
578     }
579    
580 tim 725 if (!done){
581     sprintf(painCave.errMsg,
582     "Constraint failure in constrainA, too many iterations: %d\n",
583     iteration);
584 mmeineke 558 painCave.isFatal = 1;
585     simError();
586     }
587 mmeineke 768
588 mmeineke 558 }
589    
590 tim 725 template<typename T> void Integrator<T>::constrainB(void){
591 mmeineke 787 int i, j;
592 mmeineke 558 int done;
593 gezelter 600 double posA[3], posB[3];
594     double velA[3], velB[3];
595 mmeineke 558 double vxab, vyab, vzab;
596 mmeineke 572 double rab[3];
597 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
598 mmeineke 558 double rma, rmb;
599     double dx, dy, dz;
600 mmeineke 787 double rvab;
601 mmeineke 558 double gab;
602     int iteration;
603    
604 tim 725 for (i = 0; i < nAtoms; i++){
605 mmeineke 558 moving[i] = 0;
606     moved[i] = 1;
607     }
608    
609     done = 0;
610 mmeineke 561 iteration = 0;
611 tim 725 while (!done && (iteration < maxIteration)){
612 mmeineke 567 done = 1;
613    
614 tim 725 for (i = 0; i < nConstrained; i++){
615 mmeineke 558 a = constrainedA[i];
616     b = constrainedB[i];
617    
618 tim 725 ax = (a * 3) + 0;
619     ay = (a * 3) + 1;
620     az = (a * 3) + 2;
621 mmeineke 563
622 tim 725 bx = (b * 3) + 0;
623     by = (b * 3) + 1;
624     bz = (b * 3) + 2;
625 mmeineke 563
626 tim 725 if (moved[a] || moved[b]){
627     atoms[a]->getVel(velA);
628     atoms[b]->getVel(velB);
629 mmeineke 558
630 tim 725 vxab = velA[0] - velB[0];
631     vyab = velA[1] - velB[1];
632     vzab = velA[2] - velB[2];
633 gezelter 600
634 tim 725 atoms[a]->getPos(posA);
635     atoms[b]->getPos(posB);
636 gezelter 600
637 tim 725 for (j = 0; j < 3; j++)
638 gezelter 600 rab[j] = posA[j] - posB[j];
639 mmeineke 558
640 tim 725 info->wrapVector(rab);
641 mmeineke 558
642 tim 725 rma = 1.0 / atoms[a]->getMass();
643     rmb = 1.0 / atoms[b]->getMass();
644 mmeineke 558
645 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
646 gezelter 600
647 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
648 gezelter 600
649 tim 725 if (fabs(gab) > tol){
650     dx = rab[0] * gab;
651     dy = rab[1] * gab;
652     dz = rab[2] * gab;
653    
654     velA[0] += rma * dx;
655     velA[1] += rma * dy;
656     velA[2] += rma * dz;
657    
658     atoms[a]->setVel(velA);
659    
660     velB[0] -= rmb * dx;
661     velB[1] -= rmb * dy;
662     velB[2] -= rmb * dz;
663    
664     atoms[b]->setVel(velB);
665    
666     moving[a] = 1;
667     moving[b] = 1;
668     done = 0;
669     }
670 mmeineke 558 }
671     }
672    
673 tim 725 for (i = 0; i < nAtoms; i++){
674 mmeineke 558 moved[i] = moving[i];
675     moving[i] = 0;
676     }
677 tim 725
678 mmeineke 558 iteration++;
679     }
680    
681 tim 725 if (!done){
682     sprintf(painCave.errMsg,
683     "Constraint failure in constrainB, too many iterations: %d\n",
684     iteration);
685 mmeineke 558 painCave.isFatal = 1;
686     simError();
687 tim 725 }
688 mmeineke 558 }
689    
690 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
691     ( DirectionalAtom* dAtom, double ji[3] ){
692    
693     double angle;
694     double A[3][3], I[3][3];
695    
696     // use the angular velocities to propagate the rotation matrix a
697     // full time step
698    
699     dAtom->getA(A);
700     dAtom->getI(I);
701 tim 837
702     // rotate about the x-axis
703 mmeineke 778 angle = dt2 * ji[0] / I[0][0];
704 tim 837 this->rotate( 1, 2, angle, ji, A );
705    
706 mmeineke 778 // rotate about the y-axis
707     angle = dt2 * ji[1] / I[1][1];
708     this->rotate( 2, 0, angle, ji, A );
709 tim 837
710 mmeineke 778 // rotate about the z-axis
711     angle = dt * ji[2] / I[2][2];
712     this->rotate( 0, 1, angle, ji, A);
713 tim 837
714 mmeineke 778 // rotate about the y-axis
715     angle = dt2 * ji[1] / I[1][1];
716     this->rotate( 2, 0, angle, ji, A );
717 tim 837
718 mmeineke 778 // rotate about the x-axis
719     angle = dt2 * ji[0] / I[0][0];
720     this->rotate( 1, 2, angle, ji, A );
721 tim 837
722     dAtom->setA( A );
723 mmeineke 778 }
724    
725 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
726     double angle, double ji[3],
727     double A[3][3]){
728     int i, j, k;
729 mmeineke 558 double sinAngle;
730     double cosAngle;
731     double angleSqr;
732     double angleSqrOver4;
733     double top, bottom;
734     double rot[3][3];
735     double tempA[3][3];
736     double tempJ[3];
737    
738     // initialize the tempA
739    
740 tim 725 for (i = 0; i < 3; i++){
741     for (j = 0; j < 3; j++){
742 gezelter 600 tempA[j][i] = A[i][j];
743 mmeineke 558 }
744     }
745    
746     // initialize the tempJ
747    
748 tim 725 for (i = 0; i < 3; i++)
749     tempJ[i] = ji[i];
750    
751 mmeineke 558 // initalize rot as a unit matrix
752    
753     rot[0][0] = 1.0;
754     rot[0][1] = 0.0;
755     rot[0][2] = 0.0;
756    
757     rot[1][0] = 0.0;
758     rot[1][1] = 1.0;
759     rot[1][2] = 0.0;
760 tim 725
761 mmeineke 558 rot[2][0] = 0.0;
762     rot[2][1] = 0.0;
763     rot[2][2] = 1.0;
764 tim 725
765 mmeineke 558 // use a small angle aproximation for sin and cosine
766    
767 tim 725 angleSqr = angle * angle;
768 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
769     top = 1.0 - angleSqrOver4;
770     bottom = 1.0 + angleSqrOver4;
771    
772     cosAngle = top / bottom;
773     sinAngle = angle / bottom;
774    
775     rot[axes1][axes1] = cosAngle;
776     rot[axes2][axes2] = cosAngle;
777    
778     rot[axes1][axes2] = sinAngle;
779     rot[axes2][axes1] = -sinAngle;
780 tim 725
781 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
782 tim 725
783     for (i = 0; i < 3; i++){
784 mmeineke 558 ji[i] = 0.0;
785 tim 725 for (k = 0; k < 3; k++){
786 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
787     }
788     }
789    
790 tim 837 // rotate the Rotation matrix acording to:
791 mmeineke 558 // A[][] = A[][] * transpose(rot[][])
792    
793    
794 mmeineke 561 // NOte for as yet unknown reason, we are performing the
795 mmeineke 558 // calculation as:
796     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
797    
798 tim 725 for (i = 0; i < 3; i++){
799     for (j = 0; j < 3; j++){
800 gezelter 600 A[j][i] = 0.0;
801 tim 725 for (k = 0; k < 3; k++){
802     A[j][i] += tempA[i][k] * rot[j][k];
803 mmeineke 558 }
804     }
805     }
806     }
807 tim 677
808 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
809     myFF->doForces(calcPot, calcStress);
810 tim 677 }
811    
812     template<typename T> void Integrator<T>::thermalize(){
813 tim 725 tStats->velocitize();
814 tim 677 }
815 tim 763
816     template<typename T> double Integrator<T>::getConservedQuantity(void){
817     return tStats->getTotalE();
818 mmeineke 768 }
819 tim 837 template<typename T> string Integrator<T>::getAdditionalParameters(void){
820     //By default, return a null string
821     //The reason we use string instead of char* is that if we use char*, we will
822     //return a pointer point to local variable which might cause problem
823     return string();
824     }