ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 1108
Committed: Wed Apr 14 15:37:41 2004 UTC (20 years, 2 months ago) by tim
File size: 17630 byte(s)
Log Message:
Change DumpWriter and InitFromFile

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2 gezelter 829 #include <stdlib.h>
3     #include <math.h>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10 chuckv 892 #ifdef PROFILE
11     #include "mdProfile.hpp"
12     #endif // profile
13    
14 mmeineke 558 #include "Integrator.hpp"
15     #include "simError.h"
16    
17    
18 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19     ForceFields* the_ff){
20 mmeineke 558 info = theInfo;
21     myFF = the_ff;
22     isFirst = 1;
23    
24     molecules = info->molecules;
25     nMols = info->n_mol;
26    
27     // give a little love back to the SimInfo object
28 tim 725
29     if (info->the_integrator != NULL){
30     delete info->the_integrator;
31     }
32 tim 837
33 mmeineke 558 nAtoms = info->n_atoms;
34 gezelter 1097 integrableObjects = info->integrableObjects;
35 mmeineke 558
36     // check for constraints
37 tim 725
38     constrainedA = NULL;
39     constrainedB = NULL;
40 mmeineke 558 constrainedDsqr = NULL;
41 tim 725 moving = NULL;
42     moved = NULL;
43     oldPos = NULL;
44    
45 mmeineke 558 nConstrained = 0;
46    
47     checkConstraints();
48     }
49    
50 tim 725 template<typename T> Integrator<T>::~Integrator(){
51     if (nConstrained){
52 mmeineke 558 delete[] constrainedA;
53     delete[] constrainedB;
54     delete[] constrainedDsqr;
55     delete[] moving;
56     delete[] moved;
57 mmeineke 561 delete[] oldPos;
58 mmeineke 558 }
59     }
60    
61 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
62 mmeineke 558 isConstrained = 0;
63    
64 tim 725 Constraint* temp_con;
65     Constraint* dummy_plug;
66 mmeineke 558 temp_con = new Constraint[info->n_SRI];
67     nConstrained = 0;
68     int constrained = 0;
69 tim 725
70 mmeineke 558 SRI** theArray;
71 tim 725 for (int i = 0; i < nMols; i++){
72 tim 1057
73     theArray = (SRI * *) molecules[i].getMyBonds();
74 tim 725 for (int j = 0; j < molecules[i].getNBonds(); j++){
75 mmeineke 558 constrained = theArray[j]->is_constrained();
76 mmeineke 594
77 tim 725 if (constrained){
78     dummy_plug = theArray[j]->get_constraint();
79     temp_con[nConstrained].set_a(dummy_plug->get_a());
80     temp_con[nConstrained].set_b(dummy_plug->get_b());
81     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
82 mmeineke 594
83 tim 725 nConstrained++;
84     constrained = 0;
85     }
86 mmeineke 558 }
87    
88 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
89     for (int j = 0; j < molecules[i].getNBends(); j++){
90 mmeineke 558 constrained = theArray[j]->is_constrained();
91 tim 725
92     if (constrained){
93     dummy_plug = theArray[j]->get_constraint();
94     temp_con[nConstrained].set_a(dummy_plug->get_a());
95     temp_con[nConstrained].set_b(dummy_plug->get_b());
96     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
97    
98     nConstrained++;
99     constrained = 0;
100 mmeineke 558 }
101     }
102    
103 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
104     for (int j = 0; j < molecules[i].getNTorsions(); j++){
105 mmeineke 558 constrained = theArray[j]->is_constrained();
106 tim 725
107     if (constrained){
108     dummy_plug = theArray[j]->get_constraint();
109     temp_con[nConstrained].set_a(dummy_plug->get_a());
110     temp_con[nConstrained].set_b(dummy_plug->get_b());
111     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
112    
113     nConstrained++;
114     constrained = 0;
115 mmeineke 558 }
116     }
117     }
118    
119 tim 1057
120 tim 725 if (nConstrained > 0){
121 mmeineke 558 isConstrained = 1;
122    
123 tim 725 if (constrainedA != NULL)
124     delete[] constrainedA;
125     if (constrainedB != NULL)
126     delete[] constrainedB;
127     if (constrainedDsqr != NULL)
128     delete[] constrainedDsqr;
129 mmeineke 558
130 tim 725 constrainedA = new int[nConstrained];
131     constrainedB = new int[nConstrained];
132 mmeineke 558 constrainedDsqr = new double[nConstrained];
133 tim 725
134     for (int i = 0; i < nConstrained; i++){
135 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
136     constrainedB[i] = temp_con[i].get_b();
137     constrainedDsqr[i] = temp_con[i].get_dsqr();
138     }
139    
140 tim 725
141 chrisfen 999 // save oldAtoms to check for lode balancing later on.
142 tim 725
143 mmeineke 558 oldAtoms = nAtoms;
144 tim 725
145 mmeineke 558 moving = new int[nAtoms];
146 tim 725 moved = new int[nAtoms];
147 mmeineke 558
148 tim 725 oldPos = new double[nAtoms * 3];
149 mmeineke 558 }
150 tim 725
151 mmeineke 558 delete[] temp_con;
152     }
153    
154    
155 tim 725 template<typename T> void Integrator<T>::integrate(void){
156 mmeineke 558
157 tim 725 double runTime = info->run_time;
158     double sampleTime = info->sampleTime;
159     double statusTime = info->statusTime;
160 mmeineke 558 double thermalTime = info->thermalTime;
161 mmeineke 746 double resetTime = info->resetTime;
162 mmeineke 558
163 mmeineke 746
164 mmeineke 558 double currSample;
165     double currThermal;
166     double currStatus;
167 mmeineke 746 double currReset;
168 tim 837
169 mmeineke 558 int calcPot, calcStress;
170    
171 tim 725 tStats = new Thermo(info);
172     statOut = new StatWriter(info);
173     dumpOut = new DumpWriter(info);
174 mmeineke 558
175 mmeineke 561 atoms = info->atoms;
176    
177     dt = info->dt;
178 mmeineke 558 dt2 = 0.5 * dt;
179    
180 mmeineke 784 readyCheck();
181    
182 mmeineke 558 // initialize the forces before the first step
183    
184 tim 677 calcForce(1, 1);
185 tim 781
186 tim 1035 //temp test
187     tStats->getPotential();
188    
189 tim 781 if (nConstrained){
190     preMove();
191     constrainA();
192 tim 837 calcForce(1, 1);
193 tim 781 constrainB();
194     }
195 mmeineke 843
196 tim 725 if (info->setTemp){
197 tim 677 thermalize();
198 mmeineke 558 }
199 tim 725
200 mmeineke 558 calcPot = 0;
201     calcStress = 0;
202 mmeineke 711 currSample = sampleTime + info->getTime();
203     currThermal = thermalTime+ info->getTime();
204     currStatus = statusTime + info->getTime();
205 mmeineke 746 currReset = resetTime + info->getTime();
206 mmeineke 558
207 tim 725 dumpOut->writeDump(info->getTime());
208     statOut->writeStat(info->getTime());
209 mmeineke 559
210    
211     #ifdef IS_MPI
212 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
213 mmeineke 559 MPIcheckPoint();
214     #endif // is_mpi
215    
216 tim 1108 while (info->getTime() < runTime && stopIntegrator()){
217 tim 725 if ((info->getTime() + dt) >= currStatus){
218 mmeineke 558 calcPot = 1;
219     calcStress = 1;
220     }
221 mmeineke 561
222 chuckv 892 #ifdef PROFILE
223     startProfile( pro1 );
224     #endif
225    
226 tim 725 integrateStep(calcPot, calcStress);
227    
228 chuckv 892 #ifdef PROFILE
229     endProfile( pro1 );
230    
231     startProfile( pro2 );
232     #endif // profile
233    
234 mmeineke 643 info->incrTime(dt);
235 mmeineke 558
236 tim 725 if (info->setTemp){
237     if (info->getTime() >= currThermal){
238     thermalize();
239     currThermal += thermalTime;
240 mmeineke 558 }
241     }
242    
243 tim 725 if (info->getTime() >= currSample){
244     dumpOut->writeDump(info->getTime());
245 mmeineke 558 currSample += sampleTime;
246     }
247    
248 tim 725 if (info->getTime() >= currStatus){
249 tim 837 statOut->writeStat(info->getTime());
250     calcPot = 0;
251 mmeineke 558 calcStress = 0;
252     currStatus += statusTime;
253 tim 837 }
254 mmeineke 559
255 mmeineke 746 if (info->resetIntegrator){
256     if (info->getTime() >= currReset){
257     this->resetIntegrator();
258     currReset += resetTime;
259     }
260     }
261 chuckv 892
262     #ifdef PROFILE
263     endProfile( pro2 );
264     #endif //profile
265 mmeineke 746
266 mmeineke 559 #ifdef IS_MPI
267 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
268 mmeineke 559 MPIcheckPoint();
269     #endif // is_mpi
270 mmeineke 558 }
271    
272 mmeineke 561 delete dumpOut;
273     delete statOut;
274 mmeineke 558 }
275    
276 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
277     int calcStress){
278 mmeineke 558 // Position full step, and velocity half step
279 chuckv 892
280     #ifdef PROFILE
281     startProfile(pro3);
282     #endif //profile
283    
284 tim 725 preMove();
285 mmeineke 558
286 chuckv 892 #ifdef PROFILE
287     endProfile(pro3);
288    
289     startProfile(pro4);
290     #endif // profile
291    
292 mmeineke 558 moveA();
293    
294 chuckv 892 #ifdef PROFILE
295     endProfile(pro4);
296    
297     startProfile(pro5);
298     #endif//profile
299 tim 725
300    
301 mmeineke 614 #ifdef IS_MPI
302 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
303 mmeineke 614 MPIcheckPoint();
304     #endif // is_mpi
305    
306 tim 725
307 mmeineke 558 // calc forces
308    
309 tim 725 calcForce(calcPot, calcStress);
310 mmeineke 558
311 mmeineke 614 #ifdef IS_MPI
312 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
313 mmeineke 614 MPIcheckPoint();
314     #endif // is_mpi
315    
316 chuckv 892 #ifdef PROFILE
317     endProfile( pro5 );
318 tim 725
319 chuckv 892 startProfile( pro6 );
320     #endif //profile
321    
322 mmeineke 558 // finish the velocity half step
323 tim 725
324 mmeineke 558 moveB();
325 tim 725
326 chuckv 892 #ifdef PROFILE
327     endProfile(pro6);
328     #endif // profile
329 tim 725
330 mmeineke 614 #ifdef IS_MPI
331 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
332 mmeineke 614 MPIcheckPoint();
333     #endif // is_mpi
334 mmeineke 558 }
335    
336    
337 tim 725 template<typename T> void Integrator<T>::moveA(void){
338 gezelter 1097 size_t i, j;
339 mmeineke 558 DirectionalAtom* dAtom;
340 gezelter 600 double Tb[3], ji[3];
341     double vel[3], pos[3], frc[3];
342     double mass;
343 gezelter 1097
344     for (i = 0; i < integrableObjects.size() ; i++){
345     integrableObjects[i]->getVel(vel);
346     integrableObjects[i]->getPos(pos);
347     integrableObjects[i]->getFrc(frc);
348    
349     mass = integrableObjects[i]->getMass();
350 mmeineke 558
351 tim 725 for (j = 0; j < 3; j++){
352 gezelter 600 // velocity half step
353 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
354 gezelter 600 // position whole step
355     pos[j] += dt * vel[j];
356     }
357 mmeineke 594
358 gezelter 1097 integrableObjects[i]->setVel(vel);
359     integrableObjects[i]->setPos(pos);
360 gezelter 600
361 gezelter 1097 if (integrableObjects[i]->isDirectional()){
362 mmeineke 558
363     // get and convert the torque to body frame
364 mmeineke 597
365 gezelter 1097 integrableObjects[i]->getTrq(Tb);
366     integrableObjects[i]->lab2Body(Tb);
367 tim 725
368 mmeineke 558 // get the angular momentum, and propagate a half step
369 gezelter 600
370 gezelter 1097 integrableObjects[i]->getJ(ji);
371 gezelter 600
372 tim 725 for (j = 0; j < 3; j++)
373 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
374 tim 725
375 gezelter 1097 this->rotationPropagation( integrableObjects[i], ji );
376 gezelter 600
377 gezelter 1097 integrableObjects[i]->setJ(ji);
378 tim 725 }
379 mmeineke 558 }
380 mmeineke 768
381     if (nConstrained){
382     constrainA();
383     }
384 mmeineke 558 }
385    
386    
387 tim 725 template<typename T> void Integrator<T>::moveB(void){
388 gezelter 600 int i, j;
389     double Tb[3], ji[3];
390     double vel[3], frc[3];
391     double mass;
392 mmeineke 558
393 gezelter 1097 for (i = 0; i < integrableObjects.size(); i++){
394     integrableObjects[i]->getVel(vel);
395     integrableObjects[i]->getFrc(frc);
396 mmeineke 558
397 gezelter 1097 mass = integrableObjects[i]->getMass();
398 gezelter 600
399 mmeineke 558 // velocity half step
400 tim 725 for (j = 0; j < 3; j++)
401     vel[j] += (dt2 * frc[j] / mass) * eConvert;
402 gezelter 600
403 gezelter 1097 integrableObjects[i]->setVel(vel);
404 mmeineke 597
405 gezelter 1097 if (integrableObjects[i]->isDirectional()){
406 tim 725
407 tim 837 // get and convert the torque to body frame
408 gezelter 600
409 gezelter 1097 integrableObjects[i]->getTrq(Tb);
410     integrableObjects[i]->lab2Body(Tb);
411 gezelter 600
412     // get the angular momentum, and propagate a half step
413    
414 gezelter 1097 integrableObjects[i]->getJ(ji);
415 gezelter 600
416 tim 725 for (j = 0; j < 3; j++)
417 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
418 mmeineke 597
419 tim 725
420 gezelter 1097 integrableObjects[i]->setJ(ji);
421 mmeineke 558 }
422     }
423 mmeineke 768
424     if (nConstrained){
425     constrainB();
426     }
427 mmeineke 558 }
428    
429 tim 725 template<typename T> void Integrator<T>::preMove(void){
430 gezelter 600 int i, j;
431     double pos[3];
432 mmeineke 558
433 tim 725 if (nConstrained){
434     for (i = 0; i < nAtoms; i++){
435     atoms[i]->getPos(pos);
436 mmeineke 561
437 tim 725 for (j = 0; j < 3; j++){
438     oldPos[3 * i + j] = pos[j];
439 gezelter 600 }
440     }
441 tim 725 }
442 gezelter 600 }
443    
444 tim 645 template<typename T> void Integrator<T>::constrainA(){
445 mmeineke 787 int i, j;
446 mmeineke 558 int done;
447 gezelter 600 double posA[3], posB[3];
448     double velA[3], velB[3];
449 mmeineke 572 double pab[3];
450     double rab[3];
451 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
452 mmeineke 558 double rma, rmb;
453     double dx, dy, dz;
454 mmeineke 561 double rpab;
455 mmeineke 558 double rabsq, pabsq, rpabsq;
456     double diffsq;
457     double gab;
458     int iteration;
459    
460 tim 725 for (i = 0; i < nAtoms; i++){
461 mmeineke 558 moving[i] = 0;
462 tim 725 moved[i] = 1;
463 mmeineke 558 }
464 mmeineke 567
465 mmeineke 558 iteration = 0;
466     done = 0;
467 tim 725 while (!done && (iteration < maxIteration)){
468 mmeineke 558 done = 1;
469 tim 725 for (i = 0; i < nConstrained; i++){
470 mmeineke 558 a = constrainedA[i];
471     b = constrainedB[i];
472 mmeineke 563
473 tim 725 ax = (a * 3) + 0;
474     ay = (a * 3) + 1;
475     az = (a * 3) + 2;
476 mmeineke 563
477 tim 725 bx = (b * 3) + 0;
478     by = (b * 3) + 1;
479     bz = (b * 3) + 2;
480    
481     if (moved[a] || moved[b]){
482     atoms[a]->getPos(posA);
483     atoms[b]->getPos(posB);
484    
485     for (j = 0; j < 3; j++)
486 gezelter 600 pab[j] = posA[j] - posB[j];
487 mmeineke 567
488 tim 725 //periodic boundary condition
489 mmeineke 567
490 tim 725 info->wrapVector(pab);
491 mmeineke 572
492 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
493 mmeineke 558
494 tim 725 rabsq = constrainedDsqr[i];
495     diffsq = rabsq - pabsq;
496 mmeineke 567
497 tim 725 // the original rattle code from alan tidesley
498     if (fabs(diffsq) > (tol * rabsq * 2)){
499     rab[0] = oldPos[ax] - oldPos[bx];
500     rab[1] = oldPos[ay] - oldPos[by];
501     rab[2] = oldPos[az] - oldPos[bz];
502 mmeineke 558
503 tim 725 info->wrapVector(rab);
504 mmeineke 567
505 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
506 mmeineke 558
507 tim 725 rpabsq = rpab * rpab;
508 mmeineke 558
509 mmeineke 563
510 tim 725 if (rpabsq < (rabsq * -diffsq)){
511 mmeineke 558 #ifdef IS_MPI
512 tim 725 a = atoms[a]->getGlobalIndex();
513     b = atoms[b]->getGlobalIndex();
514 mmeineke 558 #endif //is_mpi
515 tim 725 sprintf(painCave.errMsg,
516     "Constraint failure in constrainA at atom %d and %d.\n", a,
517     b);
518     painCave.isFatal = 1;
519     simError();
520     }
521 mmeineke 558
522 tim 725 rma = 1.0 / atoms[a]->getMass();
523     rmb = 1.0 / atoms[b]->getMass();
524 mmeineke 567
525 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
526 mmeineke 567
527 mmeineke 572 dx = rab[0] * gab;
528     dy = rab[1] * gab;
529     dz = rab[2] * gab;
530 mmeineke 558
531 tim 725 posA[0] += rma * dx;
532     posA[1] += rma * dy;
533     posA[2] += rma * dz;
534 mmeineke 558
535 tim 725 atoms[a]->setPos(posA);
536 mmeineke 558
537 tim 725 posB[0] -= rmb * dx;
538     posB[1] -= rmb * dy;
539     posB[2] -= rmb * dz;
540 gezelter 600
541 tim 725 atoms[b]->setPos(posB);
542 gezelter 600
543 mmeineke 558 dx = dx / dt;
544     dy = dy / dt;
545     dz = dz / dt;
546    
547 tim 725 atoms[a]->getVel(velA);
548 mmeineke 558
549 tim 725 velA[0] += rma * dx;
550     velA[1] += rma * dy;
551     velA[2] += rma * dz;
552 mmeineke 558
553 tim 725 atoms[a]->setVel(velA);
554 gezelter 600
555 tim 725 atoms[b]->getVel(velB);
556 gezelter 600
557 tim 725 velB[0] -= rmb * dx;
558     velB[1] -= rmb * dy;
559     velB[2] -= rmb * dz;
560 gezelter 600
561 tim 725 atoms[b]->setVel(velB);
562 gezelter 600
563 tim 725 moving[a] = 1;
564     moving[b] = 1;
565     done = 0;
566     }
567 mmeineke 558 }
568     }
569 tim 725
570     for (i = 0; i < nAtoms; i++){
571 mmeineke 558 moved[i] = moving[i];
572     moving[i] = 0;
573     }
574    
575     iteration++;
576     }
577    
578 tim 725 if (!done){
579     sprintf(painCave.errMsg,
580     "Constraint failure in constrainA, too many iterations: %d\n",
581     iteration);
582 mmeineke 558 painCave.isFatal = 1;
583     simError();
584     }
585 mmeineke 768
586 mmeineke 558 }
587    
588 tim 725 template<typename T> void Integrator<T>::constrainB(void){
589 mmeineke 787 int i, j;
590 mmeineke 558 int done;
591 gezelter 600 double posA[3], posB[3];
592     double velA[3], velB[3];
593 mmeineke 558 double vxab, vyab, vzab;
594 mmeineke 572 double rab[3];
595 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
596 mmeineke 558 double rma, rmb;
597     double dx, dy, dz;
598 mmeineke 787 double rvab;
599 mmeineke 558 double gab;
600     int iteration;
601    
602 tim 725 for (i = 0; i < nAtoms; i++){
603 mmeineke 558 moving[i] = 0;
604     moved[i] = 1;
605     }
606    
607     done = 0;
608 mmeineke 561 iteration = 0;
609 tim 725 while (!done && (iteration < maxIteration)){
610 mmeineke 567 done = 1;
611    
612 tim 725 for (i = 0; i < nConstrained; i++){
613 mmeineke 558 a = constrainedA[i];
614     b = constrainedB[i];
615    
616 tim 725 ax = (a * 3) + 0;
617     ay = (a * 3) + 1;
618     az = (a * 3) + 2;
619 mmeineke 563
620 tim 725 bx = (b * 3) + 0;
621     by = (b * 3) + 1;
622     bz = (b * 3) + 2;
623 mmeineke 563
624 tim 725 if (moved[a] || moved[b]){
625     atoms[a]->getVel(velA);
626     atoms[b]->getVel(velB);
627 mmeineke 558
628 tim 725 vxab = velA[0] - velB[0];
629     vyab = velA[1] - velB[1];
630     vzab = velA[2] - velB[2];
631 gezelter 600
632 tim 725 atoms[a]->getPos(posA);
633     atoms[b]->getPos(posB);
634 gezelter 600
635 tim 725 for (j = 0; j < 3; j++)
636 gezelter 600 rab[j] = posA[j] - posB[j];
637 mmeineke 558
638 tim 725 info->wrapVector(rab);
639 mmeineke 558
640 tim 725 rma = 1.0 / atoms[a]->getMass();
641     rmb = 1.0 / atoms[b]->getMass();
642 mmeineke 558
643 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
644 gezelter 600
645 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
646 gezelter 600
647 tim 725 if (fabs(gab) > tol){
648     dx = rab[0] * gab;
649     dy = rab[1] * gab;
650     dz = rab[2] * gab;
651    
652     velA[0] += rma * dx;
653     velA[1] += rma * dy;
654     velA[2] += rma * dz;
655    
656     atoms[a]->setVel(velA);
657    
658     velB[0] -= rmb * dx;
659     velB[1] -= rmb * dy;
660     velB[2] -= rmb * dz;
661    
662     atoms[b]->setVel(velB);
663    
664     moving[a] = 1;
665     moving[b] = 1;
666     done = 0;
667     }
668 mmeineke 558 }
669     }
670    
671 tim 725 for (i = 0; i < nAtoms; i++){
672 mmeineke 558 moved[i] = moving[i];
673     moving[i] = 0;
674     }
675 tim 725
676 mmeineke 558 iteration++;
677     }
678    
679 tim 725 if (!done){
680     sprintf(painCave.errMsg,
681     "Constraint failure in constrainB, too many iterations: %d\n",
682     iteration);
683 mmeineke 558 painCave.isFatal = 1;
684     simError();
685 tim 725 }
686 mmeineke 558 }
687    
688 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
689 gezelter 1097 ( StuntDouble* sd, double ji[3] ){
690 mmeineke 778
691     double angle;
692     double A[3][3], I[3][3];
693    
694     // use the angular velocities to propagate the rotation matrix a
695     // full time step
696    
697 gezelter 1097 sd->getA(A);
698     sd->getI(I);
699 tim 837
700     // rotate about the x-axis
701 mmeineke 778 angle = dt2 * ji[0] / I[0][0];
702 tim 837 this->rotate( 1, 2, angle, ji, A );
703    
704 mmeineke 778 // rotate about the y-axis
705     angle = dt2 * ji[1] / I[1][1];
706     this->rotate( 2, 0, angle, ji, A );
707 tim 837
708 mmeineke 778 // rotate about the z-axis
709     angle = dt * ji[2] / I[2][2];
710     this->rotate( 0, 1, angle, ji, A);
711 tim 837
712 mmeineke 778 // rotate about the y-axis
713     angle = dt2 * ji[1] / I[1][1];
714     this->rotate( 2, 0, angle, ji, A );
715 tim 837
716 mmeineke 778 // rotate about the x-axis
717     angle = dt2 * ji[0] / I[0][0];
718     this->rotate( 1, 2, angle, ji, A );
719 tim 837
720 gezelter 1097 sd->setA( A );
721 mmeineke 778 }
722    
723 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
724     double angle, double ji[3],
725     double A[3][3]){
726     int i, j, k;
727 mmeineke 558 double sinAngle;
728     double cosAngle;
729     double angleSqr;
730     double angleSqrOver4;
731     double top, bottom;
732     double rot[3][3];
733     double tempA[3][3];
734     double tempJ[3];
735    
736     // initialize the tempA
737    
738 tim 725 for (i = 0; i < 3; i++){
739     for (j = 0; j < 3; j++){
740 gezelter 600 tempA[j][i] = A[i][j];
741 mmeineke 558 }
742     }
743    
744     // initialize the tempJ
745    
746 tim 725 for (i = 0; i < 3; i++)
747     tempJ[i] = ji[i];
748    
749 mmeineke 558 // initalize rot as a unit matrix
750    
751     rot[0][0] = 1.0;
752     rot[0][1] = 0.0;
753     rot[0][2] = 0.0;
754    
755     rot[1][0] = 0.0;
756     rot[1][1] = 1.0;
757     rot[1][2] = 0.0;
758 tim 725
759 mmeineke 558 rot[2][0] = 0.0;
760     rot[2][1] = 0.0;
761     rot[2][2] = 1.0;
762 tim 725
763 mmeineke 558 // use a small angle aproximation for sin and cosine
764    
765 tim 725 angleSqr = angle * angle;
766 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
767     top = 1.0 - angleSqrOver4;
768     bottom = 1.0 + angleSqrOver4;
769    
770     cosAngle = top / bottom;
771     sinAngle = angle / bottom;
772    
773     rot[axes1][axes1] = cosAngle;
774     rot[axes2][axes2] = cosAngle;
775    
776     rot[axes1][axes2] = sinAngle;
777     rot[axes2][axes1] = -sinAngle;
778 tim 725
779 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
780 tim 725
781     for (i = 0; i < 3; i++){
782 mmeineke 558 ji[i] = 0.0;
783 tim 725 for (k = 0; k < 3; k++){
784 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
785     }
786     }
787    
788 tim 837 // rotate the Rotation matrix acording to:
789 mmeineke 558 // A[][] = A[][] * transpose(rot[][])
790    
791    
792 mmeineke 561 // NOte for as yet unknown reason, we are performing the
793 mmeineke 558 // calculation as:
794     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
795    
796 tim 725 for (i = 0; i < 3; i++){
797     for (j = 0; j < 3; j++){
798 gezelter 600 A[j][i] = 0.0;
799 tim 725 for (k = 0; k < 3; k++){
800     A[j][i] += tempA[i][k] * rot[j][k];
801 mmeineke 558 }
802     }
803     }
804     }
805 tim 677
806 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
807     myFF->doForces(calcPot, calcStress);
808 tim 677 }
809    
810     template<typename T> void Integrator<T>::thermalize(){
811 tim 725 tStats->velocitize();
812 tim 677 }
813 tim 763
814     template<typename T> double Integrator<T>::getConservedQuantity(void){
815     return tStats->getTotalE();
816 mmeineke 768 }
817 tim 837 template<typename T> string Integrator<T>::getAdditionalParameters(void){
818     //By default, return a null string
819     //The reason we use string instead of char* is that if we use char*, we will
820     //return a pointer point to local variable which might cause problem
821     return string();
822     }