ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 1113
Committed: Thu Apr 15 16:18:26 2004 UTC (20 years, 2 months ago) by tim
File size: 17590 byte(s)
Log Message:
fix whole bunch of bugs :-)

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2 gezelter 829 #include <stdlib.h>
3     #include <math.h>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10 chuckv 892 #ifdef PROFILE
11     #include "mdProfile.hpp"
12     #endif // profile
13    
14 mmeineke 558 #include "Integrator.hpp"
15     #include "simError.h"
16    
17    
18 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19     ForceFields* the_ff){
20 mmeineke 558 info = theInfo;
21     myFF = the_ff;
22     isFirst = 1;
23    
24     molecules = info->molecules;
25     nMols = info->n_mol;
26    
27     // give a little love back to the SimInfo object
28 tim 725
29     if (info->the_integrator != NULL){
30     delete info->the_integrator;
31     }
32 tim 837
33 mmeineke 558 nAtoms = info->n_atoms;
34 gezelter 1097 integrableObjects = info->integrableObjects;
35 mmeineke 558
36     // check for constraints
37 tim 725
38     constrainedA = NULL;
39     constrainedB = NULL;
40 mmeineke 558 constrainedDsqr = NULL;
41 tim 725 moving = NULL;
42     moved = NULL;
43     oldPos = NULL;
44    
45 mmeineke 558 nConstrained = 0;
46    
47     checkConstraints();
48     }
49    
50 tim 725 template<typename T> Integrator<T>::~Integrator(){
51     if (nConstrained){
52 mmeineke 558 delete[] constrainedA;
53     delete[] constrainedB;
54     delete[] constrainedDsqr;
55     delete[] moving;
56     delete[] moved;
57 mmeineke 561 delete[] oldPos;
58 mmeineke 558 }
59     }
60    
61 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
62 mmeineke 558 isConstrained = 0;
63    
64 tim 725 Constraint* temp_con;
65     Constraint* dummy_plug;
66 mmeineke 558 temp_con = new Constraint[info->n_SRI];
67     nConstrained = 0;
68     int constrained = 0;
69 tim 725
70 mmeineke 558 SRI** theArray;
71 tim 725 for (int i = 0; i < nMols; i++){
72 tim 1057
73     theArray = (SRI * *) molecules[i].getMyBonds();
74 tim 725 for (int j = 0; j < molecules[i].getNBonds(); j++){
75 mmeineke 558 constrained = theArray[j]->is_constrained();
76 mmeineke 594
77 tim 725 if (constrained){
78     dummy_plug = theArray[j]->get_constraint();
79     temp_con[nConstrained].set_a(dummy_plug->get_a());
80     temp_con[nConstrained].set_b(dummy_plug->get_b());
81     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
82 mmeineke 594
83 tim 725 nConstrained++;
84     constrained = 0;
85     }
86 mmeineke 558 }
87    
88 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
89     for (int j = 0; j < molecules[i].getNBends(); j++){
90 mmeineke 558 constrained = theArray[j]->is_constrained();
91 tim 725
92     if (constrained){
93     dummy_plug = theArray[j]->get_constraint();
94     temp_con[nConstrained].set_a(dummy_plug->get_a());
95     temp_con[nConstrained].set_b(dummy_plug->get_b());
96     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
97    
98     nConstrained++;
99     constrained = 0;
100 mmeineke 558 }
101     }
102    
103 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
104     for (int j = 0; j < molecules[i].getNTorsions(); j++){
105 mmeineke 558 constrained = theArray[j]->is_constrained();
106 tim 725
107     if (constrained){
108     dummy_plug = theArray[j]->get_constraint();
109     temp_con[nConstrained].set_a(dummy_plug->get_a());
110     temp_con[nConstrained].set_b(dummy_plug->get_b());
111     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
112    
113     nConstrained++;
114     constrained = 0;
115 mmeineke 558 }
116     }
117     }
118    
119 tim 1057
120 tim 725 if (nConstrained > 0){
121 mmeineke 558 isConstrained = 1;
122    
123 tim 725 if (constrainedA != NULL)
124     delete[] constrainedA;
125     if (constrainedB != NULL)
126     delete[] constrainedB;
127     if (constrainedDsqr != NULL)
128     delete[] constrainedDsqr;
129 mmeineke 558
130 tim 725 constrainedA = new int[nConstrained];
131     constrainedB = new int[nConstrained];
132 mmeineke 558 constrainedDsqr = new double[nConstrained];
133 tim 725
134     for (int i = 0; i < nConstrained; i++){
135 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
136     constrainedB[i] = temp_con[i].get_b();
137     constrainedDsqr[i] = temp_con[i].get_dsqr();
138     }
139    
140 tim 725
141 chrisfen 999 // save oldAtoms to check for lode balancing later on.
142 tim 725
143 mmeineke 558 oldAtoms = nAtoms;
144 tim 725
145 mmeineke 558 moving = new int[nAtoms];
146 tim 725 moved = new int[nAtoms];
147 mmeineke 558
148 tim 725 oldPos = new double[nAtoms * 3];
149 mmeineke 558 }
150 tim 725
151 mmeineke 558 delete[] temp_con;
152     }
153    
154    
155 tim 725 template<typename T> void Integrator<T>::integrate(void){
156 mmeineke 558
157 tim 725 double runTime = info->run_time;
158     double sampleTime = info->sampleTime;
159     double statusTime = info->statusTime;
160 mmeineke 558 double thermalTime = info->thermalTime;
161 mmeineke 746 double resetTime = info->resetTime;
162 mmeineke 558
163 mmeineke 746
164 mmeineke 558 double currSample;
165     double currThermal;
166     double currStatus;
167 mmeineke 746 double currReset;
168 tim 837
169 mmeineke 558 int calcPot, calcStress;
170    
171 tim 725 tStats = new Thermo(info);
172     statOut = new StatWriter(info);
173     dumpOut = new DumpWriter(info);
174 mmeineke 558
175 mmeineke 561 atoms = info->atoms;
176    
177     dt = info->dt;
178 mmeineke 558 dt2 = 0.5 * dt;
179    
180 mmeineke 784 readyCheck();
181    
182 mmeineke 558 // initialize the forces before the first step
183    
184 tim 677 calcForce(1, 1);
185 tim 1035
186 tim 781 if (nConstrained){
187     preMove();
188     constrainA();
189 tim 837 calcForce(1, 1);
190 tim 781 constrainB();
191     }
192 mmeineke 843
193 tim 725 if (info->setTemp){
194 tim 677 thermalize();
195 mmeineke 558 }
196 tim 725
197 mmeineke 558 calcPot = 0;
198     calcStress = 0;
199 mmeineke 711 currSample = sampleTime + info->getTime();
200     currThermal = thermalTime+ info->getTime();
201     currStatus = statusTime + info->getTime();
202 mmeineke 746 currReset = resetTime + info->getTime();
203 mmeineke 558
204 tim 725 dumpOut->writeDump(info->getTime());
205     statOut->writeStat(info->getTime());
206 mmeineke 559
207    
208     #ifdef IS_MPI
209 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
210 mmeineke 559 MPIcheckPoint();
211     #endif // is_mpi
212    
213 tim 1113 while (info->getTime() < runTime && !stopIntegrator()){
214 tim 725 if ((info->getTime() + dt) >= currStatus){
215 mmeineke 558 calcPot = 1;
216     calcStress = 1;
217     }
218 mmeineke 561
219 chuckv 892 #ifdef PROFILE
220     startProfile( pro1 );
221     #endif
222    
223 tim 725 integrateStep(calcPot, calcStress);
224    
225 chuckv 892 #ifdef PROFILE
226     endProfile( pro1 );
227    
228     startProfile( pro2 );
229     #endif // profile
230    
231 mmeineke 643 info->incrTime(dt);
232 mmeineke 558
233 tim 725 if (info->setTemp){
234     if (info->getTime() >= currThermal){
235     thermalize();
236     currThermal += thermalTime;
237 mmeineke 558 }
238     }
239    
240 tim 725 if (info->getTime() >= currSample){
241     dumpOut->writeDump(info->getTime());
242 mmeineke 558 currSample += sampleTime;
243     }
244    
245 tim 725 if (info->getTime() >= currStatus){
246 tim 837 statOut->writeStat(info->getTime());
247     calcPot = 0;
248 mmeineke 558 calcStress = 0;
249     currStatus += statusTime;
250 tim 837 }
251 mmeineke 559
252 mmeineke 746 if (info->resetIntegrator){
253     if (info->getTime() >= currReset){
254     this->resetIntegrator();
255     currReset += resetTime;
256     }
257     }
258 chuckv 892
259     #ifdef PROFILE
260     endProfile( pro2 );
261     #endif //profile
262 mmeineke 746
263 mmeineke 559 #ifdef IS_MPI
264 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
265 mmeineke 559 MPIcheckPoint();
266     #endif // is_mpi
267 mmeineke 558 }
268    
269 mmeineke 561 delete dumpOut;
270     delete statOut;
271 mmeineke 558 }
272    
273 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
274     int calcStress){
275 mmeineke 558 // Position full step, and velocity half step
276 chuckv 892
277     #ifdef PROFILE
278     startProfile(pro3);
279     #endif //profile
280    
281 tim 725 preMove();
282 mmeineke 558
283 chuckv 892 #ifdef PROFILE
284     endProfile(pro3);
285    
286     startProfile(pro4);
287     #endif // profile
288    
289 mmeineke 558 moveA();
290    
291 chuckv 892 #ifdef PROFILE
292     endProfile(pro4);
293    
294     startProfile(pro5);
295     #endif//profile
296 tim 725
297    
298 mmeineke 614 #ifdef IS_MPI
299 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
300 mmeineke 614 MPIcheckPoint();
301     #endif // is_mpi
302    
303 tim 725
304 mmeineke 558 // calc forces
305    
306 tim 725 calcForce(calcPot, calcStress);
307 mmeineke 558
308 mmeineke 614 #ifdef IS_MPI
309 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
310 mmeineke 614 MPIcheckPoint();
311     #endif // is_mpi
312    
313 chuckv 892 #ifdef PROFILE
314     endProfile( pro5 );
315 tim 725
316 chuckv 892 startProfile( pro6 );
317     #endif //profile
318    
319 mmeineke 558 // finish the velocity half step
320 tim 725
321 mmeineke 558 moveB();
322 tim 725
323 chuckv 892 #ifdef PROFILE
324     endProfile(pro6);
325     #endif // profile
326 tim 725
327 mmeineke 614 #ifdef IS_MPI
328 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
329 mmeineke 614 MPIcheckPoint();
330     #endif // is_mpi
331 mmeineke 558 }
332    
333    
334 tim 725 template<typename T> void Integrator<T>::moveA(void){
335 gezelter 1097 size_t i, j;
336 mmeineke 558 DirectionalAtom* dAtom;
337 gezelter 600 double Tb[3], ji[3];
338     double vel[3], pos[3], frc[3];
339     double mass;
340 gezelter 1097
341     for (i = 0; i < integrableObjects.size() ; i++){
342     integrableObjects[i]->getVel(vel);
343     integrableObjects[i]->getPos(pos);
344     integrableObjects[i]->getFrc(frc);
345    
346     mass = integrableObjects[i]->getMass();
347 mmeineke 558
348 tim 725 for (j = 0; j < 3; j++){
349 gezelter 600 // velocity half step
350 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
351 gezelter 600 // position whole step
352     pos[j] += dt * vel[j];
353     }
354 mmeineke 594
355 gezelter 1097 integrableObjects[i]->setVel(vel);
356     integrableObjects[i]->setPos(pos);
357 gezelter 600
358 gezelter 1097 if (integrableObjects[i]->isDirectional()){
359 mmeineke 558
360     // get and convert the torque to body frame
361 mmeineke 597
362 gezelter 1097 integrableObjects[i]->getTrq(Tb);
363     integrableObjects[i]->lab2Body(Tb);
364 tim 725
365 mmeineke 558 // get the angular momentum, and propagate a half step
366 gezelter 600
367 gezelter 1097 integrableObjects[i]->getJ(ji);
368 gezelter 600
369 tim 725 for (j = 0; j < 3; j++)
370 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
371 tim 725
372 gezelter 1097 this->rotationPropagation( integrableObjects[i], ji );
373 gezelter 600
374 gezelter 1097 integrableObjects[i]->setJ(ji);
375 tim 725 }
376 mmeineke 558 }
377 mmeineke 768
378     if (nConstrained){
379     constrainA();
380     }
381 mmeineke 558 }
382    
383    
384 tim 725 template<typename T> void Integrator<T>::moveB(void){
385 gezelter 600 int i, j;
386     double Tb[3], ji[3];
387     double vel[3], frc[3];
388     double mass;
389 mmeineke 558
390 gezelter 1097 for (i = 0; i < integrableObjects.size(); i++){
391     integrableObjects[i]->getVel(vel);
392     integrableObjects[i]->getFrc(frc);
393 mmeineke 558
394 gezelter 1097 mass = integrableObjects[i]->getMass();
395 gezelter 600
396 mmeineke 558 // velocity half step
397 tim 725 for (j = 0; j < 3; j++)
398     vel[j] += (dt2 * frc[j] / mass) * eConvert;
399 gezelter 600
400 gezelter 1097 integrableObjects[i]->setVel(vel);
401 mmeineke 597
402 gezelter 1097 if (integrableObjects[i]->isDirectional()){
403 tim 725
404 tim 837 // get and convert the torque to body frame
405 gezelter 600
406 gezelter 1097 integrableObjects[i]->getTrq(Tb);
407     integrableObjects[i]->lab2Body(Tb);
408 gezelter 600
409     // get the angular momentum, and propagate a half step
410    
411 gezelter 1097 integrableObjects[i]->getJ(ji);
412 gezelter 600
413 tim 725 for (j = 0; j < 3; j++)
414 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
415 mmeineke 597
416 tim 725
417 gezelter 1097 integrableObjects[i]->setJ(ji);
418 mmeineke 558 }
419     }
420 mmeineke 768
421     if (nConstrained){
422     constrainB();
423     }
424 mmeineke 558 }
425    
426 tim 725 template<typename T> void Integrator<T>::preMove(void){
427 gezelter 600 int i, j;
428     double pos[3];
429 mmeineke 558
430 tim 725 if (nConstrained){
431     for (i = 0; i < nAtoms; i++){
432     atoms[i]->getPos(pos);
433 mmeineke 561
434 tim 725 for (j = 0; j < 3; j++){
435     oldPos[3 * i + j] = pos[j];
436 gezelter 600 }
437     }
438 tim 725 }
439 gezelter 600 }
440    
441 tim 645 template<typename T> void Integrator<T>::constrainA(){
442 mmeineke 787 int i, j;
443 mmeineke 558 int done;
444 gezelter 600 double posA[3], posB[3];
445     double velA[3], velB[3];
446 mmeineke 572 double pab[3];
447     double rab[3];
448 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
449 mmeineke 558 double rma, rmb;
450     double dx, dy, dz;
451 mmeineke 561 double rpab;
452 mmeineke 558 double rabsq, pabsq, rpabsq;
453     double diffsq;
454     double gab;
455     int iteration;
456    
457 tim 725 for (i = 0; i < nAtoms; i++){
458 mmeineke 558 moving[i] = 0;
459 tim 725 moved[i] = 1;
460 mmeineke 558 }
461 mmeineke 567
462 mmeineke 558 iteration = 0;
463     done = 0;
464 tim 725 while (!done && (iteration < maxIteration)){
465 mmeineke 558 done = 1;
466 tim 725 for (i = 0; i < nConstrained; i++){
467 mmeineke 558 a = constrainedA[i];
468     b = constrainedB[i];
469 mmeineke 563
470 tim 725 ax = (a * 3) + 0;
471     ay = (a * 3) + 1;
472     az = (a * 3) + 2;
473 mmeineke 563
474 tim 725 bx = (b * 3) + 0;
475     by = (b * 3) + 1;
476     bz = (b * 3) + 2;
477    
478     if (moved[a] || moved[b]){
479     atoms[a]->getPos(posA);
480     atoms[b]->getPos(posB);
481    
482     for (j = 0; j < 3; j++)
483 gezelter 600 pab[j] = posA[j] - posB[j];
484 mmeineke 567
485 tim 725 //periodic boundary condition
486 mmeineke 567
487 tim 725 info->wrapVector(pab);
488 mmeineke 572
489 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
490 mmeineke 558
491 tim 725 rabsq = constrainedDsqr[i];
492     diffsq = rabsq - pabsq;
493 mmeineke 567
494 tim 725 // the original rattle code from alan tidesley
495     if (fabs(diffsq) > (tol * rabsq * 2)){
496     rab[0] = oldPos[ax] - oldPos[bx];
497     rab[1] = oldPos[ay] - oldPos[by];
498     rab[2] = oldPos[az] - oldPos[bz];
499 mmeineke 558
500 tim 725 info->wrapVector(rab);
501 mmeineke 567
502 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
503 mmeineke 558
504 tim 725 rpabsq = rpab * rpab;
505 mmeineke 558
506 mmeineke 563
507 tim 725 if (rpabsq < (rabsq * -diffsq)){
508 mmeineke 558 #ifdef IS_MPI
509 tim 725 a = atoms[a]->getGlobalIndex();
510     b = atoms[b]->getGlobalIndex();
511 mmeineke 558 #endif //is_mpi
512 tim 725 sprintf(painCave.errMsg,
513     "Constraint failure in constrainA at atom %d and %d.\n", a,
514     b);
515     painCave.isFatal = 1;
516     simError();
517     }
518 mmeineke 558
519 tim 725 rma = 1.0 / atoms[a]->getMass();
520     rmb = 1.0 / atoms[b]->getMass();
521 mmeineke 567
522 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
523 mmeineke 567
524 mmeineke 572 dx = rab[0] * gab;
525     dy = rab[1] * gab;
526     dz = rab[2] * gab;
527 mmeineke 558
528 tim 725 posA[0] += rma * dx;
529     posA[1] += rma * dy;
530     posA[2] += rma * dz;
531 mmeineke 558
532 tim 725 atoms[a]->setPos(posA);
533 mmeineke 558
534 tim 725 posB[0] -= rmb * dx;
535     posB[1] -= rmb * dy;
536     posB[2] -= rmb * dz;
537 gezelter 600
538 tim 725 atoms[b]->setPos(posB);
539 gezelter 600
540 mmeineke 558 dx = dx / dt;
541     dy = dy / dt;
542     dz = dz / dt;
543    
544 tim 725 atoms[a]->getVel(velA);
545 mmeineke 558
546 tim 725 velA[0] += rma * dx;
547     velA[1] += rma * dy;
548     velA[2] += rma * dz;
549 mmeineke 558
550 tim 725 atoms[a]->setVel(velA);
551 gezelter 600
552 tim 725 atoms[b]->getVel(velB);
553 gezelter 600
554 tim 725 velB[0] -= rmb * dx;
555     velB[1] -= rmb * dy;
556     velB[2] -= rmb * dz;
557 gezelter 600
558 tim 725 atoms[b]->setVel(velB);
559 gezelter 600
560 tim 725 moving[a] = 1;
561     moving[b] = 1;
562     done = 0;
563     }
564 mmeineke 558 }
565     }
566 tim 725
567     for (i = 0; i < nAtoms; i++){
568 mmeineke 558 moved[i] = moving[i];
569     moving[i] = 0;
570     }
571    
572     iteration++;
573     }
574    
575 tim 725 if (!done){
576     sprintf(painCave.errMsg,
577     "Constraint failure in constrainA, too many iterations: %d\n",
578     iteration);
579 mmeineke 558 painCave.isFatal = 1;
580     simError();
581     }
582 mmeineke 768
583 mmeineke 558 }
584    
585 tim 725 template<typename T> void Integrator<T>::constrainB(void){
586 mmeineke 787 int i, j;
587 mmeineke 558 int done;
588 gezelter 600 double posA[3], posB[3];
589     double velA[3], velB[3];
590 mmeineke 558 double vxab, vyab, vzab;
591 mmeineke 572 double rab[3];
592 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
593 mmeineke 558 double rma, rmb;
594     double dx, dy, dz;
595 mmeineke 787 double rvab;
596 mmeineke 558 double gab;
597     int iteration;
598    
599 tim 725 for (i = 0; i < nAtoms; i++){
600 mmeineke 558 moving[i] = 0;
601     moved[i] = 1;
602     }
603    
604     done = 0;
605 mmeineke 561 iteration = 0;
606 tim 725 while (!done && (iteration < maxIteration)){
607 mmeineke 567 done = 1;
608    
609 tim 725 for (i = 0; i < nConstrained; i++){
610 mmeineke 558 a = constrainedA[i];
611     b = constrainedB[i];
612    
613 tim 725 ax = (a * 3) + 0;
614     ay = (a * 3) + 1;
615     az = (a * 3) + 2;
616 mmeineke 563
617 tim 725 bx = (b * 3) + 0;
618     by = (b * 3) + 1;
619     bz = (b * 3) + 2;
620 mmeineke 563
621 tim 725 if (moved[a] || moved[b]){
622     atoms[a]->getVel(velA);
623     atoms[b]->getVel(velB);
624 mmeineke 558
625 tim 725 vxab = velA[0] - velB[0];
626     vyab = velA[1] - velB[1];
627     vzab = velA[2] - velB[2];
628 gezelter 600
629 tim 725 atoms[a]->getPos(posA);
630     atoms[b]->getPos(posB);
631 gezelter 600
632 tim 725 for (j = 0; j < 3; j++)
633 gezelter 600 rab[j] = posA[j] - posB[j];
634 mmeineke 558
635 tim 725 info->wrapVector(rab);
636 mmeineke 558
637 tim 725 rma = 1.0 / atoms[a]->getMass();
638     rmb = 1.0 / atoms[b]->getMass();
639 mmeineke 558
640 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
641 gezelter 600
642 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
643 gezelter 600
644 tim 725 if (fabs(gab) > tol){
645     dx = rab[0] * gab;
646     dy = rab[1] * gab;
647     dz = rab[2] * gab;
648    
649     velA[0] += rma * dx;
650     velA[1] += rma * dy;
651     velA[2] += rma * dz;
652    
653     atoms[a]->setVel(velA);
654    
655     velB[0] -= rmb * dx;
656     velB[1] -= rmb * dy;
657     velB[2] -= rmb * dz;
658    
659     atoms[b]->setVel(velB);
660    
661     moving[a] = 1;
662     moving[b] = 1;
663     done = 0;
664     }
665 mmeineke 558 }
666     }
667    
668 tim 725 for (i = 0; i < nAtoms; i++){
669 mmeineke 558 moved[i] = moving[i];
670     moving[i] = 0;
671     }
672 tim 725
673 mmeineke 558 iteration++;
674     }
675    
676 tim 725 if (!done){
677     sprintf(painCave.errMsg,
678     "Constraint failure in constrainB, too many iterations: %d\n",
679     iteration);
680 mmeineke 558 painCave.isFatal = 1;
681     simError();
682 tim 725 }
683 mmeineke 558 }
684    
685 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
686 gezelter 1097 ( StuntDouble* sd, double ji[3] ){
687 mmeineke 778
688     double angle;
689     double A[3][3], I[3][3];
690    
691     // use the angular velocities to propagate the rotation matrix a
692     // full time step
693    
694 gezelter 1097 sd->getA(A);
695     sd->getI(I);
696 tim 837
697     // rotate about the x-axis
698 mmeineke 778 angle = dt2 * ji[0] / I[0][0];
699 tim 837 this->rotate( 1, 2, angle, ji, A );
700    
701 mmeineke 778 // rotate about the y-axis
702     angle = dt2 * ji[1] / I[1][1];
703     this->rotate( 2, 0, angle, ji, A );
704 tim 837
705 mmeineke 778 // rotate about the z-axis
706     angle = dt * ji[2] / I[2][2];
707     this->rotate( 0, 1, angle, ji, A);
708 tim 837
709 mmeineke 778 // rotate about the y-axis
710     angle = dt2 * ji[1] / I[1][1];
711     this->rotate( 2, 0, angle, ji, A );
712 tim 837
713 mmeineke 778 // rotate about the x-axis
714     angle = dt2 * ji[0] / I[0][0];
715     this->rotate( 1, 2, angle, ji, A );
716 tim 837
717 gezelter 1097 sd->setA( A );
718 mmeineke 778 }
719    
720 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
721     double angle, double ji[3],
722     double A[3][3]){
723     int i, j, k;
724 mmeineke 558 double sinAngle;
725     double cosAngle;
726     double angleSqr;
727     double angleSqrOver4;
728     double top, bottom;
729     double rot[3][3];
730     double tempA[3][3];
731     double tempJ[3];
732    
733     // initialize the tempA
734    
735 tim 725 for (i = 0; i < 3; i++){
736     for (j = 0; j < 3; j++){
737 gezelter 600 tempA[j][i] = A[i][j];
738 mmeineke 558 }
739     }
740    
741     // initialize the tempJ
742    
743 tim 725 for (i = 0; i < 3; i++)
744     tempJ[i] = ji[i];
745    
746 mmeineke 558 // initalize rot as a unit matrix
747    
748     rot[0][0] = 1.0;
749     rot[0][1] = 0.0;
750     rot[0][2] = 0.0;
751    
752     rot[1][0] = 0.0;
753     rot[1][1] = 1.0;
754     rot[1][2] = 0.0;
755 tim 725
756 mmeineke 558 rot[2][0] = 0.0;
757     rot[2][1] = 0.0;
758     rot[2][2] = 1.0;
759 tim 725
760 mmeineke 558 // use a small angle aproximation for sin and cosine
761    
762 tim 725 angleSqr = angle * angle;
763 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
764     top = 1.0 - angleSqrOver4;
765     bottom = 1.0 + angleSqrOver4;
766    
767     cosAngle = top / bottom;
768     sinAngle = angle / bottom;
769    
770     rot[axes1][axes1] = cosAngle;
771     rot[axes2][axes2] = cosAngle;
772    
773     rot[axes1][axes2] = sinAngle;
774     rot[axes2][axes1] = -sinAngle;
775 tim 725
776 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
777 tim 725
778     for (i = 0; i < 3; i++){
779 mmeineke 558 ji[i] = 0.0;
780 tim 725 for (k = 0; k < 3; k++){
781 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
782     }
783     }
784    
785 tim 837 // rotate the Rotation matrix acording to:
786 mmeineke 558 // A[][] = A[][] * transpose(rot[][])
787    
788    
789 mmeineke 561 // NOte for as yet unknown reason, we are performing the
790 mmeineke 558 // calculation as:
791     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
792    
793 tim 725 for (i = 0; i < 3; i++){
794     for (j = 0; j < 3; j++){
795 gezelter 600 A[j][i] = 0.0;
796 tim 725 for (k = 0; k < 3; k++){
797     A[j][i] += tempA[i][k] * rot[j][k];
798 mmeineke 558 }
799     }
800     }
801     }
802 tim 677
803 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
804     myFF->doForces(calcPot, calcStress);
805 tim 677 }
806    
807     template<typename T> void Integrator<T>::thermalize(){
808 tim 725 tStats->velocitize();
809 tim 677 }
810 tim 763
811     template<typename T> double Integrator<T>::getConservedQuantity(void){
812     return tStats->getTotalE();
813 mmeineke 768 }
814 tim 837 template<typename T> string Integrator<T>::getAdditionalParameters(void){
815     //By default, return a null string
816     //The reason we use string instead of char* is that if we use char*, we will
817     //return a pointer point to local variable which might cause problem
818     return string();
819     }