ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 1144
Committed: Sat May 1 18:52:38 2004 UTC (20 years, 2 months ago) by tim
File size: 18210 byte(s)
Log Message:
C++ pass groupList to fortran

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2 gezelter 829 #include <stdlib.h>
3     #include <math.h>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10 chuckv 892 #ifdef PROFILE
11     #include "mdProfile.hpp"
12     #endif // profile
13    
14 mmeineke 558 #include "Integrator.hpp"
15     #include "simError.h"
16    
17    
18 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19     ForceFields* the_ff){
20 mmeineke 558 info = theInfo;
21     myFF = the_ff;
22     isFirst = 1;
23    
24     molecules = info->molecules;
25     nMols = info->n_mol;
26    
27     // give a little love back to the SimInfo object
28 tim 725
29     if (info->the_integrator != NULL){
30     delete info->the_integrator;
31     }
32 tim 837
33 mmeineke 558 nAtoms = info->n_atoms;
34 gezelter 1097 integrableObjects = info->integrableObjects;
35 mmeineke 558
36     // check for constraints
37 tim 725
38     constrainedA = NULL;
39     constrainedB = NULL;
40 mmeineke 558 constrainedDsqr = NULL;
41 tim 725 moving = NULL;
42     moved = NULL;
43     oldPos = NULL;
44    
45 mmeineke 558 nConstrained = 0;
46    
47     checkConstraints();
48     }
49    
50 tim 725 template<typename T> Integrator<T>::~Integrator(){
51     if (nConstrained){
52 mmeineke 558 delete[] constrainedA;
53     delete[] constrainedB;
54     delete[] constrainedDsqr;
55     delete[] moving;
56     delete[] moved;
57 mmeineke 561 delete[] oldPos;
58 mmeineke 558 }
59     }
60    
61 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
62 mmeineke 558 isConstrained = 0;
63    
64 tim 725 Constraint* temp_con;
65     Constraint* dummy_plug;
66 mmeineke 558 temp_con = new Constraint[info->n_SRI];
67     nConstrained = 0;
68     int constrained = 0;
69 tim 725
70 mmeineke 558 SRI** theArray;
71 tim 725 for (int i = 0; i < nMols; i++){
72 tim 1057
73     theArray = (SRI * *) molecules[i].getMyBonds();
74 tim 725 for (int j = 0; j < molecules[i].getNBonds(); j++){
75 mmeineke 558 constrained = theArray[j]->is_constrained();
76 mmeineke 594
77 tim 725 if (constrained){
78     dummy_plug = theArray[j]->get_constraint();
79     temp_con[nConstrained].set_a(dummy_plug->get_a());
80     temp_con[nConstrained].set_b(dummy_plug->get_b());
81     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
82 mmeineke 594
83 tim 725 nConstrained++;
84     constrained = 0;
85     }
86 mmeineke 558 }
87    
88 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
89     for (int j = 0; j < molecules[i].getNBends(); j++){
90 mmeineke 558 constrained = theArray[j]->is_constrained();
91 tim 725
92     if (constrained){
93     dummy_plug = theArray[j]->get_constraint();
94     temp_con[nConstrained].set_a(dummy_plug->get_a());
95     temp_con[nConstrained].set_b(dummy_plug->get_b());
96     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
97    
98     nConstrained++;
99     constrained = 0;
100 mmeineke 558 }
101     }
102    
103 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
104     for (int j = 0; j < molecules[i].getNTorsions(); j++){
105 mmeineke 558 constrained = theArray[j]->is_constrained();
106 tim 725
107     if (constrained){
108     dummy_plug = theArray[j]->get_constraint();
109     temp_con[nConstrained].set_a(dummy_plug->get_a());
110     temp_con[nConstrained].set_b(dummy_plug->get_b());
111     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
112    
113     nConstrained++;
114     constrained = 0;
115 mmeineke 558 }
116     }
117     }
118    
119 tim 1057
120 tim 725 if (nConstrained > 0){
121 mmeineke 558 isConstrained = 1;
122    
123 tim 725 if (constrainedA != NULL)
124     delete[] constrainedA;
125     if (constrainedB != NULL)
126     delete[] constrainedB;
127     if (constrainedDsqr != NULL)
128     delete[] constrainedDsqr;
129 mmeineke 558
130 tim 725 constrainedA = new int[nConstrained];
131     constrainedB = new int[nConstrained];
132 mmeineke 558 constrainedDsqr = new double[nConstrained];
133 tim 725
134     for (int i = 0; i < nConstrained; i++){
135 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
136     constrainedB[i] = temp_con[i].get_b();
137     constrainedDsqr[i] = temp_con[i].get_dsqr();
138     }
139    
140 tim 725
141 chrisfen 999 // save oldAtoms to check for lode balancing later on.
142 tim 725
143 mmeineke 558 oldAtoms = nAtoms;
144 tim 725
145 mmeineke 558 moving = new int[nAtoms];
146 tim 725 moved = new int[nAtoms];
147 mmeineke 558
148 tim 725 oldPos = new double[nAtoms * 3];
149 mmeineke 558 }
150 tim 725
151 mmeineke 558 delete[] temp_con;
152     }
153    
154    
155 tim 725 template<typename T> void Integrator<T>::integrate(void){
156 mmeineke 558
157 tim 725 double runTime = info->run_time;
158     double sampleTime = info->sampleTime;
159     double statusTime = info->statusTime;
160 mmeineke 558 double thermalTime = info->thermalTime;
161 mmeineke 746 double resetTime = info->resetTime;
162 mmeineke 558
163 mmeineke 746
164 mmeineke 558 double currSample;
165     double currThermal;
166     double currStatus;
167 mmeineke 746 double currReset;
168 tim 837
169 mmeineke 558 int calcPot, calcStress;
170    
171 tim 725 tStats = new Thermo(info);
172     statOut = new StatWriter(info);
173     dumpOut = new DumpWriter(info);
174 mmeineke 558
175 mmeineke 561 atoms = info->atoms;
176    
177     dt = info->dt;
178 mmeineke 558 dt2 = 0.5 * dt;
179    
180 mmeineke 784 readyCheck();
181    
182 tim 1127 // remove center of mass drift velocity (in case we passed in a configuration
183     // that was drifting
184     tStats->removeCOMdrift();
185    
186 mmeineke 558 // initialize the forces before the first step
187    
188 tim 677 calcForce(1, 1);
189 tim 1035
190 tim 781 if (nConstrained){
191     preMove();
192     constrainA();
193 tim 837 calcForce(1, 1);
194 tim 781 constrainB();
195     }
196 mmeineke 843
197 tim 725 if (info->setTemp){
198 tim 677 thermalize();
199 mmeineke 558 }
200 tim 725
201 mmeineke 558 calcPot = 0;
202     calcStress = 0;
203 mmeineke 711 currSample = sampleTime + info->getTime();
204     currThermal = thermalTime+ info->getTime();
205     currStatus = statusTime + info->getTime();
206 mmeineke 746 currReset = resetTime + info->getTime();
207 mmeineke 558
208 tim 725 dumpOut->writeDump(info->getTime());
209     statOut->writeStat(info->getTime());
210 mmeineke 559
211    
212     #ifdef IS_MPI
213 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
214 mmeineke 559 MPIcheckPoint();
215     #endif // is_mpi
216    
217 tim 1113 while (info->getTime() < runTime && !stopIntegrator()){
218 tim 725 if ((info->getTime() + dt) >= currStatus){
219 mmeineke 558 calcPot = 1;
220     calcStress = 1;
221     }
222 mmeineke 561
223 chuckv 892 #ifdef PROFILE
224     startProfile( pro1 );
225     #endif
226    
227 tim 725 integrateStep(calcPot, calcStress);
228    
229 chuckv 892 #ifdef PROFILE
230     endProfile( pro1 );
231    
232     startProfile( pro2 );
233     #endif // profile
234    
235 mmeineke 643 info->incrTime(dt);
236 mmeineke 558
237 tim 725 if (info->setTemp){
238     if (info->getTime() >= currThermal){
239     thermalize();
240     currThermal += thermalTime;
241 mmeineke 558 }
242     }
243    
244 tim 725 if (info->getTime() >= currSample){
245     dumpOut->writeDump(info->getTime());
246 mmeineke 558 currSample += sampleTime;
247     }
248    
249 tim 725 if (info->getTime() >= currStatus){
250 tim 837 statOut->writeStat(info->getTime());
251     calcPot = 0;
252 mmeineke 558 calcStress = 0;
253     currStatus += statusTime;
254 tim 837 }
255 mmeineke 559
256 mmeineke 746 if (info->resetIntegrator){
257     if (info->getTime() >= currReset){
258     this->resetIntegrator();
259     currReset += resetTime;
260     }
261     }
262 chuckv 892
263     #ifdef PROFILE
264     endProfile( pro2 );
265     #endif //profile
266 mmeineke 746
267 mmeineke 559 #ifdef IS_MPI
268 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
269 mmeineke 559 MPIcheckPoint();
270     #endif // is_mpi
271 mmeineke 558 }
272    
273 mmeineke 561 delete dumpOut;
274     delete statOut;
275 mmeineke 558 }
276    
277 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
278     int calcStress){
279 mmeineke 558 // Position full step, and velocity half step
280 chuckv 892
281     #ifdef PROFILE
282     startProfile(pro3);
283     #endif //profile
284    
285 tim 725 preMove();
286 mmeineke 558
287 chuckv 892 #ifdef PROFILE
288     endProfile(pro3);
289    
290     startProfile(pro4);
291     #endif // profile
292    
293 mmeineke 558 moveA();
294    
295 chuckv 892 #ifdef PROFILE
296     endProfile(pro4);
297    
298     startProfile(pro5);
299     #endif//profile
300 tim 725
301    
302 mmeineke 614 #ifdef IS_MPI
303 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
304 mmeineke 614 MPIcheckPoint();
305     #endif // is_mpi
306    
307 tim 725
308 mmeineke 558 // calc forces
309    
310 tim 725 calcForce(calcPot, calcStress);
311 mmeineke 558
312 mmeineke 614 #ifdef IS_MPI
313 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
314 mmeineke 614 MPIcheckPoint();
315     #endif // is_mpi
316    
317 chuckv 892 #ifdef PROFILE
318     endProfile( pro5 );
319 tim 725
320 chuckv 892 startProfile( pro6 );
321     #endif //profile
322    
323 mmeineke 558 // finish the velocity half step
324 tim 725
325 mmeineke 558 moveB();
326 tim 725
327 chuckv 892 #ifdef PROFILE
328     endProfile(pro6);
329     #endif // profile
330 tim 725
331 mmeineke 614 #ifdef IS_MPI
332 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
333 mmeineke 614 MPIcheckPoint();
334     #endif // is_mpi
335 mmeineke 558 }
336    
337    
338 tim 725 template<typename T> void Integrator<T>::moveA(void){
339 gezelter 1097 size_t i, j;
340 mmeineke 558 DirectionalAtom* dAtom;
341 gezelter 600 double Tb[3], ji[3];
342     double vel[3], pos[3], frc[3];
343     double mass;
344 gezelter 1097
345     for (i = 0; i < integrableObjects.size() ; i++){
346     integrableObjects[i]->getVel(vel);
347     integrableObjects[i]->getPos(pos);
348     integrableObjects[i]->getFrc(frc);
349 tim 1144
350     std::cerr << "i =\t" << i << "\t" << frc[0] << "\t" << frc[1]<< "\t" << frc[2] << "\n";
351 gezelter 1097
352     mass = integrableObjects[i]->getMass();
353 mmeineke 558
354 tim 725 for (j = 0; j < 3; j++){
355 gezelter 600 // velocity half step
356 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
357 gezelter 600 // position whole step
358     pos[j] += dt * vel[j];
359     }
360 mmeineke 594
361 gezelter 1097 integrableObjects[i]->setVel(vel);
362     integrableObjects[i]->setPos(pos);
363 gezelter 600
364 gezelter 1097 if (integrableObjects[i]->isDirectional()){
365 mmeineke 558
366     // get and convert the torque to body frame
367 mmeineke 597
368 gezelter 1097 integrableObjects[i]->getTrq(Tb);
369     integrableObjects[i]->lab2Body(Tb);
370 tim 725
371 mmeineke 558 // get the angular momentum, and propagate a half step
372 gezelter 600
373 gezelter 1097 integrableObjects[i]->getJ(ji);
374 gezelter 600
375 tim 725 for (j = 0; j < 3; j++)
376 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
377 tim 725
378 gezelter 1097 this->rotationPropagation( integrableObjects[i], ji );
379 gezelter 600
380 gezelter 1097 integrableObjects[i]->setJ(ji);
381 tim 725 }
382 mmeineke 558 }
383 mmeineke 768
384     if (nConstrained){
385     constrainA();
386     }
387 mmeineke 558 }
388    
389    
390 tim 725 template<typename T> void Integrator<T>::moveB(void){
391 gezelter 600 int i, j;
392     double Tb[3], ji[3];
393     double vel[3], frc[3];
394     double mass;
395 mmeineke 558
396 gezelter 1097 for (i = 0; i < integrableObjects.size(); i++){
397     integrableObjects[i]->getVel(vel);
398     integrableObjects[i]->getFrc(frc);
399 mmeineke 558
400 gezelter 1097 mass = integrableObjects[i]->getMass();
401 gezelter 600
402 mmeineke 558 // velocity half step
403 tim 725 for (j = 0; j < 3; j++)
404     vel[j] += (dt2 * frc[j] / mass) * eConvert;
405 gezelter 600
406 gezelter 1097 integrableObjects[i]->setVel(vel);
407 mmeineke 597
408 gezelter 1097 if (integrableObjects[i]->isDirectional()){
409 tim 725
410 tim 837 // get and convert the torque to body frame
411 gezelter 600
412 gezelter 1097 integrableObjects[i]->getTrq(Tb);
413     integrableObjects[i]->lab2Body(Tb);
414 gezelter 600
415     // get the angular momentum, and propagate a half step
416    
417 gezelter 1097 integrableObjects[i]->getJ(ji);
418 gezelter 600
419 tim 725 for (j = 0; j < 3; j++)
420 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
421 mmeineke 597
422 tim 725
423 gezelter 1097 integrableObjects[i]->setJ(ji);
424 mmeineke 558 }
425     }
426 mmeineke 768
427     if (nConstrained){
428     constrainB();
429     }
430 mmeineke 558 }
431    
432 tim 725 template<typename T> void Integrator<T>::preMove(void){
433 gezelter 600 int i, j;
434     double pos[3];
435 mmeineke 558
436 tim 725 if (nConstrained){
437     for (i = 0; i < nAtoms; i++){
438     atoms[i]->getPos(pos);
439 mmeineke 561
440 tim 725 for (j = 0; j < 3; j++){
441     oldPos[3 * i + j] = pos[j];
442 gezelter 600 }
443     }
444 tim 725 }
445 gezelter 600 }
446    
447 tim 645 template<typename T> void Integrator<T>::constrainA(){
448 mmeineke 787 int i, j;
449 mmeineke 558 int done;
450 gezelter 600 double posA[3], posB[3];
451     double velA[3], velB[3];
452 mmeineke 572 double pab[3];
453     double rab[3];
454 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
455 mmeineke 558 double rma, rmb;
456     double dx, dy, dz;
457 mmeineke 561 double rpab;
458 mmeineke 558 double rabsq, pabsq, rpabsq;
459     double diffsq;
460     double gab;
461     int iteration;
462    
463 tim 725 for (i = 0; i < nAtoms; i++){
464 mmeineke 558 moving[i] = 0;
465 tim 725 moved[i] = 1;
466 mmeineke 558 }
467 mmeineke 567
468 mmeineke 558 iteration = 0;
469     done = 0;
470 tim 725 while (!done && (iteration < maxIteration)){
471 mmeineke 558 done = 1;
472 tim 725 for (i = 0; i < nConstrained; i++){
473 mmeineke 558 a = constrainedA[i];
474     b = constrainedB[i];
475 mmeineke 563
476 tim 725 ax = (a * 3) + 0;
477     ay = (a * 3) + 1;
478     az = (a * 3) + 2;
479 mmeineke 563
480 tim 725 bx = (b * 3) + 0;
481     by = (b * 3) + 1;
482     bz = (b * 3) + 2;
483    
484     if (moved[a] || moved[b]){
485     atoms[a]->getPos(posA);
486     atoms[b]->getPos(posB);
487    
488     for (j = 0; j < 3; j++)
489 gezelter 600 pab[j] = posA[j] - posB[j];
490 mmeineke 567
491 tim 725 //periodic boundary condition
492 mmeineke 567
493 tim 725 info->wrapVector(pab);
494 mmeineke 572
495 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
496 mmeineke 558
497 tim 725 rabsq = constrainedDsqr[i];
498     diffsq = rabsq - pabsq;
499 mmeineke 567
500 tim 725 // the original rattle code from alan tidesley
501     if (fabs(diffsq) > (tol * rabsq * 2)){
502     rab[0] = oldPos[ax] - oldPos[bx];
503     rab[1] = oldPos[ay] - oldPos[by];
504     rab[2] = oldPos[az] - oldPos[bz];
505 mmeineke 558
506 tim 725 info->wrapVector(rab);
507 mmeineke 567
508 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
509 mmeineke 558
510 tim 725 rpabsq = rpab * rpab;
511 mmeineke 558
512 mmeineke 563
513 tim 725 if (rpabsq < (rabsq * -diffsq)){
514 mmeineke 558 #ifdef IS_MPI
515 tim 725 a = atoms[a]->getGlobalIndex();
516     b = atoms[b]->getGlobalIndex();
517 mmeineke 558 #endif //is_mpi
518 tim 725 sprintf(painCave.errMsg,
519     "Constraint failure in constrainA at atom %d and %d.\n", a,
520     b);
521     painCave.isFatal = 1;
522     simError();
523     }
524 mmeineke 558
525 tim 725 rma = 1.0 / atoms[a]->getMass();
526     rmb = 1.0 / atoms[b]->getMass();
527 mmeineke 567
528 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
529 mmeineke 567
530 mmeineke 572 dx = rab[0] * gab;
531     dy = rab[1] * gab;
532     dz = rab[2] * gab;
533 mmeineke 558
534 tim 725 posA[0] += rma * dx;
535     posA[1] += rma * dy;
536     posA[2] += rma * dz;
537 mmeineke 558
538 tim 725 atoms[a]->setPos(posA);
539 mmeineke 558
540 tim 725 posB[0] -= rmb * dx;
541     posB[1] -= rmb * dy;
542     posB[2] -= rmb * dz;
543 gezelter 600
544 tim 725 atoms[b]->setPos(posB);
545 gezelter 600
546 mmeineke 558 dx = dx / dt;
547     dy = dy / dt;
548     dz = dz / dt;
549    
550 tim 725 atoms[a]->getVel(velA);
551 mmeineke 558
552 tim 725 velA[0] += rma * dx;
553     velA[1] += rma * dy;
554     velA[2] += rma * dz;
555 mmeineke 558
556 tim 725 atoms[a]->setVel(velA);
557 gezelter 600
558 tim 725 atoms[b]->getVel(velB);
559 gezelter 600
560 tim 725 velB[0] -= rmb * dx;
561     velB[1] -= rmb * dy;
562     velB[2] -= rmb * dz;
563 gezelter 600
564 tim 725 atoms[b]->setVel(velB);
565 gezelter 600
566 tim 725 moving[a] = 1;
567     moving[b] = 1;
568     done = 0;
569     }
570 mmeineke 558 }
571     }
572 tim 725
573     for (i = 0; i < nAtoms; i++){
574 mmeineke 558 moved[i] = moving[i];
575     moving[i] = 0;
576     }
577    
578     iteration++;
579     }
580    
581 tim 725 if (!done){
582     sprintf(painCave.errMsg,
583     "Constraint failure in constrainA, too many iterations: %d\n",
584     iteration);
585 mmeineke 558 painCave.isFatal = 1;
586     simError();
587     }
588 mmeineke 768
589 mmeineke 558 }
590    
591 tim 725 template<typename T> void Integrator<T>::constrainB(void){
592 mmeineke 787 int i, j;
593 mmeineke 558 int done;
594 gezelter 600 double posA[3], posB[3];
595     double velA[3], velB[3];
596 mmeineke 558 double vxab, vyab, vzab;
597 mmeineke 572 double rab[3];
598 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
599 mmeineke 558 double rma, rmb;
600     double dx, dy, dz;
601 mmeineke 787 double rvab;
602 mmeineke 558 double gab;
603     int iteration;
604    
605 tim 725 for (i = 0; i < nAtoms; i++){
606 mmeineke 558 moving[i] = 0;
607     moved[i] = 1;
608     }
609    
610     done = 0;
611 mmeineke 561 iteration = 0;
612 tim 725 while (!done && (iteration < maxIteration)){
613 mmeineke 567 done = 1;
614    
615 tim 725 for (i = 0; i < nConstrained; i++){
616 mmeineke 558 a = constrainedA[i];
617     b = constrainedB[i];
618    
619 tim 725 ax = (a * 3) + 0;
620     ay = (a * 3) + 1;
621     az = (a * 3) + 2;
622 mmeineke 563
623 tim 725 bx = (b * 3) + 0;
624     by = (b * 3) + 1;
625     bz = (b * 3) + 2;
626 mmeineke 563
627 tim 725 if (moved[a] || moved[b]){
628     atoms[a]->getVel(velA);
629     atoms[b]->getVel(velB);
630 mmeineke 558
631 tim 725 vxab = velA[0] - velB[0];
632     vyab = velA[1] - velB[1];
633     vzab = velA[2] - velB[2];
634 gezelter 600
635 tim 725 atoms[a]->getPos(posA);
636     atoms[b]->getPos(posB);
637 gezelter 600
638 tim 725 for (j = 0; j < 3; j++)
639 gezelter 600 rab[j] = posA[j] - posB[j];
640 mmeineke 558
641 tim 725 info->wrapVector(rab);
642 mmeineke 558
643 tim 725 rma = 1.0 / atoms[a]->getMass();
644     rmb = 1.0 / atoms[b]->getMass();
645 mmeineke 558
646 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
647 gezelter 600
648 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
649 gezelter 600
650 tim 725 if (fabs(gab) > tol){
651     dx = rab[0] * gab;
652     dy = rab[1] * gab;
653     dz = rab[2] * gab;
654    
655     velA[0] += rma * dx;
656     velA[1] += rma * dy;
657     velA[2] += rma * dz;
658    
659     atoms[a]->setVel(velA);
660    
661     velB[0] -= rmb * dx;
662     velB[1] -= rmb * dy;
663     velB[2] -= rmb * dz;
664    
665     atoms[b]->setVel(velB);
666    
667     moving[a] = 1;
668     moving[b] = 1;
669     done = 0;
670     }
671 mmeineke 558 }
672     }
673    
674 tim 725 for (i = 0; i < nAtoms; i++){
675 mmeineke 558 moved[i] = moving[i];
676     moving[i] = 0;
677     }
678 tim 725
679 mmeineke 558 iteration++;
680     }
681    
682 tim 725 if (!done){
683     sprintf(painCave.errMsg,
684     "Constraint failure in constrainB, too many iterations: %d\n",
685     iteration);
686 mmeineke 558 painCave.isFatal = 1;
687     simError();
688 tim 725 }
689 mmeineke 558 }
690    
691 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
692 gezelter 1097 ( StuntDouble* sd, double ji[3] ){
693 mmeineke 778
694     double angle;
695     double A[3][3], I[3][3];
696 tim 1118 int i, j, k;
697 mmeineke 778
698     // use the angular velocities to propagate the rotation matrix a
699     // full time step
700    
701 gezelter 1097 sd->getA(A);
702     sd->getI(I);
703 tim 837
704 tim 1118 if (sd->isLinear()) {
705     i = sd->linearAxis();
706     j = (i+1)%3;
707     k = (i+2)%3;
708    
709     angle = dt2 * ji[j] / I[j][j];
710     this->rotate( k, i, angle, ji, A );
711    
712     angle = dt * ji[k] / I[k][k];
713     this->rotate( i, j, angle, ji, A);
714    
715     angle = dt2 * ji[j] / I[j][j];
716     this->rotate( k, i, angle, ji, A );
717    
718     } else {
719 gezelter 1125 // rotate about the x-axis
720     angle = dt2 * ji[0] / I[0][0];
721     this->rotate( 1, 2, angle, ji, A );
722    
723     // rotate about the y-axis
724     angle = dt2 * ji[1] / I[1][1];
725     this->rotate( 2, 0, angle, ji, A );
726    
727     // rotate about the z-axis
728     angle = dt * ji[2] / I[2][2];
729     this->rotate( 0, 1, angle, ji, A);
730    
731     // rotate about the y-axis
732     angle = dt2 * ji[1] / I[1][1];
733     this->rotate( 2, 0, angle, ji, A );
734    
735     // rotate about the x-axis
736     angle = dt2 * ji[0] / I[0][0];
737     this->rotate( 1, 2, angle, ji, A );
738    
739 tim 1118 }
740 gezelter 1097 sd->setA( A );
741 mmeineke 778 }
742    
743 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
744     double angle, double ji[3],
745     double A[3][3]){
746     int i, j, k;
747 mmeineke 558 double sinAngle;
748     double cosAngle;
749     double angleSqr;
750     double angleSqrOver4;
751     double top, bottom;
752     double rot[3][3];
753     double tempA[3][3];
754     double tempJ[3];
755    
756     // initialize the tempA
757    
758 tim 725 for (i = 0; i < 3; i++){
759     for (j = 0; j < 3; j++){
760 gezelter 600 tempA[j][i] = A[i][j];
761 mmeineke 558 }
762     }
763    
764     // initialize the tempJ
765    
766 tim 725 for (i = 0; i < 3; i++)
767     tempJ[i] = ji[i];
768    
769 mmeineke 558 // initalize rot as a unit matrix
770    
771     rot[0][0] = 1.0;
772     rot[0][1] = 0.0;
773     rot[0][2] = 0.0;
774    
775     rot[1][0] = 0.0;
776     rot[1][1] = 1.0;
777     rot[1][2] = 0.0;
778 tim 725
779 mmeineke 558 rot[2][0] = 0.0;
780     rot[2][1] = 0.0;
781     rot[2][2] = 1.0;
782 tim 725
783 mmeineke 558 // use a small angle aproximation for sin and cosine
784    
785 tim 725 angleSqr = angle * angle;
786 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
787     top = 1.0 - angleSqrOver4;
788     bottom = 1.0 + angleSqrOver4;
789    
790     cosAngle = top / bottom;
791     sinAngle = angle / bottom;
792    
793     rot[axes1][axes1] = cosAngle;
794     rot[axes2][axes2] = cosAngle;
795    
796     rot[axes1][axes2] = sinAngle;
797     rot[axes2][axes1] = -sinAngle;
798 tim 725
799 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
800 tim 725
801     for (i = 0; i < 3; i++){
802 mmeineke 558 ji[i] = 0.0;
803 tim 725 for (k = 0; k < 3; k++){
804 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
805     }
806     }
807    
808 tim 837 // rotate the Rotation matrix acording to:
809 mmeineke 558 // A[][] = A[][] * transpose(rot[][])
810    
811    
812 mmeineke 561 // NOte for as yet unknown reason, we are performing the
813 mmeineke 558 // calculation as:
814     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
815    
816 tim 725 for (i = 0; i < 3; i++){
817     for (j = 0; j < 3; j++){
818 gezelter 600 A[j][i] = 0.0;
819 tim 725 for (k = 0; k < 3; k++){
820     A[j][i] += tempA[i][k] * rot[j][k];
821 mmeineke 558 }
822     }
823     }
824     }
825 tim 677
826 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
827     myFF->doForces(calcPot, calcStress);
828 tim 677 }
829    
830     template<typename T> void Integrator<T>::thermalize(){
831 tim 725 tStats->velocitize();
832 tim 677 }
833 tim 763
834     template<typename T> double Integrator<T>::getConservedQuantity(void){
835     return tStats->getTotalE();
836 mmeineke 768 }
837 tim 837 template<typename T> string Integrator<T>::getAdditionalParameters(void){
838     //By default, return a null string
839     //The reason we use string instead of char* is that if we use char*, we will
840     //return a pointer point to local variable which might cause problem
841     return string();
842     }