ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 1178
Committed: Thu May 13 21:08:05 2004 UTC (20 years, 3 months ago) by gezelter
File size: 18195 byte(s)
Log Message:
fixes for skip list

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2 gezelter 829 #include <stdlib.h>
3     #include <math.h>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10 chuckv 892 #ifdef PROFILE
11     #include "mdProfile.hpp"
12     #endif // profile
13    
14 mmeineke 558 #include "Integrator.hpp"
15     #include "simError.h"
16    
17    
18 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19     ForceFields* the_ff){
20 mmeineke 558 info = theInfo;
21     myFF = the_ff;
22     isFirst = 1;
23    
24     molecules = info->molecules;
25     nMols = info->n_mol;
26    
27     // give a little love back to the SimInfo object
28 tim 725
29     if (info->the_integrator != NULL){
30     delete info->the_integrator;
31     }
32 tim 837
33 mmeineke 558 nAtoms = info->n_atoms;
34 gezelter 1097 integrableObjects = info->integrableObjects;
35 mmeineke 558
36     // check for constraints
37 tim 725
38     constrainedA = NULL;
39     constrainedB = NULL;
40 mmeineke 558 constrainedDsqr = NULL;
41 tim 725 moving = NULL;
42     moved = NULL;
43     oldPos = NULL;
44    
45 mmeineke 558 nConstrained = 0;
46    
47     checkConstraints();
48     }
49    
50 tim 725 template<typename T> Integrator<T>::~Integrator(){
51     if (nConstrained){
52 mmeineke 558 delete[] constrainedA;
53     delete[] constrainedB;
54     delete[] constrainedDsqr;
55     delete[] moving;
56     delete[] moved;
57 mmeineke 561 delete[] oldPos;
58 mmeineke 558 }
59     }
60    
61 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
62 mmeineke 558 isConstrained = 0;
63    
64 tim 725 Constraint* temp_con;
65     Constraint* dummy_plug;
66 mmeineke 558 temp_con = new Constraint[info->n_SRI];
67     nConstrained = 0;
68     int constrained = 0;
69 tim 725
70 mmeineke 558 SRI** theArray;
71 tim 725 for (int i = 0; i < nMols; i++){
72 tim 1057
73     theArray = (SRI * *) molecules[i].getMyBonds();
74 tim 725 for (int j = 0; j < molecules[i].getNBonds(); j++){
75 mmeineke 558 constrained = theArray[j]->is_constrained();
76 mmeineke 594
77 tim 725 if (constrained){
78     dummy_plug = theArray[j]->get_constraint();
79     temp_con[nConstrained].set_a(dummy_plug->get_a());
80     temp_con[nConstrained].set_b(dummy_plug->get_b());
81     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
82 mmeineke 594
83 tim 725 nConstrained++;
84     constrained = 0;
85     }
86 mmeineke 558 }
87    
88 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
89     for (int j = 0; j < molecules[i].getNBends(); j++){
90 mmeineke 558 constrained = theArray[j]->is_constrained();
91 tim 725
92     if (constrained){
93     dummy_plug = theArray[j]->get_constraint();
94     temp_con[nConstrained].set_a(dummy_plug->get_a());
95     temp_con[nConstrained].set_b(dummy_plug->get_b());
96     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
97    
98     nConstrained++;
99     constrained = 0;
100 mmeineke 558 }
101     }
102    
103 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
104     for (int j = 0; j < molecules[i].getNTorsions(); j++){
105 mmeineke 558 constrained = theArray[j]->is_constrained();
106 tim 725
107     if (constrained){
108     dummy_plug = theArray[j]->get_constraint();
109     temp_con[nConstrained].set_a(dummy_plug->get_a());
110     temp_con[nConstrained].set_b(dummy_plug->get_b());
111     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
112    
113     nConstrained++;
114     constrained = 0;
115 mmeineke 558 }
116     }
117     }
118    
119 tim 1057
120 tim 725 if (nConstrained > 0){
121 mmeineke 558 isConstrained = 1;
122    
123 tim 725 if (constrainedA != NULL)
124     delete[] constrainedA;
125     if (constrainedB != NULL)
126     delete[] constrainedB;
127     if (constrainedDsqr != NULL)
128     delete[] constrainedDsqr;
129 mmeineke 558
130 tim 725 constrainedA = new int[nConstrained];
131     constrainedB = new int[nConstrained];
132 mmeineke 558 constrainedDsqr = new double[nConstrained];
133 tim 725
134     for (int i = 0; i < nConstrained; i++){
135 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
136     constrainedB[i] = temp_con[i].get_b();
137     constrainedDsqr[i] = temp_con[i].get_dsqr();
138     }
139    
140 tim 725
141 chrisfen 999 // save oldAtoms to check for lode balancing later on.
142 tim 725
143 mmeineke 558 oldAtoms = nAtoms;
144 tim 725
145 mmeineke 558 moving = new int[nAtoms];
146 tim 725 moved = new int[nAtoms];
147 mmeineke 558
148 tim 725 oldPos = new double[nAtoms * 3];
149 mmeineke 558 }
150 tim 725
151 mmeineke 558 delete[] temp_con;
152     }
153    
154    
155 tim 725 template<typename T> void Integrator<T>::integrate(void){
156 mmeineke 558
157 tim 725 double runTime = info->run_time;
158     double sampleTime = info->sampleTime;
159     double statusTime = info->statusTime;
160 mmeineke 558 double thermalTime = info->thermalTime;
161 mmeineke 746 double resetTime = info->resetTime;
162 mmeineke 558
163 gezelter 1178 double difference;
164 mmeineke 558 double currSample;
165     double currThermal;
166     double currStatus;
167 mmeineke 746 double currReset;
168 tim 837
169 mmeineke 558 int calcPot, calcStress;
170    
171 tim 725 tStats = new Thermo(info);
172     statOut = new StatWriter(info);
173     dumpOut = new DumpWriter(info);
174 mmeineke 558
175 mmeineke 561 atoms = info->atoms;
176    
177     dt = info->dt;
178 mmeineke 558 dt2 = 0.5 * dt;
179    
180 mmeineke 784 readyCheck();
181    
182 tim 1127 // remove center of mass drift velocity (in case we passed in a configuration
183     // that was drifting
184     tStats->removeCOMdrift();
185    
186 mmeineke 558 // initialize the forces before the first step
187    
188 tim 677 calcForce(1, 1);
189 tim 1035
190 tim 781 if (nConstrained){
191     preMove();
192     constrainA();
193 tim 837 calcForce(1, 1);
194 tim 781 constrainB();
195     }
196 mmeineke 843
197 tim 725 if (info->setTemp){
198 tim 677 thermalize();
199 mmeineke 558 }
200 tim 725
201 mmeineke 558 calcPot = 0;
202     calcStress = 0;
203 mmeineke 711 currSample = sampleTime + info->getTime();
204     currThermal = thermalTime+ info->getTime();
205     currStatus = statusTime + info->getTime();
206 mmeineke 746 currReset = resetTime + info->getTime();
207 mmeineke 558
208 tim 725 dumpOut->writeDump(info->getTime());
209     statOut->writeStat(info->getTime());
210 mmeineke 559
211    
212     #ifdef IS_MPI
213 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
214 mmeineke 559 MPIcheckPoint();
215     #endif // is_mpi
216    
217 tim 1113 while (info->getTime() < runTime && !stopIntegrator()){
218 gezelter 1178 difference = info->getTime() + dt - currStatus;
219     if (difference > 0 || fabs(difference) < 1e-4 ){
220 mmeineke 558 calcPot = 1;
221     calcStress = 1;
222     }
223 mmeineke 561
224 chuckv 892 #ifdef PROFILE
225     startProfile( pro1 );
226     #endif
227    
228 tim 725 integrateStep(calcPot, calcStress);
229    
230 chuckv 892 #ifdef PROFILE
231     endProfile( pro1 );
232    
233     startProfile( pro2 );
234     #endif // profile
235    
236 mmeineke 643 info->incrTime(dt);
237 mmeineke 558
238 tim 725 if (info->setTemp){
239     if (info->getTime() >= currThermal){
240     thermalize();
241     currThermal += thermalTime;
242 mmeineke 558 }
243     }
244    
245 tim 725 if (info->getTime() >= currSample){
246     dumpOut->writeDump(info->getTime());
247 mmeineke 558 currSample += sampleTime;
248     }
249    
250 tim 725 if (info->getTime() >= currStatus){
251 tim 837 statOut->writeStat(info->getTime());
252     calcPot = 0;
253 mmeineke 558 calcStress = 0;
254     currStatus += statusTime;
255 tim 837 }
256 mmeineke 559
257 mmeineke 746 if (info->resetIntegrator){
258     if (info->getTime() >= currReset){
259     this->resetIntegrator();
260     currReset += resetTime;
261     }
262     }
263 chuckv 892
264     #ifdef PROFILE
265     endProfile( pro2 );
266     #endif //profile
267 mmeineke 746
268 mmeineke 559 #ifdef IS_MPI
269 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
270 mmeineke 559 MPIcheckPoint();
271     #endif // is_mpi
272 mmeineke 558 }
273    
274 mmeineke 561 delete dumpOut;
275     delete statOut;
276 mmeineke 558 }
277    
278 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
279     int calcStress){
280 mmeineke 558 // Position full step, and velocity half step
281 chuckv 892
282     #ifdef PROFILE
283     startProfile(pro3);
284     #endif //profile
285    
286 tim 725 preMove();
287 mmeineke 558
288 chuckv 892 #ifdef PROFILE
289     endProfile(pro3);
290    
291     startProfile(pro4);
292     #endif // profile
293    
294 mmeineke 558 moveA();
295    
296 chuckv 892 #ifdef PROFILE
297     endProfile(pro4);
298    
299     startProfile(pro5);
300     #endif//profile
301 tim 725
302    
303 mmeineke 614 #ifdef IS_MPI
304 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
305 mmeineke 614 MPIcheckPoint();
306     #endif // is_mpi
307    
308 tim 725
309 mmeineke 558 // calc forces
310    
311 tim 725 calcForce(calcPot, calcStress);
312 mmeineke 558
313 mmeineke 614 #ifdef IS_MPI
314 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
315 mmeineke 614 MPIcheckPoint();
316     #endif // is_mpi
317    
318 chuckv 892 #ifdef PROFILE
319     endProfile( pro5 );
320 tim 725
321 chuckv 892 startProfile( pro6 );
322     #endif //profile
323    
324 mmeineke 558 // finish the velocity half step
325 tim 725
326 mmeineke 558 moveB();
327 tim 725
328 chuckv 892 #ifdef PROFILE
329     endProfile(pro6);
330     #endif // profile
331 tim 725
332 mmeineke 614 #ifdef IS_MPI
333 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
334 mmeineke 614 MPIcheckPoint();
335     #endif // is_mpi
336 mmeineke 558 }
337    
338    
339 tim 725 template<typename T> void Integrator<T>::moveA(void){
340 gezelter 1097 size_t i, j;
341 mmeineke 558 DirectionalAtom* dAtom;
342 gezelter 600 double Tb[3], ji[3];
343     double vel[3], pos[3], frc[3];
344     double mass;
345 gezelter 1097
346     for (i = 0; i < integrableObjects.size() ; i++){
347     integrableObjects[i]->getVel(vel);
348     integrableObjects[i]->getPos(pos);
349     integrableObjects[i]->getFrc(frc);
350    
351     mass = integrableObjects[i]->getMass();
352 mmeineke 558
353 tim 725 for (j = 0; j < 3; j++){
354 gezelter 600 // velocity half step
355 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
356 gezelter 600 // position whole step
357     pos[j] += dt * vel[j];
358     }
359 mmeineke 594
360 gezelter 1097 integrableObjects[i]->setVel(vel);
361     integrableObjects[i]->setPos(pos);
362 gezelter 600
363 gezelter 1097 if (integrableObjects[i]->isDirectional()){
364 mmeineke 558
365     // get and convert the torque to body frame
366 mmeineke 597
367 gezelter 1097 integrableObjects[i]->getTrq(Tb);
368     integrableObjects[i]->lab2Body(Tb);
369 tim 725
370 mmeineke 558 // get the angular momentum, and propagate a half step
371 gezelter 600
372 gezelter 1097 integrableObjects[i]->getJ(ji);
373 gezelter 600
374 tim 725 for (j = 0; j < 3; j++)
375 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
376 tim 725
377 gezelter 1097 this->rotationPropagation( integrableObjects[i], ji );
378 gezelter 600
379 gezelter 1097 integrableObjects[i]->setJ(ji);
380 tim 725 }
381 mmeineke 558 }
382 mmeineke 768
383     if (nConstrained){
384     constrainA();
385     }
386 mmeineke 558 }
387    
388    
389 tim 725 template<typename T> void Integrator<T>::moveB(void){
390 gezelter 600 int i, j;
391     double Tb[3], ji[3];
392     double vel[3], frc[3];
393     double mass;
394 mmeineke 558
395 gezelter 1097 for (i = 0; i < integrableObjects.size(); i++){
396     integrableObjects[i]->getVel(vel);
397     integrableObjects[i]->getFrc(frc);
398 mmeineke 558
399 gezelter 1097 mass = integrableObjects[i]->getMass();
400 gezelter 600
401 mmeineke 558 // velocity half step
402 tim 725 for (j = 0; j < 3; j++)
403     vel[j] += (dt2 * frc[j] / mass) * eConvert;
404 gezelter 600
405 gezelter 1097 integrableObjects[i]->setVel(vel);
406 mmeineke 597
407 gezelter 1097 if (integrableObjects[i]->isDirectional()){
408 tim 725
409 tim 837 // get and convert the torque to body frame
410 gezelter 600
411 gezelter 1097 integrableObjects[i]->getTrq(Tb);
412     integrableObjects[i]->lab2Body(Tb);
413 gezelter 600
414     // get the angular momentum, and propagate a half step
415    
416 gezelter 1097 integrableObjects[i]->getJ(ji);
417 gezelter 600
418 tim 725 for (j = 0; j < 3; j++)
419 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
420 mmeineke 597
421 tim 725
422 gezelter 1097 integrableObjects[i]->setJ(ji);
423 mmeineke 558 }
424     }
425 mmeineke 768
426     if (nConstrained){
427     constrainB();
428     }
429 mmeineke 558 }
430    
431 tim 725 template<typename T> void Integrator<T>::preMove(void){
432 gezelter 600 int i, j;
433     double pos[3];
434 mmeineke 558
435 tim 725 if (nConstrained){
436     for (i = 0; i < nAtoms; i++){
437     atoms[i]->getPos(pos);
438 mmeineke 561
439 tim 725 for (j = 0; j < 3; j++){
440     oldPos[3 * i + j] = pos[j];
441 gezelter 600 }
442     }
443 tim 725 }
444 gezelter 600 }
445    
446 tim 645 template<typename T> void Integrator<T>::constrainA(){
447 mmeineke 787 int i, j;
448 mmeineke 558 int done;
449 gezelter 600 double posA[3], posB[3];
450     double velA[3], velB[3];
451 mmeineke 572 double pab[3];
452     double rab[3];
453 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
454 mmeineke 558 double rma, rmb;
455     double dx, dy, dz;
456 mmeineke 561 double rpab;
457 mmeineke 558 double rabsq, pabsq, rpabsq;
458     double diffsq;
459     double gab;
460     int iteration;
461    
462 tim 725 for (i = 0; i < nAtoms; i++){
463 mmeineke 558 moving[i] = 0;
464 tim 725 moved[i] = 1;
465 mmeineke 558 }
466 mmeineke 567
467 mmeineke 558 iteration = 0;
468     done = 0;
469 tim 725 while (!done && (iteration < maxIteration)){
470 mmeineke 558 done = 1;
471 tim 725 for (i = 0; i < nConstrained; i++){
472 mmeineke 558 a = constrainedA[i];
473     b = constrainedB[i];
474 mmeineke 563
475 tim 725 ax = (a * 3) + 0;
476     ay = (a * 3) + 1;
477     az = (a * 3) + 2;
478 mmeineke 563
479 tim 725 bx = (b * 3) + 0;
480     by = (b * 3) + 1;
481     bz = (b * 3) + 2;
482    
483     if (moved[a] || moved[b]){
484     atoms[a]->getPos(posA);
485     atoms[b]->getPos(posB);
486    
487     for (j = 0; j < 3; j++)
488 gezelter 600 pab[j] = posA[j] - posB[j];
489 mmeineke 567
490 tim 725 //periodic boundary condition
491 mmeineke 567
492 tim 725 info->wrapVector(pab);
493 mmeineke 572
494 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
495 mmeineke 558
496 tim 725 rabsq = constrainedDsqr[i];
497     diffsq = rabsq - pabsq;
498 mmeineke 567
499 tim 725 // the original rattle code from alan tidesley
500     if (fabs(diffsq) > (tol * rabsq * 2)){
501     rab[0] = oldPos[ax] - oldPos[bx];
502     rab[1] = oldPos[ay] - oldPos[by];
503     rab[2] = oldPos[az] - oldPos[bz];
504 mmeineke 558
505 tim 725 info->wrapVector(rab);
506 mmeineke 567
507 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
508 mmeineke 558
509 tim 725 rpabsq = rpab * rpab;
510 mmeineke 558
511 mmeineke 563
512 tim 725 if (rpabsq < (rabsq * -diffsq)){
513 mmeineke 558 #ifdef IS_MPI
514 tim 725 a = atoms[a]->getGlobalIndex();
515     b = atoms[b]->getGlobalIndex();
516 mmeineke 558 #endif //is_mpi
517 tim 725 sprintf(painCave.errMsg,
518     "Constraint failure in constrainA at atom %d and %d.\n", a,
519     b);
520     painCave.isFatal = 1;
521     simError();
522     }
523 mmeineke 558
524 tim 725 rma = 1.0 / atoms[a]->getMass();
525     rmb = 1.0 / atoms[b]->getMass();
526 mmeineke 567
527 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
528 mmeineke 567
529 mmeineke 572 dx = rab[0] * gab;
530     dy = rab[1] * gab;
531     dz = rab[2] * gab;
532 mmeineke 558
533 tim 725 posA[0] += rma * dx;
534     posA[1] += rma * dy;
535     posA[2] += rma * dz;
536 mmeineke 558
537 tim 725 atoms[a]->setPos(posA);
538 mmeineke 558
539 tim 725 posB[0] -= rmb * dx;
540     posB[1] -= rmb * dy;
541     posB[2] -= rmb * dz;
542 gezelter 600
543 tim 725 atoms[b]->setPos(posB);
544 gezelter 600
545 mmeineke 558 dx = dx / dt;
546     dy = dy / dt;
547     dz = dz / dt;
548    
549 tim 725 atoms[a]->getVel(velA);
550 mmeineke 558
551 tim 725 velA[0] += rma * dx;
552     velA[1] += rma * dy;
553     velA[2] += rma * dz;
554 mmeineke 558
555 tim 725 atoms[a]->setVel(velA);
556 gezelter 600
557 tim 725 atoms[b]->getVel(velB);
558 gezelter 600
559 tim 725 velB[0] -= rmb * dx;
560     velB[1] -= rmb * dy;
561     velB[2] -= rmb * dz;
562 gezelter 600
563 tim 725 atoms[b]->setVel(velB);
564 gezelter 600
565 tim 725 moving[a] = 1;
566     moving[b] = 1;
567     done = 0;
568     }
569 mmeineke 558 }
570     }
571 tim 725
572     for (i = 0; i < nAtoms; i++){
573 mmeineke 558 moved[i] = moving[i];
574     moving[i] = 0;
575     }
576    
577     iteration++;
578     }
579    
580 tim 725 if (!done){
581     sprintf(painCave.errMsg,
582     "Constraint failure in constrainA, too many iterations: %d\n",
583     iteration);
584 mmeineke 558 painCave.isFatal = 1;
585     simError();
586     }
587 mmeineke 768
588 mmeineke 558 }
589    
590 tim 725 template<typename T> void Integrator<T>::constrainB(void){
591 mmeineke 787 int i, j;
592 mmeineke 558 int done;
593 gezelter 600 double posA[3], posB[3];
594     double velA[3], velB[3];
595 mmeineke 558 double vxab, vyab, vzab;
596 mmeineke 572 double rab[3];
597 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
598 mmeineke 558 double rma, rmb;
599     double dx, dy, dz;
600 mmeineke 787 double rvab;
601 mmeineke 558 double gab;
602     int iteration;
603    
604 tim 725 for (i = 0; i < nAtoms; i++){
605 mmeineke 558 moving[i] = 0;
606     moved[i] = 1;
607     }
608    
609     done = 0;
610 mmeineke 561 iteration = 0;
611 tim 725 while (!done && (iteration < maxIteration)){
612 mmeineke 567 done = 1;
613    
614 tim 725 for (i = 0; i < nConstrained; i++){
615 mmeineke 558 a = constrainedA[i];
616     b = constrainedB[i];
617    
618 tim 725 ax = (a * 3) + 0;
619     ay = (a * 3) + 1;
620     az = (a * 3) + 2;
621 mmeineke 563
622 tim 725 bx = (b * 3) + 0;
623     by = (b * 3) + 1;
624     bz = (b * 3) + 2;
625 mmeineke 563
626 tim 725 if (moved[a] || moved[b]){
627     atoms[a]->getVel(velA);
628     atoms[b]->getVel(velB);
629 mmeineke 558
630 tim 725 vxab = velA[0] - velB[0];
631     vyab = velA[1] - velB[1];
632     vzab = velA[2] - velB[2];
633 gezelter 600
634 tim 725 atoms[a]->getPos(posA);
635     atoms[b]->getPos(posB);
636 gezelter 600
637 tim 725 for (j = 0; j < 3; j++)
638 gezelter 600 rab[j] = posA[j] - posB[j];
639 mmeineke 558
640 tim 725 info->wrapVector(rab);
641 mmeineke 558
642 tim 725 rma = 1.0 / atoms[a]->getMass();
643     rmb = 1.0 / atoms[b]->getMass();
644 mmeineke 558
645 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
646 gezelter 600
647 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
648 gezelter 600
649 tim 725 if (fabs(gab) > tol){
650     dx = rab[0] * gab;
651     dy = rab[1] * gab;
652     dz = rab[2] * gab;
653    
654     velA[0] += rma * dx;
655     velA[1] += rma * dy;
656     velA[2] += rma * dz;
657    
658     atoms[a]->setVel(velA);
659    
660     velB[0] -= rmb * dx;
661     velB[1] -= rmb * dy;
662     velB[2] -= rmb * dz;
663    
664     atoms[b]->setVel(velB);
665    
666     moving[a] = 1;
667     moving[b] = 1;
668     done = 0;
669     }
670 mmeineke 558 }
671     }
672    
673 tim 725 for (i = 0; i < nAtoms; i++){
674 mmeineke 558 moved[i] = moving[i];
675     moving[i] = 0;
676     }
677 tim 725
678 mmeineke 558 iteration++;
679     }
680    
681 tim 725 if (!done){
682     sprintf(painCave.errMsg,
683     "Constraint failure in constrainB, too many iterations: %d\n",
684     iteration);
685 mmeineke 558 painCave.isFatal = 1;
686     simError();
687 tim 725 }
688 mmeineke 558 }
689    
690 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
691 gezelter 1097 ( StuntDouble* sd, double ji[3] ){
692 mmeineke 778
693     double angle;
694     double A[3][3], I[3][3];
695 tim 1118 int i, j, k;
696 mmeineke 778
697     // use the angular velocities to propagate the rotation matrix a
698     // full time step
699    
700 gezelter 1097 sd->getA(A);
701     sd->getI(I);
702 tim 837
703 tim 1118 if (sd->isLinear()) {
704     i = sd->linearAxis();
705     j = (i+1)%3;
706     k = (i+2)%3;
707    
708     angle = dt2 * ji[j] / I[j][j];
709     this->rotate( k, i, angle, ji, A );
710    
711     angle = dt * ji[k] / I[k][k];
712     this->rotate( i, j, angle, ji, A);
713    
714     angle = dt2 * ji[j] / I[j][j];
715     this->rotate( k, i, angle, ji, A );
716    
717     } else {
718 gezelter 1125 // rotate about the x-axis
719     angle = dt2 * ji[0] / I[0][0];
720     this->rotate( 1, 2, angle, ji, A );
721    
722     // rotate about the y-axis
723     angle = dt2 * ji[1] / I[1][1];
724     this->rotate( 2, 0, angle, ji, A );
725    
726     // rotate about the z-axis
727     angle = dt * ji[2] / I[2][2];
728     this->rotate( 0, 1, angle, ji, A);
729    
730     // rotate about the y-axis
731     angle = dt2 * ji[1] / I[1][1];
732     this->rotate( 2, 0, angle, ji, A );
733    
734     // rotate about the x-axis
735     angle = dt2 * ji[0] / I[0][0];
736     this->rotate( 1, 2, angle, ji, A );
737    
738 tim 1118 }
739 gezelter 1097 sd->setA( A );
740 mmeineke 778 }
741    
742 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
743     double angle, double ji[3],
744     double A[3][3]){
745     int i, j, k;
746 mmeineke 558 double sinAngle;
747     double cosAngle;
748     double angleSqr;
749     double angleSqrOver4;
750     double top, bottom;
751     double rot[3][3];
752     double tempA[3][3];
753     double tempJ[3];
754    
755     // initialize the tempA
756    
757 tim 725 for (i = 0; i < 3; i++){
758     for (j = 0; j < 3; j++){
759 gezelter 600 tempA[j][i] = A[i][j];
760 mmeineke 558 }
761     }
762    
763     // initialize the tempJ
764    
765 tim 725 for (i = 0; i < 3; i++)
766     tempJ[i] = ji[i];
767    
768 mmeineke 558 // initalize rot as a unit matrix
769    
770     rot[0][0] = 1.0;
771     rot[0][1] = 0.0;
772     rot[0][2] = 0.0;
773    
774     rot[1][0] = 0.0;
775     rot[1][1] = 1.0;
776     rot[1][2] = 0.0;
777 tim 725
778 mmeineke 558 rot[2][0] = 0.0;
779     rot[2][1] = 0.0;
780     rot[2][2] = 1.0;
781 tim 725
782 mmeineke 558 // use a small angle aproximation for sin and cosine
783    
784 tim 725 angleSqr = angle * angle;
785 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
786     top = 1.0 - angleSqrOver4;
787     bottom = 1.0 + angleSqrOver4;
788    
789     cosAngle = top / bottom;
790     sinAngle = angle / bottom;
791    
792     rot[axes1][axes1] = cosAngle;
793     rot[axes2][axes2] = cosAngle;
794    
795     rot[axes1][axes2] = sinAngle;
796     rot[axes2][axes1] = -sinAngle;
797 tim 725
798 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
799 tim 725
800     for (i = 0; i < 3; i++){
801 mmeineke 558 ji[i] = 0.0;
802 tim 725 for (k = 0; k < 3; k++){
803 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
804     }
805     }
806    
807 tim 837 // rotate the Rotation matrix acording to:
808 mmeineke 558 // A[][] = A[][] * transpose(rot[][])
809    
810    
811 mmeineke 561 // NOte for as yet unknown reason, we are performing the
812 mmeineke 558 // calculation as:
813     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
814    
815 tim 725 for (i = 0; i < 3; i++){
816     for (j = 0; j < 3; j++){
817 gezelter 600 A[j][i] = 0.0;
818 tim 725 for (k = 0; k < 3; k++){
819     A[j][i] += tempA[i][k] * rot[j][k];
820 mmeineke 558 }
821     }
822     }
823     }
824 tim 677
825 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
826     myFF->doForces(calcPot, calcStress);
827 tim 677 }
828    
829     template<typename T> void Integrator<T>::thermalize(){
830 tim 725 tStats->velocitize();
831 tim 677 }
832 tim 763
833     template<typename T> double Integrator<T>::getConservedQuantity(void){
834     return tStats->getTotalE();
835 mmeineke 768 }
836 tim 837 template<typename T> string Integrator<T>::getAdditionalParameters(void){
837     //By default, return a null string
838     //The reason we use string instead of char* is that if we use char*, we will
839     //return a pointer point to local variable which might cause problem
840     return string();
841     }