ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 1187
Committed: Sat May 22 18:16:18 2004 UTC (20 years, 1 month ago) by chrisfen
File size: 18512 byte(s)
Log Message:
Fixed Thermodynamic integration code.

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2 gezelter 829 #include <stdlib.h>
3     #include <math.h>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10 chuckv 892 #ifdef PROFILE
11     #include "mdProfile.hpp"
12     #endif // profile
13    
14 mmeineke 558 #include "Integrator.hpp"
15     #include "simError.h"
16    
17    
18 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19     ForceFields* the_ff){
20 mmeineke 558 info = theInfo;
21     myFF = the_ff;
22     isFirst = 1;
23    
24     molecules = info->molecules;
25     nMols = info->n_mol;
26    
27     // give a little love back to the SimInfo object
28 tim 725
29     if (info->the_integrator != NULL){
30     delete info->the_integrator;
31     }
32 tim 837
33 mmeineke 558 nAtoms = info->n_atoms;
34 gezelter 1097 integrableObjects = info->integrableObjects;
35 chrisfen 1180
36 mmeineke 558 // check for constraints
37 tim 725
38     constrainedA = NULL;
39     constrainedB = NULL;
40 mmeineke 558 constrainedDsqr = NULL;
41 tim 725 moving = NULL;
42     moved = NULL;
43     oldPos = NULL;
44    
45 mmeineke 558 nConstrained = 0;
46    
47     checkConstraints();
48 chrisfen 1180
49 mmeineke 558 }
50    
51 tim 725 template<typename T> Integrator<T>::~Integrator(){
52     if (nConstrained){
53 mmeineke 558 delete[] constrainedA;
54     delete[] constrainedB;
55     delete[] constrainedDsqr;
56     delete[] moving;
57     delete[] moved;
58 mmeineke 561 delete[] oldPos;
59 mmeineke 558 }
60     }
61    
62 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
63 mmeineke 558 isConstrained = 0;
64    
65 tim 725 Constraint* temp_con;
66     Constraint* dummy_plug;
67 mmeineke 558 temp_con = new Constraint[info->n_SRI];
68     nConstrained = 0;
69     int constrained = 0;
70 tim 725
71 mmeineke 558 SRI** theArray;
72 tim 725 for (int i = 0; i < nMols; i++){
73 tim 1057
74     theArray = (SRI * *) molecules[i].getMyBonds();
75 tim 725 for (int j = 0; j < molecules[i].getNBonds(); j++){
76 mmeineke 558 constrained = theArray[j]->is_constrained();
77 mmeineke 594
78 tim 725 if (constrained){
79     dummy_plug = theArray[j]->get_constraint();
80     temp_con[nConstrained].set_a(dummy_plug->get_a());
81     temp_con[nConstrained].set_b(dummy_plug->get_b());
82     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
83 mmeineke 594
84 tim 725 nConstrained++;
85     constrained = 0;
86     }
87 mmeineke 558 }
88    
89 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
90     for (int j = 0; j < molecules[i].getNBends(); j++){
91 mmeineke 558 constrained = theArray[j]->is_constrained();
92 tim 725
93     if (constrained){
94     dummy_plug = theArray[j]->get_constraint();
95     temp_con[nConstrained].set_a(dummy_plug->get_a());
96     temp_con[nConstrained].set_b(dummy_plug->get_b());
97     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
98    
99     nConstrained++;
100     constrained = 0;
101 mmeineke 558 }
102     }
103    
104 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
105     for (int j = 0; j < molecules[i].getNTorsions(); j++){
106 mmeineke 558 constrained = theArray[j]->is_constrained();
107 tim 725
108     if (constrained){
109     dummy_plug = theArray[j]->get_constraint();
110     temp_con[nConstrained].set_a(dummy_plug->get_a());
111     temp_con[nConstrained].set_b(dummy_plug->get_b());
112     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
113    
114     nConstrained++;
115     constrained = 0;
116 mmeineke 558 }
117     }
118     }
119    
120 tim 1057
121 tim 725 if (nConstrained > 0){
122 mmeineke 558 isConstrained = 1;
123    
124 tim 725 if (constrainedA != NULL)
125     delete[] constrainedA;
126     if (constrainedB != NULL)
127     delete[] constrainedB;
128     if (constrainedDsqr != NULL)
129     delete[] constrainedDsqr;
130 mmeineke 558
131 tim 725 constrainedA = new int[nConstrained];
132     constrainedB = new int[nConstrained];
133 mmeineke 558 constrainedDsqr = new double[nConstrained];
134 tim 725
135     for (int i = 0; i < nConstrained; i++){
136 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
137     constrainedB[i] = temp_con[i].get_b();
138     constrainedDsqr[i] = temp_con[i].get_dsqr();
139     }
140    
141 tim 725
142 chrisfen 999 // save oldAtoms to check for lode balancing later on.
143 tim 725
144 mmeineke 558 oldAtoms = nAtoms;
145 tim 725
146 mmeineke 558 moving = new int[nAtoms];
147 tim 725 moved = new int[nAtoms];
148 mmeineke 558
149 tim 725 oldPos = new double[nAtoms * 3];
150 mmeineke 558 }
151 tim 725
152 mmeineke 558 delete[] temp_con;
153     }
154    
155    
156 tim 725 template<typename T> void Integrator<T>::integrate(void){
157 mmeineke 558
158 tim 725 double runTime = info->run_time;
159     double sampleTime = info->sampleTime;
160     double statusTime = info->statusTime;
161 mmeineke 558 double thermalTime = info->thermalTime;
162 mmeineke 746 double resetTime = info->resetTime;
163 mmeineke 558
164 gezelter 1178 double difference;
165 mmeineke 558 double currSample;
166     double currThermal;
167     double currStatus;
168 mmeineke 746 double currReset;
169 tim 837
170 mmeineke 558 int calcPot, calcStress;
171    
172 tim 725 tStats = new Thermo(info);
173     statOut = new StatWriter(info);
174     dumpOut = new DumpWriter(info);
175 mmeineke 558
176 mmeineke 561 atoms = info->atoms;
177    
178     dt = info->dt;
179 mmeineke 558 dt2 = 0.5 * dt;
180    
181 mmeineke 784 readyCheck();
182    
183 tim 1127 // remove center of mass drift velocity (in case we passed in a configuration
184     // that was drifting
185     tStats->removeCOMdrift();
186    
187 chrisfen 1180 // initialize the retraints if necessary
188     if (info->useThermInt) {
189     myFF->initRestraints();
190     }
191    
192 mmeineke 558 // initialize the forces before the first step
193    
194 tim 677 calcForce(1, 1);
195 tim 1035
196 tim 781 if (nConstrained){
197     preMove();
198     constrainA();
199 tim 837 calcForce(1, 1);
200 tim 781 constrainB();
201     }
202 mmeineke 843
203 tim 725 if (info->setTemp){
204 tim 677 thermalize();
205 mmeineke 558 }
206 tim 725
207 mmeineke 558 calcPot = 0;
208     calcStress = 0;
209 mmeineke 711 currSample = sampleTime + info->getTime();
210     currThermal = thermalTime+ info->getTime();
211     currStatus = statusTime + info->getTime();
212 mmeineke 746 currReset = resetTime + info->getTime();
213 mmeineke 558
214 tim 725 dumpOut->writeDump(info->getTime());
215     statOut->writeStat(info->getTime());
216 mmeineke 559
217    
218     #ifdef IS_MPI
219 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
220 mmeineke 559 MPIcheckPoint();
221     #endif // is_mpi
222    
223 tim 1113 while (info->getTime() < runTime && !stopIntegrator()){
224 gezelter 1178 difference = info->getTime() + dt - currStatus;
225     if (difference > 0 || fabs(difference) < 1e-4 ){
226 mmeineke 558 calcPot = 1;
227     calcStress = 1;
228     }
229 mmeineke 561
230 chuckv 892 #ifdef PROFILE
231     startProfile( pro1 );
232     #endif
233    
234 tim 725 integrateStep(calcPot, calcStress);
235    
236 chuckv 892 #ifdef PROFILE
237     endProfile( pro1 );
238    
239     startProfile( pro2 );
240     #endif // profile
241    
242 mmeineke 643 info->incrTime(dt);
243 mmeineke 558
244 tim 725 if (info->setTemp){
245     if (info->getTime() >= currThermal){
246     thermalize();
247     currThermal += thermalTime;
248 mmeineke 558 }
249     }
250    
251 tim 725 if (info->getTime() >= currSample){
252     dumpOut->writeDump(info->getTime());
253 mmeineke 558 currSample += sampleTime;
254     }
255    
256 tim 725 if (info->getTime() >= currStatus){
257 tim 837 statOut->writeStat(info->getTime());
258 chrisfen 1180 statOut->writeRaw(info->getTime());
259 tim 837 calcPot = 0;
260 mmeineke 558 calcStress = 0;
261     currStatus += statusTime;
262 tim 837 }
263 mmeineke 559
264 mmeineke 746 if (info->resetIntegrator){
265     if (info->getTime() >= currReset){
266     this->resetIntegrator();
267     currReset += resetTime;
268     }
269     }
270 chuckv 892
271     #ifdef PROFILE
272     endProfile( pro2 );
273     #endif //profile
274 mmeineke 746
275 mmeineke 559 #ifdef IS_MPI
276 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
277 mmeineke 559 MPIcheckPoint();
278     #endif // is_mpi
279 mmeineke 558 }
280    
281 chrisfen 1180 // dump out a file containing the omega values for the final configuration
282     if (info->useThermInt)
283     myFF->dumpzAngle();
284    
285    
286 mmeineke 561 delete dumpOut;
287     delete statOut;
288 mmeineke 558 }
289    
290 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
291     int calcStress){
292 mmeineke 558 // Position full step, and velocity half step
293 chuckv 892
294     #ifdef PROFILE
295     startProfile(pro3);
296     #endif //profile
297    
298 tim 725 preMove();
299 mmeineke 558
300 chuckv 892 #ifdef PROFILE
301     endProfile(pro3);
302    
303     startProfile(pro4);
304     #endif // profile
305    
306 mmeineke 558 moveA();
307    
308 chuckv 892 #ifdef PROFILE
309     endProfile(pro4);
310    
311     startProfile(pro5);
312     #endif//profile
313 tim 725
314    
315 mmeineke 614 #ifdef IS_MPI
316 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
317 mmeineke 614 MPIcheckPoint();
318     #endif // is_mpi
319    
320 mmeineke 558 // calc forces
321 tim 725 calcForce(calcPot, calcStress);
322 mmeineke 558
323 mmeineke 614 #ifdef IS_MPI
324 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
325 mmeineke 614 MPIcheckPoint();
326     #endif // is_mpi
327    
328 chuckv 892 #ifdef PROFILE
329     endProfile( pro5 );
330 tim 725
331 chuckv 892 startProfile( pro6 );
332     #endif //profile
333    
334 mmeineke 558 // finish the velocity half step
335 tim 725
336 mmeineke 558 moveB();
337 tim 725
338 chuckv 892 #ifdef PROFILE
339     endProfile(pro6);
340     #endif // profile
341 tim 725
342 mmeineke 614 #ifdef IS_MPI
343 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
344 mmeineke 614 MPIcheckPoint();
345     #endif // is_mpi
346 mmeineke 558 }
347    
348    
349 tim 725 template<typename T> void Integrator<T>::moveA(void){
350 gezelter 1097 size_t i, j;
351 mmeineke 558 DirectionalAtom* dAtom;
352 gezelter 600 double Tb[3], ji[3];
353     double vel[3], pos[3], frc[3];
354     double mass;
355 chrisfen 1187 double omega;
356 gezelter 1097
357     for (i = 0; i < integrableObjects.size() ; i++){
358     integrableObjects[i]->getVel(vel);
359     integrableObjects[i]->getPos(pos);
360     integrableObjects[i]->getFrc(frc);
361    
362     mass = integrableObjects[i]->getMass();
363 mmeineke 558
364 tim 725 for (j = 0; j < 3; j++){
365 gezelter 600 // velocity half step
366 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
367 gezelter 600 // position whole step
368     pos[j] += dt * vel[j];
369     }
370 mmeineke 594
371 gezelter 1097 integrableObjects[i]->setVel(vel);
372     integrableObjects[i]->setPos(pos);
373 gezelter 600
374 gezelter 1097 if (integrableObjects[i]->isDirectional()){
375 mmeineke 558
376     // get and convert the torque to body frame
377 mmeineke 597
378 gezelter 1097 integrableObjects[i]->getTrq(Tb);
379     integrableObjects[i]->lab2Body(Tb);
380 tim 725
381 mmeineke 558 // get the angular momentum, and propagate a half step
382 gezelter 600
383 gezelter 1097 integrableObjects[i]->getJ(ji);
384 gezelter 600
385 tim 725 for (j = 0; j < 3; j++)
386 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
387 tim 725
388 gezelter 1097 this->rotationPropagation( integrableObjects[i], ji );
389 gezelter 600
390 gezelter 1097 integrableObjects[i]->setJ(ji);
391 tim 725 }
392 mmeineke 558 }
393 mmeineke 768
394     if (nConstrained){
395     constrainA();
396     }
397 mmeineke 558 }
398    
399    
400 tim 725 template<typename T> void Integrator<T>::moveB(void){
401 gezelter 600 int i, j;
402     double Tb[3], ji[3];
403     double vel[3], frc[3];
404     double mass;
405 mmeineke 558
406 gezelter 1097 for (i = 0; i < integrableObjects.size(); i++){
407     integrableObjects[i]->getVel(vel);
408     integrableObjects[i]->getFrc(frc);
409 mmeineke 558
410 gezelter 1097 mass = integrableObjects[i]->getMass();
411 gezelter 600
412 mmeineke 558 // velocity half step
413 tim 725 for (j = 0; j < 3; j++)
414     vel[j] += (dt2 * frc[j] / mass) * eConvert;
415 gezelter 600
416 gezelter 1097 integrableObjects[i]->setVel(vel);
417 mmeineke 597
418 gezelter 1097 if (integrableObjects[i]->isDirectional()){
419 tim 725
420 tim 837 // get and convert the torque to body frame
421 gezelter 600
422 gezelter 1097 integrableObjects[i]->getTrq(Tb);
423     integrableObjects[i]->lab2Body(Tb);
424 gezelter 600
425     // get the angular momentum, and propagate a half step
426    
427 gezelter 1097 integrableObjects[i]->getJ(ji);
428 gezelter 600
429 tim 725 for (j = 0; j < 3; j++)
430 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
431 mmeineke 597
432 tim 725
433 gezelter 1097 integrableObjects[i]->setJ(ji);
434 mmeineke 558 }
435     }
436 mmeineke 768
437     if (nConstrained){
438     constrainB();
439     }
440 mmeineke 558 }
441    
442 tim 725 template<typename T> void Integrator<T>::preMove(void){
443 gezelter 600 int i, j;
444     double pos[3];
445 mmeineke 558
446 tim 725 if (nConstrained){
447     for (i = 0; i < nAtoms; i++){
448     atoms[i]->getPos(pos);
449 mmeineke 561
450 tim 725 for (j = 0; j < 3; j++){
451     oldPos[3 * i + j] = pos[j];
452 gezelter 600 }
453     }
454 tim 725 }
455 gezelter 600 }
456    
457 tim 645 template<typename T> void Integrator<T>::constrainA(){
458 mmeineke 787 int i, j;
459 mmeineke 558 int done;
460 gezelter 600 double posA[3], posB[3];
461     double velA[3], velB[3];
462 mmeineke 572 double pab[3];
463     double rab[3];
464 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
465 mmeineke 558 double rma, rmb;
466     double dx, dy, dz;
467 mmeineke 561 double rpab;
468 mmeineke 558 double rabsq, pabsq, rpabsq;
469     double diffsq;
470     double gab;
471     int iteration;
472    
473 tim 725 for (i = 0; i < nAtoms; i++){
474 mmeineke 558 moving[i] = 0;
475 tim 725 moved[i] = 1;
476 mmeineke 558 }
477 mmeineke 567
478 mmeineke 558 iteration = 0;
479     done = 0;
480 tim 725 while (!done && (iteration < maxIteration)){
481 mmeineke 558 done = 1;
482 tim 725 for (i = 0; i < nConstrained; i++){
483 mmeineke 558 a = constrainedA[i];
484     b = constrainedB[i];
485 mmeineke 563
486 tim 725 ax = (a * 3) + 0;
487     ay = (a * 3) + 1;
488     az = (a * 3) + 2;
489 mmeineke 563
490 tim 725 bx = (b * 3) + 0;
491     by = (b * 3) + 1;
492     bz = (b * 3) + 2;
493    
494     if (moved[a] || moved[b]){
495     atoms[a]->getPos(posA);
496     atoms[b]->getPos(posB);
497    
498     for (j = 0; j < 3; j++)
499 gezelter 600 pab[j] = posA[j] - posB[j];
500 mmeineke 567
501 tim 725 //periodic boundary condition
502 mmeineke 567
503 tim 725 info->wrapVector(pab);
504 mmeineke 572
505 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
506 mmeineke 558
507 tim 725 rabsq = constrainedDsqr[i];
508     diffsq = rabsq - pabsq;
509 mmeineke 567
510 tim 725 // the original rattle code from alan tidesley
511     if (fabs(diffsq) > (tol * rabsq * 2)){
512     rab[0] = oldPos[ax] - oldPos[bx];
513     rab[1] = oldPos[ay] - oldPos[by];
514     rab[2] = oldPos[az] - oldPos[bz];
515 mmeineke 558
516 tim 725 info->wrapVector(rab);
517 mmeineke 567
518 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
519 mmeineke 558
520 tim 725 rpabsq = rpab * rpab;
521 mmeineke 558
522 mmeineke 563
523 tim 725 if (rpabsq < (rabsq * -diffsq)){
524 mmeineke 558 #ifdef IS_MPI
525 tim 725 a = atoms[a]->getGlobalIndex();
526     b = atoms[b]->getGlobalIndex();
527 mmeineke 558 #endif //is_mpi
528 tim 725 sprintf(painCave.errMsg,
529     "Constraint failure in constrainA at atom %d and %d.\n", a,
530     b);
531     painCave.isFatal = 1;
532     simError();
533     }
534 mmeineke 558
535 tim 725 rma = 1.0 / atoms[a]->getMass();
536     rmb = 1.0 / atoms[b]->getMass();
537 mmeineke 567
538 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
539 mmeineke 567
540 mmeineke 572 dx = rab[0] * gab;
541     dy = rab[1] * gab;
542     dz = rab[2] * gab;
543 mmeineke 558
544 tim 725 posA[0] += rma * dx;
545     posA[1] += rma * dy;
546     posA[2] += rma * dz;
547 mmeineke 558
548 tim 725 atoms[a]->setPos(posA);
549 mmeineke 558
550 tim 725 posB[0] -= rmb * dx;
551     posB[1] -= rmb * dy;
552     posB[2] -= rmb * dz;
553 gezelter 600
554 tim 725 atoms[b]->setPos(posB);
555 gezelter 600
556 mmeineke 558 dx = dx / dt;
557     dy = dy / dt;
558     dz = dz / dt;
559    
560 tim 725 atoms[a]->getVel(velA);
561 mmeineke 558
562 tim 725 velA[0] += rma * dx;
563     velA[1] += rma * dy;
564     velA[2] += rma * dz;
565 mmeineke 558
566 tim 725 atoms[a]->setVel(velA);
567 gezelter 600
568 tim 725 atoms[b]->getVel(velB);
569 gezelter 600
570 tim 725 velB[0] -= rmb * dx;
571     velB[1] -= rmb * dy;
572     velB[2] -= rmb * dz;
573 gezelter 600
574 tim 725 atoms[b]->setVel(velB);
575 gezelter 600
576 tim 725 moving[a] = 1;
577     moving[b] = 1;
578     done = 0;
579     }
580 mmeineke 558 }
581     }
582 tim 725
583     for (i = 0; i < nAtoms; i++){
584 mmeineke 558 moved[i] = moving[i];
585     moving[i] = 0;
586     }
587    
588     iteration++;
589     }
590    
591 tim 725 if (!done){
592     sprintf(painCave.errMsg,
593     "Constraint failure in constrainA, too many iterations: %d\n",
594     iteration);
595 mmeineke 558 painCave.isFatal = 1;
596     simError();
597     }
598 mmeineke 768
599 mmeineke 558 }
600    
601 tim 725 template<typename T> void Integrator<T>::constrainB(void){
602 mmeineke 787 int i, j;
603 mmeineke 558 int done;
604 gezelter 600 double posA[3], posB[3];
605     double velA[3], velB[3];
606 mmeineke 558 double vxab, vyab, vzab;
607 mmeineke 572 double rab[3];
608 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
609 mmeineke 558 double rma, rmb;
610     double dx, dy, dz;
611 mmeineke 787 double rvab;
612 mmeineke 558 double gab;
613     int iteration;
614    
615 tim 725 for (i = 0; i < nAtoms; i++){
616 mmeineke 558 moving[i] = 0;
617     moved[i] = 1;
618     }
619    
620     done = 0;
621 mmeineke 561 iteration = 0;
622 tim 725 while (!done && (iteration < maxIteration)){
623 mmeineke 567 done = 1;
624    
625 tim 725 for (i = 0; i < nConstrained; i++){
626 mmeineke 558 a = constrainedA[i];
627     b = constrainedB[i];
628    
629 tim 725 ax = (a * 3) + 0;
630     ay = (a * 3) + 1;
631     az = (a * 3) + 2;
632 mmeineke 563
633 tim 725 bx = (b * 3) + 0;
634     by = (b * 3) + 1;
635     bz = (b * 3) + 2;
636 mmeineke 563
637 tim 725 if (moved[a] || moved[b]){
638     atoms[a]->getVel(velA);
639     atoms[b]->getVel(velB);
640 mmeineke 558
641 tim 725 vxab = velA[0] - velB[0];
642     vyab = velA[1] - velB[1];
643     vzab = velA[2] - velB[2];
644 gezelter 600
645 tim 725 atoms[a]->getPos(posA);
646     atoms[b]->getPos(posB);
647 gezelter 600
648 tim 725 for (j = 0; j < 3; j++)
649 gezelter 600 rab[j] = posA[j] - posB[j];
650 mmeineke 558
651 tim 725 info->wrapVector(rab);
652 mmeineke 558
653 tim 725 rma = 1.0 / atoms[a]->getMass();
654     rmb = 1.0 / atoms[b]->getMass();
655 mmeineke 558
656 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
657 gezelter 600
658 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
659 gezelter 600
660 tim 725 if (fabs(gab) > tol){
661     dx = rab[0] * gab;
662     dy = rab[1] * gab;
663     dz = rab[2] * gab;
664    
665     velA[0] += rma * dx;
666     velA[1] += rma * dy;
667     velA[2] += rma * dz;
668    
669     atoms[a]->setVel(velA);
670    
671     velB[0] -= rmb * dx;
672     velB[1] -= rmb * dy;
673     velB[2] -= rmb * dz;
674    
675     atoms[b]->setVel(velB);
676    
677     moving[a] = 1;
678     moving[b] = 1;
679     done = 0;
680     }
681 mmeineke 558 }
682     }
683    
684 tim 725 for (i = 0; i < nAtoms; i++){
685 mmeineke 558 moved[i] = moving[i];
686     moving[i] = 0;
687     }
688 tim 725
689 mmeineke 558 iteration++;
690     }
691    
692 tim 725 if (!done){
693     sprintf(painCave.errMsg,
694     "Constraint failure in constrainB, too many iterations: %d\n",
695     iteration);
696 mmeineke 558 painCave.isFatal = 1;
697     simError();
698 tim 725 }
699 mmeineke 558 }
700    
701 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
702 gezelter 1097 ( StuntDouble* sd, double ji[3] ){
703 mmeineke 778
704     double angle;
705     double A[3][3], I[3][3];
706 tim 1118 int i, j, k;
707 mmeineke 778
708     // use the angular velocities to propagate the rotation matrix a
709     // full time step
710    
711 gezelter 1097 sd->getA(A);
712     sd->getI(I);
713 tim 837
714 tim 1118 if (sd->isLinear()) {
715     i = sd->linearAxis();
716     j = (i+1)%3;
717     k = (i+2)%3;
718    
719     angle = dt2 * ji[j] / I[j][j];
720     this->rotate( k, i, angle, ji, A );
721    
722     angle = dt * ji[k] / I[k][k];
723     this->rotate( i, j, angle, ji, A);
724    
725     angle = dt2 * ji[j] / I[j][j];
726     this->rotate( k, i, angle, ji, A );
727    
728     } else {
729 gezelter 1125 // rotate about the x-axis
730     angle = dt2 * ji[0] / I[0][0];
731     this->rotate( 1, 2, angle, ji, A );
732    
733     // rotate about the y-axis
734     angle = dt2 * ji[1] / I[1][1];
735     this->rotate( 2, 0, angle, ji, A );
736    
737     // rotate about the z-axis
738     angle = dt * ji[2] / I[2][2];
739 chrisfen 1187 sd->addZangle(angle);
740 gezelter 1125 this->rotate( 0, 1, angle, ji, A);
741    
742     // rotate about the y-axis
743     angle = dt2 * ji[1] / I[1][1];
744     this->rotate( 2, 0, angle, ji, A );
745    
746     // rotate about the x-axis
747     angle = dt2 * ji[0] / I[0][0];
748     this->rotate( 1, 2, angle, ji, A );
749    
750 tim 1118 }
751 gezelter 1097 sd->setA( A );
752 mmeineke 778 }
753    
754 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
755     double angle, double ji[3],
756     double A[3][3]){
757     int i, j, k;
758 mmeineke 558 double sinAngle;
759     double cosAngle;
760     double angleSqr;
761     double angleSqrOver4;
762     double top, bottom;
763     double rot[3][3];
764     double tempA[3][3];
765     double tempJ[3];
766    
767     // initialize the tempA
768    
769 tim 725 for (i = 0; i < 3; i++){
770     for (j = 0; j < 3; j++){
771 gezelter 600 tempA[j][i] = A[i][j];
772 mmeineke 558 }
773     }
774    
775     // initialize the tempJ
776    
777 tim 725 for (i = 0; i < 3; i++)
778     tempJ[i] = ji[i];
779    
780 mmeineke 558 // initalize rot as a unit matrix
781    
782     rot[0][0] = 1.0;
783     rot[0][1] = 0.0;
784     rot[0][2] = 0.0;
785    
786     rot[1][0] = 0.0;
787     rot[1][1] = 1.0;
788     rot[1][2] = 0.0;
789 tim 725
790 mmeineke 558 rot[2][0] = 0.0;
791     rot[2][1] = 0.0;
792     rot[2][2] = 1.0;
793 tim 725
794 mmeineke 558 // use a small angle aproximation for sin and cosine
795    
796 tim 725 angleSqr = angle * angle;
797 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
798     top = 1.0 - angleSqrOver4;
799     bottom = 1.0 + angleSqrOver4;
800    
801     cosAngle = top / bottom;
802     sinAngle = angle / bottom;
803    
804     rot[axes1][axes1] = cosAngle;
805     rot[axes2][axes2] = cosAngle;
806    
807     rot[axes1][axes2] = sinAngle;
808     rot[axes2][axes1] = -sinAngle;
809 tim 725
810 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
811 tim 725
812     for (i = 0; i < 3; i++){
813 mmeineke 558 ji[i] = 0.0;
814 tim 725 for (k = 0; k < 3; k++){
815 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
816     }
817     }
818    
819 tim 837 // rotate the Rotation matrix acording to:
820 mmeineke 558 // A[][] = A[][] * transpose(rot[][])
821    
822    
823 mmeineke 561 // NOte for as yet unknown reason, we are performing the
824 mmeineke 558 // calculation as:
825     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
826    
827 tim 725 for (i = 0; i < 3; i++){
828     for (j = 0; j < 3; j++){
829 gezelter 600 A[j][i] = 0.0;
830 tim 725 for (k = 0; k < 3; k++){
831     A[j][i] += tempA[i][k] * rot[j][k];
832 mmeineke 558 }
833     }
834     }
835     }
836 tim 677
837 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
838     myFF->doForces(calcPot, calcStress);
839 tim 677 }
840    
841     template<typename T> void Integrator<T>::thermalize(){
842 tim 725 tStats->velocitize();
843 tim 677 }
844 tim 763
845     template<typename T> double Integrator<T>::getConservedQuantity(void){
846     return tStats->getTotalE();
847 mmeineke 768 }
848 tim 837 template<typename T> string Integrator<T>::getAdditionalParameters(void){
849     //By default, return a null string
850     //The reason we use string instead of char* is that if we use char*, we will
851     //return a pointer point to local variable which might cause problem
852     return string();
853     }