ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 1207
Committed: Thu May 27 20:06:38 2004 UTC (20 years, 1 month ago) by chrisfen
File size: 18536 byte(s)
Log Message:
Fixed a bug in Integrator.cpp where it called writeRaw() when useThermInt = false...

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2 gezelter 829 #include <stdlib.h>
3     #include <math.h>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10 chuckv 892 #ifdef PROFILE
11     #include "mdProfile.hpp"
12     #endif // profile
13    
14 mmeineke 558 #include "Integrator.hpp"
15     #include "simError.h"
16    
17    
18 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19     ForceFields* the_ff){
20 mmeineke 558 info = theInfo;
21     myFF = the_ff;
22     isFirst = 1;
23    
24     molecules = info->molecules;
25     nMols = info->n_mol;
26    
27     // give a little love back to the SimInfo object
28 tim 725
29     if (info->the_integrator != NULL){
30     delete info->the_integrator;
31     }
32 tim 837
33 mmeineke 558 nAtoms = info->n_atoms;
34 gezelter 1097 integrableObjects = info->integrableObjects;
35 chrisfen 1180
36 mmeineke 558 // check for constraints
37 tim 725
38     constrainedA = NULL;
39     constrainedB = NULL;
40 mmeineke 558 constrainedDsqr = NULL;
41 tim 725 moving = NULL;
42     moved = NULL;
43     oldPos = NULL;
44    
45 mmeineke 558 nConstrained = 0;
46    
47     checkConstraints();
48 chrisfen 1180
49 mmeineke 558 }
50    
51 tim 725 template<typename T> Integrator<T>::~Integrator(){
52     if (nConstrained){
53 mmeineke 558 delete[] constrainedA;
54     delete[] constrainedB;
55     delete[] constrainedDsqr;
56     delete[] moving;
57     delete[] moved;
58 mmeineke 561 delete[] oldPos;
59 mmeineke 558 }
60     }
61    
62 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
63 mmeineke 558 isConstrained = 0;
64    
65 tim 725 Constraint* temp_con;
66     Constraint* dummy_plug;
67 mmeineke 558 temp_con = new Constraint[info->n_SRI];
68     nConstrained = 0;
69     int constrained = 0;
70 tim 725
71 mmeineke 558 SRI** theArray;
72 tim 725 for (int i = 0; i < nMols; i++){
73 tim 1057
74     theArray = (SRI * *) molecules[i].getMyBonds();
75 tim 725 for (int j = 0; j < molecules[i].getNBonds(); j++){
76 mmeineke 558 constrained = theArray[j]->is_constrained();
77 mmeineke 594
78 tim 725 if (constrained){
79     dummy_plug = theArray[j]->get_constraint();
80     temp_con[nConstrained].set_a(dummy_plug->get_a());
81     temp_con[nConstrained].set_b(dummy_plug->get_b());
82     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
83 mmeineke 594
84 tim 725 nConstrained++;
85     constrained = 0;
86     }
87 mmeineke 558 }
88    
89 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
90     for (int j = 0; j < molecules[i].getNBends(); j++){
91 mmeineke 558 constrained = theArray[j]->is_constrained();
92 tim 725
93     if (constrained){
94     dummy_plug = theArray[j]->get_constraint();
95     temp_con[nConstrained].set_a(dummy_plug->get_a());
96     temp_con[nConstrained].set_b(dummy_plug->get_b());
97     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
98    
99     nConstrained++;
100     constrained = 0;
101 mmeineke 558 }
102     }
103    
104 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
105     for (int j = 0; j < molecules[i].getNTorsions(); j++){
106 mmeineke 558 constrained = theArray[j]->is_constrained();
107 tim 725
108     if (constrained){
109     dummy_plug = theArray[j]->get_constraint();
110     temp_con[nConstrained].set_a(dummy_plug->get_a());
111     temp_con[nConstrained].set_b(dummy_plug->get_b());
112     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
113    
114     nConstrained++;
115     constrained = 0;
116 mmeineke 558 }
117     }
118     }
119    
120 tim 1057
121 tim 725 if (nConstrained > 0){
122 mmeineke 558 isConstrained = 1;
123    
124 tim 725 if (constrainedA != NULL)
125     delete[] constrainedA;
126     if (constrainedB != NULL)
127     delete[] constrainedB;
128     if (constrainedDsqr != NULL)
129     delete[] constrainedDsqr;
130 mmeineke 558
131 tim 725 constrainedA = new int[nConstrained];
132     constrainedB = new int[nConstrained];
133 mmeineke 558 constrainedDsqr = new double[nConstrained];
134 tim 725
135     for (int i = 0; i < nConstrained; i++){
136 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
137     constrainedB[i] = temp_con[i].get_b();
138     constrainedDsqr[i] = temp_con[i].get_dsqr();
139     }
140    
141 tim 725
142 chrisfen 999 // save oldAtoms to check for lode balancing later on.
143 tim 725
144 mmeineke 558 oldAtoms = nAtoms;
145 tim 725
146 mmeineke 558 moving = new int[nAtoms];
147 tim 725 moved = new int[nAtoms];
148 mmeineke 558
149 tim 725 oldPos = new double[nAtoms * 3];
150 mmeineke 558 }
151 tim 725
152 mmeineke 558 delete[] temp_con;
153     }
154    
155    
156 tim 725 template<typename T> void Integrator<T>::integrate(void){
157 mmeineke 558
158 tim 725 double runTime = info->run_time;
159     double sampleTime = info->sampleTime;
160     double statusTime = info->statusTime;
161 mmeineke 558 double thermalTime = info->thermalTime;
162 mmeineke 746 double resetTime = info->resetTime;
163 mmeineke 558
164 gezelter 1178 double difference;
165 mmeineke 558 double currSample;
166     double currThermal;
167     double currStatus;
168 mmeineke 746 double currReset;
169 tim 837
170 mmeineke 558 int calcPot, calcStress;
171    
172 tim 725 tStats = new Thermo(info);
173     statOut = new StatWriter(info);
174     dumpOut = new DumpWriter(info);
175 mmeineke 558
176 mmeineke 561 atoms = info->atoms;
177    
178     dt = info->dt;
179 mmeineke 558 dt2 = 0.5 * dt;
180    
181 mmeineke 784 readyCheck();
182    
183 tim 1127 // remove center of mass drift velocity (in case we passed in a configuration
184     // that was drifting
185     tStats->removeCOMdrift();
186    
187 chrisfen 1180 // initialize the retraints if necessary
188     if (info->useThermInt) {
189     myFF->initRestraints();
190     }
191    
192 mmeineke 558 // initialize the forces before the first step
193    
194 tim 677 calcForce(1, 1);
195 tim 1035
196 tim 781 if (nConstrained){
197     preMove();
198     constrainA();
199 tim 837 calcForce(1, 1);
200 tim 781 constrainB();
201     }
202 mmeineke 843
203 tim 725 if (info->setTemp){
204 tim 677 thermalize();
205 mmeineke 558 }
206 tim 725
207 mmeineke 558 calcPot = 0;
208     calcStress = 0;
209 mmeineke 711 currSample = sampleTime + info->getTime();
210     currThermal = thermalTime+ info->getTime();
211     currStatus = statusTime + info->getTime();
212 mmeineke 746 currReset = resetTime + info->getTime();
213 mmeineke 558
214 tim 725 dumpOut->writeDump(info->getTime());
215     statOut->writeStat(info->getTime());
216 mmeineke 559
217    
218     #ifdef IS_MPI
219 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
220 mmeineke 559 MPIcheckPoint();
221     #endif // is_mpi
222    
223 tim 1113 while (info->getTime() < runTime && !stopIntegrator()){
224 gezelter 1178 difference = info->getTime() + dt - currStatus;
225     if (difference > 0 || fabs(difference) < 1e-4 ){
226 mmeineke 558 calcPot = 1;
227     calcStress = 1;
228     }
229 mmeineke 561
230 chuckv 892 #ifdef PROFILE
231     startProfile( pro1 );
232     #endif
233    
234 tim 725 integrateStep(calcPot, calcStress);
235    
236 chuckv 892 #ifdef PROFILE
237     endProfile( pro1 );
238    
239     startProfile( pro2 );
240     #endif // profile
241    
242 mmeineke 643 info->incrTime(dt);
243 mmeineke 558
244 tim 725 if (info->setTemp){
245     if (info->getTime() >= currThermal){
246     thermalize();
247     currThermal += thermalTime;
248 mmeineke 558 }
249     }
250    
251 tim 725 if (info->getTime() >= currSample){
252     dumpOut->writeDump(info->getTime());
253 mmeineke 558 currSample += sampleTime;
254     }
255    
256 tim 725 if (info->getTime() >= currStatus){
257 tim 837 statOut->writeStat(info->getTime());
258 chrisfen 1207 if (info->useThermInt)
259     statOut->writeRaw(info->getTime());
260 tim 837 calcPot = 0;
261 mmeineke 558 calcStress = 0;
262     currStatus += statusTime;
263 tim 837 }
264 mmeineke 559
265 mmeineke 746 if (info->resetIntegrator){
266     if (info->getTime() >= currReset){
267     this->resetIntegrator();
268     currReset += resetTime;
269     }
270     }
271 chuckv 892
272     #ifdef PROFILE
273     endProfile( pro2 );
274     #endif //profile
275 mmeineke 746
276 mmeineke 559 #ifdef IS_MPI
277 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
278 mmeineke 559 MPIcheckPoint();
279     #endif // is_mpi
280 mmeineke 558 }
281    
282 chrisfen 1180 // dump out a file containing the omega values for the final configuration
283     if (info->useThermInt)
284     myFF->dumpzAngle();
285    
286    
287 mmeineke 561 delete dumpOut;
288     delete statOut;
289 mmeineke 558 }
290    
291 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
292     int calcStress){
293 mmeineke 558 // Position full step, and velocity half step
294 chuckv 892
295     #ifdef PROFILE
296     startProfile(pro3);
297     #endif //profile
298    
299 tim 725 preMove();
300 mmeineke 558
301 chuckv 892 #ifdef PROFILE
302     endProfile(pro3);
303    
304     startProfile(pro4);
305     #endif // profile
306    
307 mmeineke 558 moveA();
308    
309 chuckv 892 #ifdef PROFILE
310     endProfile(pro4);
311    
312     startProfile(pro5);
313     #endif//profile
314 tim 725
315    
316 mmeineke 614 #ifdef IS_MPI
317 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
318 mmeineke 614 MPIcheckPoint();
319     #endif // is_mpi
320    
321 mmeineke 558 // calc forces
322 tim 725 calcForce(calcPot, calcStress);
323 mmeineke 558
324 mmeineke 614 #ifdef IS_MPI
325 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
326 mmeineke 614 MPIcheckPoint();
327     #endif // is_mpi
328    
329 chuckv 892 #ifdef PROFILE
330     endProfile( pro5 );
331 tim 725
332 chuckv 892 startProfile( pro6 );
333     #endif //profile
334    
335 mmeineke 558 // finish the velocity half step
336 tim 725
337 mmeineke 558 moveB();
338 tim 725
339 chuckv 892 #ifdef PROFILE
340     endProfile(pro6);
341     #endif // profile
342 tim 725
343 mmeineke 614 #ifdef IS_MPI
344 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
345 mmeineke 614 MPIcheckPoint();
346     #endif // is_mpi
347 mmeineke 558 }
348    
349    
350 tim 725 template<typename T> void Integrator<T>::moveA(void){
351 gezelter 1097 size_t i, j;
352 mmeineke 558 DirectionalAtom* dAtom;
353 gezelter 600 double Tb[3], ji[3];
354     double vel[3], pos[3], frc[3];
355     double mass;
356 chrisfen 1187 double omega;
357 gezelter 1097
358     for (i = 0; i < integrableObjects.size() ; i++){
359     integrableObjects[i]->getVel(vel);
360     integrableObjects[i]->getPos(pos);
361     integrableObjects[i]->getFrc(frc);
362    
363     mass = integrableObjects[i]->getMass();
364 mmeineke 558
365 tim 725 for (j = 0; j < 3; j++){
366 gezelter 600 // velocity half step
367 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
368 gezelter 600 // position whole step
369     pos[j] += dt * vel[j];
370     }
371 mmeineke 594
372 gezelter 1097 integrableObjects[i]->setVel(vel);
373     integrableObjects[i]->setPos(pos);
374 gezelter 600
375 gezelter 1097 if (integrableObjects[i]->isDirectional()){
376 mmeineke 558
377     // get and convert the torque to body frame
378 mmeineke 597
379 gezelter 1097 integrableObjects[i]->getTrq(Tb);
380     integrableObjects[i]->lab2Body(Tb);
381 tim 725
382 mmeineke 558 // get the angular momentum, and propagate a half step
383 gezelter 600
384 gezelter 1097 integrableObjects[i]->getJ(ji);
385 gezelter 600
386 tim 725 for (j = 0; j < 3; j++)
387 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
388 tim 725
389 gezelter 1097 this->rotationPropagation( integrableObjects[i], ji );
390 gezelter 600
391 gezelter 1097 integrableObjects[i]->setJ(ji);
392 tim 725 }
393 mmeineke 558 }
394 mmeineke 768
395     if (nConstrained){
396     constrainA();
397     }
398 mmeineke 558 }
399    
400    
401 tim 725 template<typename T> void Integrator<T>::moveB(void){
402 gezelter 600 int i, j;
403     double Tb[3], ji[3];
404     double vel[3], frc[3];
405     double mass;
406 mmeineke 558
407 gezelter 1097 for (i = 0; i < integrableObjects.size(); i++){
408     integrableObjects[i]->getVel(vel);
409     integrableObjects[i]->getFrc(frc);
410 mmeineke 558
411 gezelter 1097 mass = integrableObjects[i]->getMass();
412 gezelter 600
413 mmeineke 558 // velocity half step
414 tim 725 for (j = 0; j < 3; j++)
415     vel[j] += (dt2 * frc[j] / mass) * eConvert;
416 gezelter 600
417 gezelter 1097 integrableObjects[i]->setVel(vel);
418 mmeineke 597
419 gezelter 1097 if (integrableObjects[i]->isDirectional()){
420 tim 725
421 tim 837 // get and convert the torque to body frame
422 gezelter 600
423 gezelter 1097 integrableObjects[i]->getTrq(Tb);
424     integrableObjects[i]->lab2Body(Tb);
425 gezelter 600
426     // get the angular momentum, and propagate a half step
427    
428 gezelter 1097 integrableObjects[i]->getJ(ji);
429 gezelter 600
430 tim 725 for (j = 0; j < 3; j++)
431 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
432 mmeineke 597
433 tim 725
434 gezelter 1097 integrableObjects[i]->setJ(ji);
435 mmeineke 558 }
436     }
437 mmeineke 768
438     if (nConstrained){
439     constrainB();
440     }
441 mmeineke 558 }
442    
443 tim 725 template<typename T> void Integrator<T>::preMove(void){
444 gezelter 600 int i, j;
445     double pos[3];
446 mmeineke 558
447 tim 725 if (nConstrained){
448     for (i = 0; i < nAtoms; i++){
449     atoms[i]->getPos(pos);
450 mmeineke 561
451 tim 725 for (j = 0; j < 3; j++){
452     oldPos[3 * i + j] = pos[j];
453 gezelter 600 }
454     }
455 tim 725 }
456 gezelter 600 }
457    
458 tim 645 template<typename T> void Integrator<T>::constrainA(){
459 mmeineke 787 int i, j;
460 mmeineke 558 int done;
461 gezelter 600 double posA[3], posB[3];
462     double velA[3], velB[3];
463 mmeineke 572 double pab[3];
464     double rab[3];
465 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
466 mmeineke 558 double rma, rmb;
467     double dx, dy, dz;
468 mmeineke 561 double rpab;
469 mmeineke 558 double rabsq, pabsq, rpabsq;
470     double diffsq;
471     double gab;
472     int iteration;
473    
474 tim 725 for (i = 0; i < nAtoms; i++){
475 mmeineke 558 moving[i] = 0;
476 tim 725 moved[i] = 1;
477 mmeineke 558 }
478 mmeineke 567
479 mmeineke 558 iteration = 0;
480     done = 0;
481 tim 725 while (!done && (iteration < maxIteration)){
482 mmeineke 558 done = 1;
483 tim 725 for (i = 0; i < nConstrained; i++){
484 mmeineke 558 a = constrainedA[i];
485     b = constrainedB[i];
486 mmeineke 563
487 tim 725 ax = (a * 3) + 0;
488     ay = (a * 3) + 1;
489     az = (a * 3) + 2;
490 mmeineke 563
491 tim 725 bx = (b * 3) + 0;
492     by = (b * 3) + 1;
493     bz = (b * 3) + 2;
494    
495     if (moved[a] || moved[b]){
496     atoms[a]->getPos(posA);
497     atoms[b]->getPos(posB);
498    
499     for (j = 0; j < 3; j++)
500 gezelter 600 pab[j] = posA[j] - posB[j];
501 mmeineke 567
502 tim 725 //periodic boundary condition
503 mmeineke 567
504 tim 725 info->wrapVector(pab);
505 mmeineke 572
506 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
507 mmeineke 558
508 tim 725 rabsq = constrainedDsqr[i];
509     diffsq = rabsq - pabsq;
510 mmeineke 567
511 tim 725 // the original rattle code from alan tidesley
512     if (fabs(diffsq) > (tol * rabsq * 2)){
513     rab[0] = oldPos[ax] - oldPos[bx];
514     rab[1] = oldPos[ay] - oldPos[by];
515     rab[2] = oldPos[az] - oldPos[bz];
516 mmeineke 558
517 tim 725 info->wrapVector(rab);
518 mmeineke 567
519 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
520 mmeineke 558
521 tim 725 rpabsq = rpab * rpab;
522 mmeineke 558
523 mmeineke 563
524 tim 725 if (rpabsq < (rabsq * -diffsq)){
525 mmeineke 558 #ifdef IS_MPI
526 tim 725 a = atoms[a]->getGlobalIndex();
527     b = atoms[b]->getGlobalIndex();
528 mmeineke 558 #endif //is_mpi
529 tim 725 sprintf(painCave.errMsg,
530     "Constraint failure in constrainA at atom %d and %d.\n", a,
531     b);
532     painCave.isFatal = 1;
533     simError();
534     }
535 mmeineke 558
536 tim 725 rma = 1.0 / atoms[a]->getMass();
537     rmb = 1.0 / atoms[b]->getMass();
538 mmeineke 567
539 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
540 mmeineke 567
541 mmeineke 572 dx = rab[0] * gab;
542     dy = rab[1] * gab;
543     dz = rab[2] * gab;
544 mmeineke 558
545 tim 725 posA[0] += rma * dx;
546     posA[1] += rma * dy;
547     posA[2] += rma * dz;
548 mmeineke 558
549 tim 725 atoms[a]->setPos(posA);
550 mmeineke 558
551 tim 725 posB[0] -= rmb * dx;
552     posB[1] -= rmb * dy;
553     posB[2] -= rmb * dz;
554 gezelter 600
555 tim 725 atoms[b]->setPos(posB);
556 gezelter 600
557 mmeineke 558 dx = dx / dt;
558     dy = dy / dt;
559     dz = dz / dt;
560    
561 tim 725 atoms[a]->getVel(velA);
562 mmeineke 558
563 tim 725 velA[0] += rma * dx;
564     velA[1] += rma * dy;
565     velA[2] += rma * dz;
566 mmeineke 558
567 tim 725 atoms[a]->setVel(velA);
568 gezelter 600
569 tim 725 atoms[b]->getVel(velB);
570 gezelter 600
571 tim 725 velB[0] -= rmb * dx;
572     velB[1] -= rmb * dy;
573     velB[2] -= rmb * dz;
574 gezelter 600
575 tim 725 atoms[b]->setVel(velB);
576 gezelter 600
577 tim 725 moving[a] = 1;
578     moving[b] = 1;
579     done = 0;
580     }
581 mmeineke 558 }
582     }
583 tim 725
584     for (i = 0; i < nAtoms; i++){
585 mmeineke 558 moved[i] = moving[i];
586     moving[i] = 0;
587     }
588    
589     iteration++;
590     }
591    
592 tim 725 if (!done){
593     sprintf(painCave.errMsg,
594     "Constraint failure in constrainA, too many iterations: %d\n",
595     iteration);
596 mmeineke 558 painCave.isFatal = 1;
597     simError();
598     }
599 mmeineke 768
600 mmeineke 558 }
601    
602 tim 725 template<typename T> void Integrator<T>::constrainB(void){
603 mmeineke 787 int i, j;
604 mmeineke 558 int done;
605 gezelter 600 double posA[3], posB[3];
606     double velA[3], velB[3];
607 mmeineke 558 double vxab, vyab, vzab;
608 mmeineke 572 double rab[3];
609 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
610 mmeineke 558 double rma, rmb;
611     double dx, dy, dz;
612 mmeineke 787 double rvab;
613 mmeineke 558 double gab;
614     int iteration;
615    
616 tim 725 for (i = 0; i < nAtoms; i++){
617 mmeineke 558 moving[i] = 0;
618     moved[i] = 1;
619     }
620    
621     done = 0;
622 mmeineke 561 iteration = 0;
623 tim 725 while (!done && (iteration < maxIteration)){
624 mmeineke 567 done = 1;
625    
626 tim 725 for (i = 0; i < nConstrained; i++){
627 mmeineke 558 a = constrainedA[i];
628     b = constrainedB[i];
629    
630 tim 725 ax = (a * 3) + 0;
631     ay = (a * 3) + 1;
632     az = (a * 3) + 2;
633 mmeineke 563
634 tim 725 bx = (b * 3) + 0;
635     by = (b * 3) + 1;
636     bz = (b * 3) + 2;
637 mmeineke 563
638 tim 725 if (moved[a] || moved[b]){
639     atoms[a]->getVel(velA);
640     atoms[b]->getVel(velB);
641 mmeineke 558
642 tim 725 vxab = velA[0] - velB[0];
643     vyab = velA[1] - velB[1];
644     vzab = velA[2] - velB[2];
645 gezelter 600
646 tim 725 atoms[a]->getPos(posA);
647     atoms[b]->getPos(posB);
648 gezelter 600
649 tim 725 for (j = 0; j < 3; j++)
650 gezelter 600 rab[j] = posA[j] - posB[j];
651 mmeineke 558
652 tim 725 info->wrapVector(rab);
653 mmeineke 558
654 tim 725 rma = 1.0 / atoms[a]->getMass();
655     rmb = 1.0 / atoms[b]->getMass();
656 mmeineke 558
657 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
658 gezelter 600
659 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
660 gezelter 600
661 tim 725 if (fabs(gab) > tol){
662     dx = rab[0] * gab;
663     dy = rab[1] * gab;
664     dz = rab[2] * gab;
665    
666     velA[0] += rma * dx;
667     velA[1] += rma * dy;
668     velA[2] += rma * dz;
669    
670     atoms[a]->setVel(velA);
671    
672     velB[0] -= rmb * dx;
673     velB[1] -= rmb * dy;
674     velB[2] -= rmb * dz;
675    
676     atoms[b]->setVel(velB);
677    
678     moving[a] = 1;
679     moving[b] = 1;
680     done = 0;
681     }
682 mmeineke 558 }
683     }
684    
685 tim 725 for (i = 0; i < nAtoms; i++){
686 mmeineke 558 moved[i] = moving[i];
687     moving[i] = 0;
688     }
689 tim 725
690 mmeineke 558 iteration++;
691     }
692    
693 tim 725 if (!done){
694     sprintf(painCave.errMsg,
695     "Constraint failure in constrainB, too many iterations: %d\n",
696     iteration);
697 mmeineke 558 painCave.isFatal = 1;
698     simError();
699 tim 725 }
700 mmeineke 558 }
701    
702 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
703 gezelter 1097 ( StuntDouble* sd, double ji[3] ){
704 mmeineke 778
705     double angle;
706     double A[3][3], I[3][3];
707 tim 1118 int i, j, k;
708 mmeineke 778
709     // use the angular velocities to propagate the rotation matrix a
710     // full time step
711    
712 gezelter 1097 sd->getA(A);
713     sd->getI(I);
714 tim 837
715 tim 1118 if (sd->isLinear()) {
716     i = sd->linearAxis();
717     j = (i+1)%3;
718     k = (i+2)%3;
719    
720     angle = dt2 * ji[j] / I[j][j];
721     this->rotate( k, i, angle, ji, A );
722    
723     angle = dt * ji[k] / I[k][k];
724     this->rotate( i, j, angle, ji, A);
725    
726     angle = dt2 * ji[j] / I[j][j];
727     this->rotate( k, i, angle, ji, A );
728    
729     } else {
730 gezelter 1125 // rotate about the x-axis
731     angle = dt2 * ji[0] / I[0][0];
732     this->rotate( 1, 2, angle, ji, A );
733    
734     // rotate about the y-axis
735     angle = dt2 * ji[1] / I[1][1];
736     this->rotate( 2, 0, angle, ji, A );
737    
738     // rotate about the z-axis
739     angle = dt * ji[2] / I[2][2];
740 chrisfen 1187 sd->addZangle(angle);
741 gezelter 1125 this->rotate( 0, 1, angle, ji, A);
742    
743     // rotate about the y-axis
744     angle = dt2 * ji[1] / I[1][1];
745     this->rotate( 2, 0, angle, ji, A );
746    
747     // rotate about the x-axis
748     angle = dt2 * ji[0] / I[0][0];
749     this->rotate( 1, 2, angle, ji, A );
750    
751 tim 1118 }
752 gezelter 1097 sd->setA( A );
753 mmeineke 778 }
754    
755 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
756     double angle, double ji[3],
757     double A[3][3]){
758     int i, j, k;
759 mmeineke 558 double sinAngle;
760     double cosAngle;
761     double angleSqr;
762     double angleSqrOver4;
763     double top, bottom;
764     double rot[3][3];
765     double tempA[3][3];
766     double tempJ[3];
767    
768     // initialize the tempA
769    
770 tim 725 for (i = 0; i < 3; i++){
771     for (j = 0; j < 3; j++){
772 gezelter 600 tempA[j][i] = A[i][j];
773 mmeineke 558 }
774     }
775    
776     // initialize the tempJ
777    
778 tim 725 for (i = 0; i < 3; i++)
779     tempJ[i] = ji[i];
780    
781 mmeineke 558 // initalize rot as a unit matrix
782    
783     rot[0][0] = 1.0;
784     rot[0][1] = 0.0;
785     rot[0][2] = 0.0;
786    
787     rot[1][0] = 0.0;
788     rot[1][1] = 1.0;
789     rot[1][2] = 0.0;
790 tim 725
791 mmeineke 558 rot[2][0] = 0.0;
792     rot[2][1] = 0.0;
793     rot[2][2] = 1.0;
794 tim 725
795 mmeineke 558 // use a small angle aproximation for sin and cosine
796    
797 tim 725 angleSqr = angle * angle;
798 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
799     top = 1.0 - angleSqrOver4;
800     bottom = 1.0 + angleSqrOver4;
801    
802     cosAngle = top / bottom;
803     sinAngle = angle / bottom;
804    
805     rot[axes1][axes1] = cosAngle;
806     rot[axes2][axes2] = cosAngle;
807    
808     rot[axes1][axes2] = sinAngle;
809     rot[axes2][axes1] = -sinAngle;
810 tim 725
811 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
812 tim 725
813     for (i = 0; i < 3; i++){
814 mmeineke 558 ji[i] = 0.0;
815 tim 725 for (k = 0; k < 3; k++){
816 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
817     }
818     }
819    
820 tim 837 // rotate the Rotation matrix acording to:
821 mmeineke 558 // A[][] = A[][] * transpose(rot[][])
822    
823    
824 mmeineke 561 // NOte for as yet unknown reason, we are performing the
825 mmeineke 558 // calculation as:
826     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
827    
828 tim 725 for (i = 0; i < 3; i++){
829     for (j = 0; j < 3; j++){
830 gezelter 600 A[j][i] = 0.0;
831 tim 725 for (k = 0; k < 3; k++){
832     A[j][i] += tempA[i][k] * rot[j][k];
833 mmeineke 558 }
834     }
835     }
836     }
837 tim 677
838 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
839     myFF->doForces(calcPot, calcStress);
840 tim 677 }
841    
842     template<typename T> void Integrator<T>::thermalize(){
843 tim 725 tStats->velocitize();
844 tim 677 }
845 tim 763
846     template<typename T> double Integrator<T>::getConservedQuantity(void){
847     return tStats->getTotalE();
848 mmeineke 768 }
849 tim 837 template<typename T> string Integrator<T>::getAdditionalParameters(void){
850     //By default, return a null string
851     //The reason we use string instead of char* is that if we use char*, we will
852     //return a pointer point to local variable which might cause problem
853     return string();
854     }