ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 1221
Committed: Wed Jun 2 14:56:18 2004 UTC (20 years, 3 months ago) by chrisfen
File size: 18536 byte(s)
Log Message:
Formatting Changes, removed writeRaw

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2 gezelter 829 #include <stdlib.h>
3     #include <math.h>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10 chuckv 892 #ifdef PROFILE
11     #include "mdProfile.hpp"
12     #endif // profile
13    
14 mmeineke 558 #include "Integrator.hpp"
15     #include "simError.h"
16    
17    
18 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19     ForceFields* the_ff){
20 mmeineke 558 info = theInfo;
21     myFF = the_ff;
22     isFirst = 1;
23    
24     molecules = info->molecules;
25     nMols = info->n_mol;
26    
27     // give a little love back to the SimInfo object
28 tim 725
29     if (info->the_integrator != NULL){
30     delete info->the_integrator;
31     }
32 tim 837
33 mmeineke 558 nAtoms = info->n_atoms;
34 gezelter 1097 integrableObjects = info->integrableObjects;
35 chrisfen 1180
36 mmeineke 558 // check for constraints
37 tim 725
38     constrainedA = NULL;
39     constrainedB = NULL;
40 mmeineke 558 constrainedDsqr = NULL;
41 tim 725 moving = NULL;
42     moved = NULL;
43     oldPos = NULL;
44    
45 mmeineke 558 nConstrained = 0;
46    
47     checkConstraints();
48 chrisfen 1180
49 mmeineke 558 }
50    
51 tim 725 template<typename T> Integrator<T>::~Integrator(){
52     if (nConstrained){
53 mmeineke 558 delete[] constrainedA;
54     delete[] constrainedB;
55     delete[] constrainedDsqr;
56     delete[] moving;
57     delete[] moved;
58 mmeineke 561 delete[] oldPos;
59 mmeineke 558 }
60     }
61    
62 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
63 mmeineke 558 isConstrained = 0;
64    
65 tim 725 Constraint* temp_con;
66     Constraint* dummy_plug;
67 mmeineke 558 temp_con = new Constraint[info->n_SRI];
68     nConstrained = 0;
69     int constrained = 0;
70 tim 725
71 mmeineke 558 SRI** theArray;
72 tim 725 for (int i = 0; i < nMols; i++){
73 tim 1057
74     theArray = (SRI * *) molecules[i].getMyBonds();
75 tim 725 for (int j = 0; j < molecules[i].getNBonds(); j++){
76 mmeineke 558 constrained = theArray[j]->is_constrained();
77 mmeineke 594
78 tim 725 if (constrained){
79     dummy_plug = theArray[j]->get_constraint();
80     temp_con[nConstrained].set_a(dummy_plug->get_a());
81     temp_con[nConstrained].set_b(dummy_plug->get_b());
82     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
83 mmeineke 594
84 tim 725 nConstrained++;
85     constrained = 0;
86     }
87 mmeineke 558 }
88    
89 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
90     for (int j = 0; j < molecules[i].getNBends(); j++){
91 mmeineke 558 constrained = theArray[j]->is_constrained();
92 tim 725
93     if (constrained){
94     dummy_plug = theArray[j]->get_constraint();
95     temp_con[nConstrained].set_a(dummy_plug->get_a());
96     temp_con[nConstrained].set_b(dummy_plug->get_b());
97     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
98    
99     nConstrained++;
100     constrained = 0;
101 mmeineke 558 }
102     }
103    
104 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
105     for (int j = 0; j < molecules[i].getNTorsions(); j++){
106 mmeineke 558 constrained = theArray[j]->is_constrained();
107 tim 725
108     if (constrained){
109     dummy_plug = theArray[j]->get_constraint();
110     temp_con[nConstrained].set_a(dummy_plug->get_a());
111     temp_con[nConstrained].set_b(dummy_plug->get_b());
112     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
113    
114     nConstrained++;
115     constrained = 0;
116 mmeineke 558 }
117     }
118     }
119    
120 tim 1057
121 tim 725 if (nConstrained > 0){
122 mmeineke 558 isConstrained = 1;
123    
124 tim 725 if (constrainedA != NULL)
125     delete[] constrainedA;
126     if (constrainedB != NULL)
127     delete[] constrainedB;
128     if (constrainedDsqr != NULL)
129     delete[] constrainedDsqr;
130 mmeineke 558
131 tim 725 constrainedA = new int[nConstrained];
132     constrainedB = new int[nConstrained];
133 mmeineke 558 constrainedDsqr = new double[nConstrained];
134 tim 725
135     for (int i = 0; i < nConstrained; i++){
136 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
137     constrainedB[i] = temp_con[i].get_b();
138     constrainedDsqr[i] = temp_con[i].get_dsqr();
139     }
140    
141 tim 725
142 chrisfen 999 // save oldAtoms to check for lode balancing later on.
143 tim 725
144 mmeineke 558 oldAtoms = nAtoms;
145 tim 725
146 mmeineke 558 moving = new int[nAtoms];
147 tim 725 moved = new int[nAtoms];
148 mmeineke 558
149 tim 725 oldPos = new double[nAtoms * 3];
150 mmeineke 558 }
151 tim 725
152 mmeineke 558 delete[] temp_con;
153     }
154    
155    
156 tim 725 template<typename T> void Integrator<T>::integrate(void){
157 mmeineke 558
158 tim 725 double runTime = info->run_time;
159     double sampleTime = info->sampleTime;
160     double statusTime = info->statusTime;
161 mmeineke 558 double thermalTime = info->thermalTime;
162 mmeineke 746 double resetTime = info->resetTime;
163 mmeineke 558
164 gezelter 1178 double difference;
165 mmeineke 558 double currSample;
166     double currThermal;
167     double currStatus;
168 mmeineke 746 double currReset;
169 tim 837
170 mmeineke 558 int calcPot, calcStress;
171    
172 tim 725 tStats = new Thermo(info);
173     statOut = new StatWriter(info);
174     dumpOut = new DumpWriter(info);
175 mmeineke 558
176 mmeineke 561 atoms = info->atoms;
177    
178     dt = info->dt;
179 mmeineke 558 dt2 = 0.5 * dt;
180    
181 mmeineke 784 readyCheck();
182    
183 tim 1127 // remove center of mass drift velocity (in case we passed in a configuration
184     // that was drifting
185     tStats->removeCOMdrift();
186    
187 chrisfen 1180 // initialize the retraints if necessary
188 chrisfen 1212 if (info->useSolidThermInt && !info->useLiquidThermInt) {
189 chrisfen 1180 myFF->initRestraints();
190     }
191    
192 mmeineke 558 // initialize the forces before the first step
193    
194 tim 677 calcForce(1, 1);
195 tim 1035
196 tim 781 if (nConstrained){
197     preMove();
198     constrainA();
199 tim 837 calcForce(1, 1);
200 tim 781 constrainB();
201     }
202 mmeineke 843
203 tim 725 if (info->setTemp){
204 tim 677 thermalize();
205 mmeineke 558 }
206 tim 725
207 mmeineke 558 calcPot = 0;
208     calcStress = 0;
209 mmeineke 711 currSample = sampleTime + info->getTime();
210     currThermal = thermalTime+ info->getTime();
211     currStatus = statusTime + info->getTime();
212 mmeineke 746 currReset = resetTime + info->getTime();
213 mmeineke 558
214 tim 725 dumpOut->writeDump(info->getTime());
215     statOut->writeStat(info->getTime());
216 mmeineke 559
217    
218     #ifdef IS_MPI
219 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
220 mmeineke 559 MPIcheckPoint();
221     #endif // is_mpi
222    
223 tim 1113 while (info->getTime() < runTime && !stopIntegrator()){
224 gezelter 1178 difference = info->getTime() + dt - currStatus;
225     if (difference > 0 || fabs(difference) < 1e-4 ){
226 mmeineke 558 calcPot = 1;
227     calcStress = 1;
228     }
229 mmeineke 561
230 chuckv 892 #ifdef PROFILE
231     startProfile( pro1 );
232     #endif
233    
234 tim 725 integrateStep(calcPot, calcStress);
235    
236 chuckv 892 #ifdef PROFILE
237     endProfile( pro1 );
238    
239     startProfile( pro2 );
240     #endif // profile
241    
242 mmeineke 643 info->incrTime(dt);
243 mmeineke 558
244 tim 725 if (info->setTemp){
245     if (info->getTime() >= currThermal){
246     thermalize();
247     currThermal += thermalTime;
248 mmeineke 558 }
249     }
250    
251 tim 725 if (info->getTime() >= currSample){
252     dumpOut->writeDump(info->getTime());
253 mmeineke 558 currSample += sampleTime;
254     }
255    
256 tim 725 if (info->getTime() >= currStatus){
257 tim 837 statOut->writeStat(info->getTime());
258     calcPot = 0;
259 mmeineke 558 calcStress = 0;
260     currStatus += statusTime;
261 tim 837 }
262 mmeineke 559
263 mmeineke 746 if (info->resetIntegrator){
264     if (info->getTime() >= currReset){
265     this->resetIntegrator();
266     currReset += resetTime;
267     }
268     }
269 chuckv 892
270     #ifdef PROFILE
271     endProfile( pro2 );
272     #endif //profile
273 mmeineke 746
274 mmeineke 559 #ifdef IS_MPI
275 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
276 mmeineke 559 MPIcheckPoint();
277     #endif // is_mpi
278 mmeineke 558 }
279    
280 chrisfen 1180 // dump out a file containing the omega values for the final configuration
281 chrisfen 1212 if (info->useSolidThermInt && !info->useLiquidThermInt)
282 chrisfen 1180 myFF->dumpzAngle();
283    
284    
285 mmeineke 561 delete dumpOut;
286     delete statOut;
287 mmeineke 558 }
288    
289 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
290     int calcStress){
291 mmeineke 558 // Position full step, and velocity half step
292 chuckv 892
293     #ifdef PROFILE
294     startProfile(pro3);
295     #endif //profile
296    
297 tim 725 preMove();
298 mmeineke 558
299 chuckv 892 #ifdef PROFILE
300     endProfile(pro3);
301    
302     startProfile(pro4);
303     #endif // profile
304    
305 mmeineke 558 moveA();
306    
307 chuckv 892 #ifdef PROFILE
308     endProfile(pro4);
309    
310     startProfile(pro5);
311     #endif//profile
312 tim 725
313    
314 mmeineke 614 #ifdef IS_MPI
315 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
316 mmeineke 614 MPIcheckPoint();
317     #endif // is_mpi
318    
319 mmeineke 558 // calc forces
320 tim 725 calcForce(calcPot, calcStress);
321 mmeineke 558
322 mmeineke 614 #ifdef IS_MPI
323 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
324 mmeineke 614 MPIcheckPoint();
325     #endif // is_mpi
326    
327 chuckv 892 #ifdef PROFILE
328     endProfile( pro5 );
329 tim 725
330 chuckv 892 startProfile( pro6 );
331     #endif //profile
332    
333 mmeineke 558 // finish the velocity half step
334 tim 725
335 mmeineke 558 moveB();
336 tim 725
337 chuckv 892 #ifdef PROFILE
338     endProfile(pro6);
339     #endif // profile
340 tim 725
341 mmeineke 614 #ifdef IS_MPI
342 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
343 mmeineke 614 MPIcheckPoint();
344     #endif // is_mpi
345 mmeineke 558 }
346    
347    
348 tim 725 template<typename T> void Integrator<T>::moveA(void){
349 gezelter 1097 size_t i, j;
350 mmeineke 558 DirectionalAtom* dAtom;
351 gezelter 600 double Tb[3], ji[3];
352     double vel[3], pos[3], frc[3];
353     double mass;
354 chrisfen 1187 double omega;
355 gezelter 1097
356     for (i = 0; i < integrableObjects.size() ; i++){
357     integrableObjects[i]->getVel(vel);
358     integrableObjects[i]->getPos(pos);
359     integrableObjects[i]->getFrc(frc);
360    
361     mass = integrableObjects[i]->getMass();
362 mmeineke 558
363 tim 725 for (j = 0; j < 3; j++){
364 gezelter 600 // velocity half step
365 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
366 gezelter 600 // position whole step
367     pos[j] += dt * vel[j];
368     }
369 mmeineke 594
370 gezelter 1097 integrableObjects[i]->setVel(vel);
371     integrableObjects[i]->setPos(pos);
372 gezelter 600
373 gezelter 1097 if (integrableObjects[i]->isDirectional()){
374 mmeineke 558
375     // get and convert the torque to body frame
376 mmeineke 597
377 gezelter 1097 integrableObjects[i]->getTrq(Tb);
378     integrableObjects[i]->lab2Body(Tb);
379 tim 725
380 mmeineke 558 // get the angular momentum, and propagate a half step
381 gezelter 600
382 gezelter 1097 integrableObjects[i]->getJ(ji);
383 gezelter 600
384 tim 725 for (j = 0; j < 3; j++)
385 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
386 tim 725
387 gezelter 1097 this->rotationPropagation( integrableObjects[i], ji );
388 gezelter 600
389 gezelter 1097 integrableObjects[i]->setJ(ji);
390 tim 725 }
391 mmeineke 558 }
392 mmeineke 768
393     if (nConstrained){
394     constrainA();
395     }
396 mmeineke 558 }
397    
398    
399 tim 725 template<typename T> void Integrator<T>::moveB(void){
400 gezelter 600 int i, j;
401     double Tb[3], ji[3];
402     double vel[3], frc[3];
403     double mass;
404 mmeineke 558
405 gezelter 1097 for (i = 0; i < integrableObjects.size(); i++){
406     integrableObjects[i]->getVel(vel);
407     integrableObjects[i]->getFrc(frc);
408 mmeineke 558
409 gezelter 1097 mass = integrableObjects[i]->getMass();
410 gezelter 600
411 mmeineke 558 // velocity half step
412 tim 725 for (j = 0; j < 3; j++)
413     vel[j] += (dt2 * frc[j] / mass) * eConvert;
414 gezelter 600
415 gezelter 1097 integrableObjects[i]->setVel(vel);
416 mmeineke 597
417 gezelter 1097 if (integrableObjects[i]->isDirectional()){
418 tim 725
419 tim 837 // get and convert the torque to body frame
420 gezelter 600
421 gezelter 1097 integrableObjects[i]->getTrq(Tb);
422     integrableObjects[i]->lab2Body(Tb);
423 gezelter 600
424     // get the angular momentum, and propagate a half step
425    
426 gezelter 1097 integrableObjects[i]->getJ(ji);
427 gezelter 600
428 tim 725 for (j = 0; j < 3; j++)
429 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
430 mmeineke 597
431 tim 725
432 gezelter 1097 integrableObjects[i]->setJ(ji);
433 mmeineke 558 }
434     }
435 mmeineke 768
436     if (nConstrained){
437     constrainB();
438     }
439 mmeineke 558 }
440    
441 tim 725 template<typename T> void Integrator<T>::preMove(void){
442 gezelter 600 int i, j;
443     double pos[3];
444 mmeineke 558
445 tim 725 if (nConstrained){
446     for (i = 0; i < nAtoms; i++){
447     atoms[i]->getPos(pos);
448 mmeineke 561
449 tim 725 for (j = 0; j < 3; j++){
450     oldPos[3 * i + j] = pos[j];
451 gezelter 600 }
452     }
453 tim 725 }
454 gezelter 600 }
455    
456 tim 645 template<typename T> void Integrator<T>::constrainA(){
457 mmeineke 787 int i, j;
458 mmeineke 558 int done;
459 gezelter 600 double posA[3], posB[3];
460     double velA[3], velB[3];
461 mmeineke 572 double pab[3];
462     double rab[3];
463 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
464 mmeineke 558 double rma, rmb;
465     double dx, dy, dz;
466 mmeineke 561 double rpab;
467 mmeineke 558 double rabsq, pabsq, rpabsq;
468     double diffsq;
469     double gab;
470     int iteration;
471    
472 tim 725 for (i = 0; i < nAtoms; i++){
473 mmeineke 558 moving[i] = 0;
474 tim 725 moved[i] = 1;
475 mmeineke 558 }
476 mmeineke 567
477 mmeineke 558 iteration = 0;
478     done = 0;
479 tim 725 while (!done && (iteration < maxIteration)){
480 mmeineke 558 done = 1;
481 tim 725 for (i = 0; i < nConstrained; i++){
482 mmeineke 558 a = constrainedA[i];
483     b = constrainedB[i];
484 mmeineke 563
485 tim 725 ax = (a * 3) + 0;
486     ay = (a * 3) + 1;
487     az = (a * 3) + 2;
488 mmeineke 563
489 tim 725 bx = (b * 3) + 0;
490     by = (b * 3) + 1;
491     bz = (b * 3) + 2;
492    
493     if (moved[a] || moved[b]){
494     atoms[a]->getPos(posA);
495     atoms[b]->getPos(posB);
496    
497     for (j = 0; j < 3; j++)
498 gezelter 600 pab[j] = posA[j] - posB[j];
499 mmeineke 567
500 tim 725 //periodic boundary condition
501 mmeineke 567
502 tim 725 info->wrapVector(pab);
503 mmeineke 572
504 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
505 mmeineke 558
506 tim 725 rabsq = constrainedDsqr[i];
507     diffsq = rabsq - pabsq;
508 mmeineke 567
509 tim 725 // the original rattle code from alan tidesley
510     if (fabs(diffsq) > (tol * rabsq * 2)){
511     rab[0] = oldPos[ax] - oldPos[bx];
512     rab[1] = oldPos[ay] - oldPos[by];
513     rab[2] = oldPos[az] - oldPos[bz];
514 mmeineke 558
515 tim 725 info->wrapVector(rab);
516 mmeineke 567
517 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
518 mmeineke 558
519 tim 725 rpabsq = rpab * rpab;
520 mmeineke 558
521 mmeineke 563
522 tim 725 if (rpabsq < (rabsq * -diffsq)){
523 mmeineke 558 #ifdef IS_MPI
524 tim 725 a = atoms[a]->getGlobalIndex();
525     b = atoms[b]->getGlobalIndex();
526 mmeineke 558 #endif //is_mpi
527 tim 725 sprintf(painCave.errMsg,
528     "Constraint failure in constrainA at atom %d and %d.\n", a,
529     b);
530     painCave.isFatal = 1;
531     simError();
532     }
533 mmeineke 558
534 tim 725 rma = 1.0 / atoms[a]->getMass();
535     rmb = 1.0 / atoms[b]->getMass();
536 mmeineke 567
537 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
538 mmeineke 567
539 mmeineke 572 dx = rab[0] * gab;
540     dy = rab[1] * gab;
541     dz = rab[2] * gab;
542 mmeineke 558
543 tim 725 posA[0] += rma * dx;
544     posA[1] += rma * dy;
545     posA[2] += rma * dz;
546 mmeineke 558
547 tim 725 atoms[a]->setPos(posA);
548 mmeineke 558
549 tim 725 posB[0] -= rmb * dx;
550     posB[1] -= rmb * dy;
551     posB[2] -= rmb * dz;
552 gezelter 600
553 tim 725 atoms[b]->setPos(posB);
554 gezelter 600
555 mmeineke 558 dx = dx / dt;
556     dy = dy / dt;
557     dz = dz / dt;
558    
559 tim 725 atoms[a]->getVel(velA);
560 mmeineke 558
561 tim 725 velA[0] += rma * dx;
562     velA[1] += rma * dy;
563     velA[2] += rma * dz;
564 mmeineke 558
565 tim 725 atoms[a]->setVel(velA);
566 gezelter 600
567 tim 725 atoms[b]->getVel(velB);
568 gezelter 600
569 tim 725 velB[0] -= rmb * dx;
570     velB[1] -= rmb * dy;
571     velB[2] -= rmb * dz;
572 gezelter 600
573 tim 725 atoms[b]->setVel(velB);
574 gezelter 600
575 tim 725 moving[a] = 1;
576     moving[b] = 1;
577     done = 0;
578     }
579 mmeineke 558 }
580     }
581 tim 725
582     for (i = 0; i < nAtoms; i++){
583 mmeineke 558 moved[i] = moving[i];
584     moving[i] = 0;
585     }
586    
587     iteration++;
588     }
589    
590 tim 725 if (!done){
591     sprintf(painCave.errMsg,
592     "Constraint failure in constrainA, too many iterations: %d\n",
593     iteration);
594 mmeineke 558 painCave.isFatal = 1;
595     simError();
596     }
597 mmeineke 768
598 mmeineke 558 }
599    
600 tim 725 template<typename T> void Integrator<T>::constrainB(void){
601 mmeineke 787 int i, j;
602 mmeineke 558 int done;
603 gezelter 600 double posA[3], posB[3];
604     double velA[3], velB[3];
605 mmeineke 558 double vxab, vyab, vzab;
606 mmeineke 572 double rab[3];
607 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
608 mmeineke 558 double rma, rmb;
609     double dx, dy, dz;
610 mmeineke 787 double rvab;
611 mmeineke 558 double gab;
612     int iteration;
613    
614 tim 725 for (i = 0; i < nAtoms; i++){
615 mmeineke 558 moving[i] = 0;
616     moved[i] = 1;
617     }
618    
619     done = 0;
620 mmeineke 561 iteration = 0;
621 tim 725 while (!done && (iteration < maxIteration)){
622 mmeineke 567 done = 1;
623    
624 tim 725 for (i = 0; i < nConstrained; i++){
625 mmeineke 558 a = constrainedA[i];
626     b = constrainedB[i];
627    
628 tim 725 ax = (a * 3) + 0;
629     ay = (a * 3) + 1;
630     az = (a * 3) + 2;
631 mmeineke 563
632 tim 725 bx = (b * 3) + 0;
633     by = (b * 3) + 1;
634     bz = (b * 3) + 2;
635 mmeineke 563
636 tim 725 if (moved[a] || moved[b]){
637     atoms[a]->getVel(velA);
638     atoms[b]->getVel(velB);
639 mmeineke 558
640 tim 725 vxab = velA[0] - velB[0];
641     vyab = velA[1] - velB[1];
642     vzab = velA[2] - velB[2];
643 gezelter 600
644 tim 725 atoms[a]->getPos(posA);
645     atoms[b]->getPos(posB);
646 gezelter 600
647 tim 725 for (j = 0; j < 3; j++)
648 gezelter 600 rab[j] = posA[j] - posB[j];
649 mmeineke 558
650 tim 725 info->wrapVector(rab);
651 mmeineke 558
652 tim 725 rma = 1.0 / atoms[a]->getMass();
653     rmb = 1.0 / atoms[b]->getMass();
654 mmeineke 558
655 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
656 gezelter 600
657 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
658 gezelter 600
659 tim 725 if (fabs(gab) > tol){
660     dx = rab[0] * gab;
661     dy = rab[1] * gab;
662     dz = rab[2] * gab;
663    
664     velA[0] += rma * dx;
665     velA[1] += rma * dy;
666     velA[2] += rma * dz;
667    
668     atoms[a]->setVel(velA);
669    
670     velB[0] -= rmb * dx;
671     velB[1] -= rmb * dy;
672     velB[2] -= rmb * dz;
673    
674     atoms[b]->setVel(velB);
675    
676     moving[a] = 1;
677     moving[b] = 1;
678     done = 0;
679     }
680 mmeineke 558 }
681     }
682    
683 tim 725 for (i = 0; i < nAtoms; i++){
684 mmeineke 558 moved[i] = moving[i];
685     moving[i] = 0;
686     }
687 tim 725
688 mmeineke 558 iteration++;
689     }
690    
691 tim 725 if (!done){
692     sprintf(painCave.errMsg,
693     "Constraint failure in constrainB, too many iterations: %d\n",
694     iteration);
695 mmeineke 558 painCave.isFatal = 1;
696     simError();
697 tim 725 }
698 mmeineke 558 }
699    
700 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
701 gezelter 1097 ( StuntDouble* sd, double ji[3] ){
702 mmeineke 778
703     double angle;
704     double A[3][3], I[3][3];
705 tim 1118 int i, j, k;
706 mmeineke 778
707     // use the angular velocities to propagate the rotation matrix a
708     // full time step
709    
710 gezelter 1097 sd->getA(A);
711     sd->getI(I);
712 tim 837
713 tim 1118 if (sd->isLinear()) {
714     i = sd->linearAxis();
715     j = (i+1)%3;
716     k = (i+2)%3;
717    
718     angle = dt2 * ji[j] / I[j][j];
719     this->rotate( k, i, angle, ji, A );
720    
721     angle = dt * ji[k] / I[k][k];
722     this->rotate( i, j, angle, ji, A);
723    
724     angle = dt2 * ji[j] / I[j][j];
725     this->rotate( k, i, angle, ji, A );
726    
727     } else {
728 gezelter 1125 // rotate about the x-axis
729     angle = dt2 * ji[0] / I[0][0];
730     this->rotate( 1, 2, angle, ji, A );
731    
732     // rotate about the y-axis
733     angle = dt2 * ji[1] / I[1][1];
734     this->rotate( 2, 0, angle, ji, A );
735    
736     // rotate about the z-axis
737     angle = dt * ji[2] / I[2][2];
738 chrisfen 1187 sd->addZangle(angle);
739 gezelter 1125 this->rotate( 0, 1, angle, ji, A);
740    
741     // rotate about the y-axis
742     angle = dt2 * ji[1] / I[1][1];
743     this->rotate( 2, 0, angle, ji, A );
744    
745     // rotate about the x-axis
746     angle = dt2 * ji[0] / I[0][0];
747     this->rotate( 1, 2, angle, ji, A );
748    
749 tim 1118 }
750 gezelter 1097 sd->setA( A );
751 mmeineke 778 }
752    
753 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
754     double angle, double ji[3],
755     double A[3][3]){
756     int i, j, k;
757 mmeineke 558 double sinAngle;
758     double cosAngle;
759     double angleSqr;
760     double angleSqrOver4;
761     double top, bottom;
762     double rot[3][3];
763     double tempA[3][3];
764     double tempJ[3];
765    
766     // initialize the tempA
767    
768 tim 725 for (i = 0; i < 3; i++){
769     for (j = 0; j < 3; j++){
770 gezelter 600 tempA[j][i] = A[i][j];
771 mmeineke 558 }
772     }
773    
774     // initialize the tempJ
775    
776 tim 725 for (i = 0; i < 3; i++)
777     tempJ[i] = ji[i];
778    
779 mmeineke 558 // initalize rot as a unit matrix
780    
781     rot[0][0] = 1.0;
782     rot[0][1] = 0.0;
783     rot[0][2] = 0.0;
784    
785     rot[1][0] = 0.0;
786     rot[1][1] = 1.0;
787     rot[1][2] = 0.0;
788 tim 725
789 mmeineke 558 rot[2][0] = 0.0;
790     rot[2][1] = 0.0;
791     rot[2][2] = 1.0;
792 tim 725
793 mmeineke 558 // use a small angle aproximation for sin and cosine
794    
795 tim 725 angleSqr = angle * angle;
796 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
797     top = 1.0 - angleSqrOver4;
798     bottom = 1.0 + angleSqrOver4;
799    
800     cosAngle = top / bottom;
801     sinAngle = angle / bottom;
802    
803     rot[axes1][axes1] = cosAngle;
804     rot[axes2][axes2] = cosAngle;
805    
806     rot[axes1][axes2] = sinAngle;
807     rot[axes2][axes1] = -sinAngle;
808 tim 725
809 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
810 tim 725
811     for (i = 0; i < 3; i++){
812 mmeineke 558 ji[i] = 0.0;
813 tim 725 for (k = 0; k < 3; k++){
814 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
815     }
816     }
817    
818 tim 837 // rotate the Rotation matrix acording to:
819 mmeineke 558 // A[][] = A[][] * transpose(rot[][])
820    
821    
822 mmeineke 561 // NOte for as yet unknown reason, we are performing the
823 mmeineke 558 // calculation as:
824     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
825    
826 tim 725 for (i = 0; i < 3; i++){
827     for (j = 0; j < 3; j++){
828 gezelter 600 A[j][i] = 0.0;
829 tim 725 for (k = 0; k < 3; k++){
830     A[j][i] += tempA[i][k] * rot[j][k];
831 mmeineke 558 }
832     }
833     }
834     }
835 tim 677
836 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
837     myFF->doForces(calcPot, calcStress);
838 tim 677 }
839    
840     template<typename T> void Integrator<T>::thermalize(){
841 tim 725 tStats->velocitize();
842 tim 677 }
843 tim 763
844     template<typename T> double Integrator<T>::getConservedQuantity(void){
845     return tStats->getTotalE();
846 mmeineke 768 }
847 tim 837 template<typename T> string Integrator<T>::getAdditionalParameters(void){
848     //By default, return a null string
849     //The reason we use string instead of char* is that if we use char*, we will
850     //return a pointer point to local variable which might cause problem
851     return string();
852     }