ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 1234
Committed: Fri Jun 4 03:15:31 2004 UTC (20 years, 1 month ago) by tim
File size: 18956 byte(s)
Log Message:
new rattle algorithm is working

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2 gezelter 829 #include <stdlib.h>
3     #include <math.h>
4 tim 1234 #include "Rattle.hpp"
5 mmeineke 558 #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10 chuckv 892 #ifdef PROFILE
11     #include "mdProfile.hpp"
12     #endif // profile
13    
14 mmeineke 558 #include "Integrator.hpp"
15     #include "simError.h"
16    
17    
18 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19     ForceFields* the_ff){
20 mmeineke 558 info = theInfo;
21     myFF = the_ff;
22     isFirst = 1;
23    
24     molecules = info->molecules;
25     nMols = info->n_mol;
26    
27     // give a little love back to the SimInfo object
28 tim 725
29     if (info->the_integrator != NULL){
30     delete info->the_integrator;
31     }
32 tim 837
33 mmeineke 558 nAtoms = info->n_atoms;
34 gezelter 1097 integrableObjects = info->integrableObjects;
35 tim 1234
36     rattle = new RattleFramework(info);
37    
38     if(rattle == NULL){
39     sprintf(painCave.errMsg,
40     "Integrator::Intergrator() Error: Memory allocation error for RattleFramework" );
41     painCave.isFatal = 1;
42     simError();
43     }
44    
45     /*
46 mmeineke 558 // check for constraints
47 tim 725
48     constrainedA = NULL;
49     constrainedB = NULL;
50 mmeineke 558 constrainedDsqr = NULL;
51 tim 725 moving = NULL;
52     moved = NULL;
53     oldPos = NULL;
54    
55 mmeineke 558 nConstrained = 0;
56    
57     checkConstraints();
58 tim 1234 */
59 mmeineke 558 }
60    
61 tim 725 template<typename T> Integrator<T>::~Integrator(){
62 tim 1234 if (rattle != NULL)
63     delete rattle;
64     /*
65 tim 725 if (nConstrained){
66 mmeineke 558 delete[] constrainedA;
67     delete[] constrainedB;
68     delete[] constrainedDsqr;
69     delete[] moving;
70     delete[] moved;
71 mmeineke 561 delete[] oldPos;
72 mmeineke 558 }
73 tim 1234 */
74 mmeineke 558 }
75    
76 tim 1234 /*
77 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
78 mmeineke 558 isConstrained = 0;
79    
80 tim 725 Constraint* temp_con;
81     Constraint* dummy_plug;
82 mmeineke 558 temp_con = new Constraint[info->n_SRI];
83     nConstrained = 0;
84     int constrained = 0;
85 tim 725
86 mmeineke 558 SRI** theArray;
87 tim 725 for (int i = 0; i < nMols; i++){
88 tim 1057
89     theArray = (SRI * *) molecules[i].getMyBonds();
90 tim 725 for (int j = 0; j < molecules[i].getNBonds(); j++){
91 mmeineke 558 constrained = theArray[j]->is_constrained();
92 mmeineke 594
93 tim 725 if (constrained){
94     dummy_plug = theArray[j]->get_constraint();
95     temp_con[nConstrained].set_a(dummy_plug->get_a());
96     temp_con[nConstrained].set_b(dummy_plug->get_b());
97     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
98 mmeineke 594
99 tim 725 nConstrained++;
100     constrained = 0;
101     }
102 mmeineke 558 }
103    
104 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
105     for (int j = 0; j < molecules[i].getNBends(); j++){
106 mmeineke 558 constrained = theArray[j]->is_constrained();
107 tim 725
108     if (constrained){
109     dummy_plug = theArray[j]->get_constraint();
110     temp_con[nConstrained].set_a(dummy_plug->get_a());
111     temp_con[nConstrained].set_b(dummy_plug->get_b());
112     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
113    
114     nConstrained++;
115     constrained = 0;
116 mmeineke 558 }
117     }
118    
119 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
120     for (int j = 0; j < molecules[i].getNTorsions(); j++){
121 mmeineke 558 constrained = theArray[j]->is_constrained();
122 tim 725
123     if (constrained){
124     dummy_plug = theArray[j]->get_constraint();
125     temp_con[nConstrained].set_a(dummy_plug->get_a());
126     temp_con[nConstrained].set_b(dummy_plug->get_b());
127     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
128    
129     nConstrained++;
130     constrained = 0;
131 mmeineke 558 }
132     }
133     }
134    
135 tim 1057
136 tim 725 if (nConstrained > 0){
137 mmeineke 558 isConstrained = 1;
138    
139 tim 725 if (constrainedA != NULL)
140     delete[] constrainedA;
141     if (constrainedB != NULL)
142     delete[] constrainedB;
143     if (constrainedDsqr != NULL)
144     delete[] constrainedDsqr;
145 mmeineke 558
146 tim 725 constrainedA = new int[nConstrained];
147     constrainedB = new int[nConstrained];
148 mmeineke 558 constrainedDsqr = new double[nConstrained];
149 tim 725
150     for (int i = 0; i < nConstrained; i++){
151 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
152     constrainedB[i] = temp_con[i].get_b();
153     constrainedDsqr[i] = temp_con[i].get_dsqr();
154     }
155    
156 tim 725
157 chrisfen 999 // save oldAtoms to check for lode balancing later on.
158 tim 725
159 mmeineke 558 oldAtoms = nAtoms;
160 tim 725
161 mmeineke 558 moving = new int[nAtoms];
162 tim 725 moved = new int[nAtoms];
163 mmeineke 558
164 tim 725 oldPos = new double[nAtoms * 3];
165 mmeineke 558 }
166 tim 725
167 mmeineke 558 delete[] temp_con;
168     }
169 tim 1234 */
170 mmeineke 558
171 tim 725 template<typename T> void Integrator<T>::integrate(void){
172 mmeineke 558
173 tim 725 double runTime = info->run_time;
174     double sampleTime = info->sampleTime;
175     double statusTime = info->statusTime;
176 mmeineke 558 double thermalTime = info->thermalTime;
177 mmeineke 746 double resetTime = info->resetTime;
178 mmeineke 558
179 gezelter 1178 double difference;
180 mmeineke 558 double currSample;
181     double currThermal;
182     double currStatus;
183 mmeineke 746 double currReset;
184 tim 837
185 mmeineke 558 int calcPot, calcStress;
186    
187 tim 725 tStats = new Thermo(info);
188     statOut = new StatWriter(info);
189     dumpOut = new DumpWriter(info);
190 mmeineke 558
191 mmeineke 561 atoms = info->atoms;
192    
193     dt = info->dt;
194 mmeineke 558 dt2 = 0.5 * dt;
195    
196 mmeineke 784 readyCheck();
197    
198 tim 1127 // remove center of mass drift velocity (in case we passed in a configuration
199     // that was drifting
200     tStats->removeCOMdrift();
201    
202 chrisfen 1180 // initialize the retraints if necessary
203 chrisfen 1212 if (info->useSolidThermInt && !info->useLiquidThermInt) {
204 chrisfen 1180 myFF->initRestraints();
205     }
206    
207 mmeineke 558 // initialize the forces before the first step
208    
209 tim 677 calcForce(1, 1);
210 tim 1234
211     //execute constraint algorithm to make sure at the very beginning the system is constrained
212     rattle->doPreConstraint();
213     rattle->doRattleA();
214     calcForce(1, 1);
215     rattle->doRattleB();
216 tim 1035
217 tim 725 if (info->setTemp){
218 tim 677 thermalize();
219 mmeineke 558 }
220 tim 725
221 mmeineke 558 calcPot = 0;
222     calcStress = 0;
223 mmeineke 711 currSample = sampleTime + info->getTime();
224     currThermal = thermalTime+ info->getTime();
225     currStatus = statusTime + info->getTime();
226 mmeineke 746 currReset = resetTime + info->getTime();
227 mmeineke 558
228 tim 725 dumpOut->writeDump(info->getTime());
229     statOut->writeStat(info->getTime());
230 mmeineke 559
231    
232     #ifdef IS_MPI
233 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
234 mmeineke 559 MPIcheckPoint();
235     #endif // is_mpi
236    
237 tim 1113 while (info->getTime() < runTime && !stopIntegrator()){
238 gezelter 1178 difference = info->getTime() + dt - currStatus;
239     if (difference > 0 || fabs(difference) < 1e-4 ){
240 mmeineke 558 calcPot = 1;
241     calcStress = 1;
242     }
243 mmeineke 561
244 chuckv 892 #ifdef PROFILE
245     startProfile( pro1 );
246     #endif
247    
248 tim 725 integrateStep(calcPot, calcStress);
249    
250 chuckv 892 #ifdef PROFILE
251     endProfile( pro1 );
252    
253     startProfile( pro2 );
254     #endif // profile
255    
256 mmeineke 643 info->incrTime(dt);
257 mmeineke 558
258 tim 725 if (info->setTemp){
259     if (info->getTime() >= currThermal){
260     thermalize();
261     currThermal += thermalTime;
262 mmeineke 558 }
263     }
264    
265 tim 725 if (info->getTime() >= currSample){
266     dumpOut->writeDump(info->getTime());
267 mmeineke 558 currSample += sampleTime;
268     }
269    
270 tim 725 if (info->getTime() >= currStatus){
271 tim 837 statOut->writeStat(info->getTime());
272     calcPot = 0;
273 mmeineke 558 calcStress = 0;
274     currStatus += statusTime;
275 tim 837 }
276 mmeineke 559
277 mmeineke 746 if (info->resetIntegrator){
278     if (info->getTime() >= currReset){
279     this->resetIntegrator();
280     currReset += resetTime;
281     }
282     }
283 chuckv 892
284     #ifdef PROFILE
285     endProfile( pro2 );
286     #endif //profile
287 mmeineke 746
288 mmeineke 559 #ifdef IS_MPI
289 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
290 mmeineke 559 MPIcheckPoint();
291     #endif // is_mpi
292 mmeineke 558 }
293    
294 chrisfen 1180 // dump out a file containing the omega values for the final configuration
295 chrisfen 1212 if (info->useSolidThermInt && !info->useLiquidThermInt)
296 chrisfen 1180 myFF->dumpzAngle();
297    
298    
299 mmeineke 561 delete dumpOut;
300     delete statOut;
301 mmeineke 558 }
302    
303 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
304     int calcStress){
305 mmeineke 558 // Position full step, and velocity half step
306 chuckv 892
307     #ifdef PROFILE
308     startProfile(pro3);
309     #endif //profile
310    
311 tim 1234 //save old state (position, velocity etc)
312     rattle->doPreConstraint();
313 mmeineke 558
314 chuckv 892 #ifdef PROFILE
315     endProfile(pro3);
316    
317     startProfile(pro4);
318     #endif // profile
319    
320 mmeineke 558 moveA();
321    
322 chuckv 892 #ifdef PROFILE
323     endProfile(pro4);
324    
325     startProfile(pro5);
326     #endif//profile
327 tim 725
328    
329 mmeineke 614 #ifdef IS_MPI
330 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
331 mmeineke 614 MPIcheckPoint();
332     #endif // is_mpi
333    
334 mmeineke 558 // calc forces
335 tim 725 calcForce(calcPot, calcStress);
336 mmeineke 558
337 mmeineke 614 #ifdef IS_MPI
338 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
339 mmeineke 614 MPIcheckPoint();
340     #endif // is_mpi
341    
342 chuckv 892 #ifdef PROFILE
343     endProfile( pro5 );
344 tim 725
345 chuckv 892 startProfile( pro6 );
346     #endif //profile
347    
348 mmeineke 558 // finish the velocity half step
349 tim 725
350 mmeineke 558 moveB();
351 tim 725
352 chuckv 892 #ifdef PROFILE
353     endProfile(pro6);
354     #endif // profile
355 tim 725
356 mmeineke 614 #ifdef IS_MPI
357 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
358 mmeineke 614 MPIcheckPoint();
359     #endif // is_mpi
360 mmeineke 558 }
361    
362    
363 tim 725 template<typename T> void Integrator<T>::moveA(void){
364 gezelter 1097 size_t i, j;
365 mmeineke 558 DirectionalAtom* dAtom;
366 gezelter 600 double Tb[3], ji[3];
367     double vel[3], pos[3], frc[3];
368     double mass;
369 chrisfen 1187 double omega;
370 gezelter 1097
371     for (i = 0; i < integrableObjects.size() ; i++){
372     integrableObjects[i]->getVel(vel);
373     integrableObjects[i]->getPos(pos);
374     integrableObjects[i]->getFrc(frc);
375    
376     mass = integrableObjects[i]->getMass();
377 mmeineke 558
378 tim 725 for (j = 0; j < 3; j++){
379 gezelter 600 // velocity half step
380 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
381 gezelter 600 // position whole step
382     pos[j] += dt * vel[j];
383     }
384 mmeineke 594
385 gezelter 1097 integrableObjects[i]->setVel(vel);
386     integrableObjects[i]->setPos(pos);
387 gezelter 600
388 gezelter 1097 if (integrableObjects[i]->isDirectional()){
389 mmeineke 558
390     // get and convert the torque to body frame
391 mmeineke 597
392 gezelter 1097 integrableObjects[i]->getTrq(Tb);
393     integrableObjects[i]->lab2Body(Tb);
394 tim 725
395 mmeineke 558 // get the angular momentum, and propagate a half step
396 gezelter 600
397 gezelter 1097 integrableObjects[i]->getJ(ji);
398 gezelter 600
399 tim 725 for (j = 0; j < 3; j++)
400 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
401 tim 725
402 gezelter 1097 this->rotationPropagation( integrableObjects[i], ji );
403 gezelter 600
404 gezelter 1097 integrableObjects[i]->setJ(ji);
405 tim 725 }
406 mmeineke 558 }
407 mmeineke 768
408 tim 1234 rattle->doRattleA();
409 mmeineke 558 }
410    
411    
412 tim 725 template<typename T> void Integrator<T>::moveB(void){
413 gezelter 600 int i, j;
414     double Tb[3], ji[3];
415     double vel[3], frc[3];
416     double mass;
417 mmeineke 558
418 gezelter 1097 for (i = 0; i < integrableObjects.size(); i++){
419     integrableObjects[i]->getVel(vel);
420     integrableObjects[i]->getFrc(frc);
421 mmeineke 558
422 gezelter 1097 mass = integrableObjects[i]->getMass();
423 gezelter 600
424 mmeineke 558 // velocity half step
425 tim 725 for (j = 0; j < 3; j++)
426     vel[j] += (dt2 * frc[j] / mass) * eConvert;
427 gezelter 600
428 gezelter 1097 integrableObjects[i]->setVel(vel);
429 mmeineke 597
430 gezelter 1097 if (integrableObjects[i]->isDirectional()){
431 tim 725
432 tim 837 // get and convert the torque to body frame
433 gezelter 600
434 gezelter 1097 integrableObjects[i]->getTrq(Tb);
435     integrableObjects[i]->lab2Body(Tb);
436 gezelter 600
437     // get the angular momentum, and propagate a half step
438    
439 gezelter 1097 integrableObjects[i]->getJ(ji);
440 gezelter 600
441 tim 725 for (j = 0; j < 3; j++)
442 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
443 mmeineke 597
444 tim 725
445 gezelter 1097 integrableObjects[i]->setJ(ji);
446 mmeineke 558 }
447     }
448 mmeineke 768
449 tim 1234 rattle->doRattleB();
450 mmeineke 558 }
451    
452 tim 1234 /*
453 tim 725 template<typename T> void Integrator<T>::preMove(void){
454 gezelter 600 int i, j;
455     double pos[3];
456 mmeineke 558
457 tim 725 if (nConstrained){
458     for (i = 0; i < nAtoms; i++){
459     atoms[i]->getPos(pos);
460 mmeineke 561
461 tim 725 for (j = 0; j < 3; j++){
462     oldPos[3 * i + j] = pos[j];
463 gezelter 600 }
464     }
465 tim 725 }
466 gezelter 600 }
467    
468 tim 645 template<typename T> void Integrator<T>::constrainA(){
469 mmeineke 787 int i, j;
470 mmeineke 558 int done;
471 gezelter 600 double posA[3], posB[3];
472     double velA[3], velB[3];
473 mmeineke 572 double pab[3];
474     double rab[3];
475 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
476 mmeineke 558 double rma, rmb;
477     double dx, dy, dz;
478 mmeineke 561 double rpab;
479 mmeineke 558 double rabsq, pabsq, rpabsq;
480     double diffsq;
481     double gab;
482     int iteration;
483    
484 tim 725 for (i = 0; i < nAtoms; i++){
485 mmeineke 558 moving[i] = 0;
486 tim 725 moved[i] = 1;
487 mmeineke 558 }
488 mmeineke 567
489 mmeineke 558 iteration = 0;
490     done = 0;
491 tim 725 while (!done && (iteration < maxIteration)){
492 mmeineke 558 done = 1;
493 tim 725 for (i = 0; i < nConstrained; i++){
494 mmeineke 558 a = constrainedA[i];
495     b = constrainedB[i];
496 mmeineke 563
497 tim 725 ax = (a * 3) + 0;
498     ay = (a * 3) + 1;
499     az = (a * 3) + 2;
500 mmeineke 563
501 tim 725 bx = (b * 3) + 0;
502     by = (b * 3) + 1;
503     bz = (b * 3) + 2;
504    
505     if (moved[a] || moved[b]){
506     atoms[a]->getPos(posA);
507     atoms[b]->getPos(posB);
508    
509     for (j = 0; j < 3; j++)
510 gezelter 600 pab[j] = posA[j] - posB[j];
511 mmeineke 567
512 tim 725 //periodic boundary condition
513 mmeineke 567
514 tim 725 info->wrapVector(pab);
515 mmeineke 572
516 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
517 mmeineke 558
518 tim 725 rabsq = constrainedDsqr[i];
519     diffsq = rabsq - pabsq;
520 mmeineke 567
521 tim 725 // the original rattle code from alan tidesley
522     if (fabs(diffsq) > (tol * rabsq * 2)){
523     rab[0] = oldPos[ax] - oldPos[bx];
524     rab[1] = oldPos[ay] - oldPos[by];
525     rab[2] = oldPos[az] - oldPos[bz];
526 mmeineke 558
527 tim 725 info->wrapVector(rab);
528 mmeineke 567
529 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
530 mmeineke 558
531 tim 725 rpabsq = rpab * rpab;
532 mmeineke 558
533 mmeineke 563
534 tim 725 if (rpabsq < (rabsq * -diffsq)){
535 mmeineke 558 #ifdef IS_MPI
536 tim 725 a = atoms[a]->getGlobalIndex();
537     b = atoms[b]->getGlobalIndex();
538 mmeineke 558 #endif //is_mpi
539 tim 725 sprintf(painCave.errMsg,
540     "Constraint failure in constrainA at atom %d and %d.\n", a,
541     b);
542     painCave.isFatal = 1;
543     simError();
544     }
545 mmeineke 558
546 tim 725 rma = 1.0 / atoms[a]->getMass();
547     rmb = 1.0 / atoms[b]->getMass();
548 mmeineke 567
549 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
550 mmeineke 567
551 mmeineke 572 dx = rab[0] * gab;
552     dy = rab[1] * gab;
553     dz = rab[2] * gab;
554 mmeineke 558
555 tim 725 posA[0] += rma * dx;
556     posA[1] += rma * dy;
557     posA[2] += rma * dz;
558 mmeineke 558
559 tim 725 atoms[a]->setPos(posA);
560 mmeineke 558
561 tim 725 posB[0] -= rmb * dx;
562     posB[1] -= rmb * dy;
563     posB[2] -= rmb * dz;
564 gezelter 600
565 tim 725 atoms[b]->setPos(posB);
566 gezelter 600
567 mmeineke 558 dx = dx / dt;
568     dy = dy / dt;
569     dz = dz / dt;
570    
571 tim 725 atoms[a]->getVel(velA);
572 mmeineke 558
573 tim 725 velA[0] += rma * dx;
574     velA[1] += rma * dy;
575     velA[2] += rma * dz;
576 mmeineke 558
577 tim 725 atoms[a]->setVel(velA);
578 gezelter 600
579 tim 725 atoms[b]->getVel(velB);
580 gezelter 600
581 tim 725 velB[0] -= rmb * dx;
582     velB[1] -= rmb * dy;
583     velB[2] -= rmb * dz;
584 gezelter 600
585 tim 725 atoms[b]->setVel(velB);
586 gezelter 600
587 tim 725 moving[a] = 1;
588     moving[b] = 1;
589     done = 0;
590     }
591 mmeineke 558 }
592     }
593 tim 725
594     for (i = 0; i < nAtoms; i++){
595 mmeineke 558 moved[i] = moving[i];
596     moving[i] = 0;
597     }
598    
599     iteration++;
600     }
601    
602 tim 725 if (!done){
603     sprintf(painCave.errMsg,
604     "Constraint failure in constrainA, too many iterations: %d\n",
605     iteration);
606 mmeineke 558 painCave.isFatal = 1;
607     simError();
608     }
609 mmeineke 768
610 mmeineke 558 }
611    
612 tim 725 template<typename T> void Integrator<T>::constrainB(void){
613 mmeineke 787 int i, j;
614 mmeineke 558 int done;
615 gezelter 600 double posA[3], posB[3];
616     double velA[3], velB[3];
617 mmeineke 558 double vxab, vyab, vzab;
618 mmeineke 572 double rab[3];
619 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
620 mmeineke 558 double rma, rmb;
621     double dx, dy, dz;
622 mmeineke 787 double rvab;
623 mmeineke 558 double gab;
624     int iteration;
625    
626 tim 725 for (i = 0; i < nAtoms; i++){
627 mmeineke 558 moving[i] = 0;
628     moved[i] = 1;
629     }
630    
631     done = 0;
632 mmeineke 561 iteration = 0;
633 tim 725 while (!done && (iteration < maxIteration)){
634 mmeineke 567 done = 1;
635    
636 tim 725 for (i = 0; i < nConstrained; i++){
637 mmeineke 558 a = constrainedA[i];
638     b = constrainedB[i];
639    
640 tim 725 ax = (a * 3) + 0;
641     ay = (a * 3) + 1;
642     az = (a * 3) + 2;
643 mmeineke 563
644 tim 725 bx = (b * 3) + 0;
645     by = (b * 3) + 1;
646     bz = (b * 3) + 2;
647 mmeineke 563
648 tim 725 if (moved[a] || moved[b]){
649     atoms[a]->getVel(velA);
650     atoms[b]->getVel(velB);
651 mmeineke 558
652 tim 725 vxab = velA[0] - velB[0];
653     vyab = velA[1] - velB[1];
654     vzab = velA[2] - velB[2];
655 gezelter 600
656 tim 725 atoms[a]->getPos(posA);
657     atoms[b]->getPos(posB);
658 gezelter 600
659 tim 725 for (j = 0; j < 3; j++)
660 gezelter 600 rab[j] = posA[j] - posB[j];
661 mmeineke 558
662 tim 725 info->wrapVector(rab);
663 mmeineke 558
664 tim 725 rma = 1.0 / atoms[a]->getMass();
665     rmb = 1.0 / atoms[b]->getMass();
666 mmeineke 558
667 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
668 gezelter 600
669 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
670 gezelter 600
671 tim 725 if (fabs(gab) > tol){
672     dx = rab[0] * gab;
673     dy = rab[1] * gab;
674     dz = rab[2] * gab;
675    
676     velA[0] += rma * dx;
677     velA[1] += rma * dy;
678     velA[2] += rma * dz;
679    
680     atoms[a]->setVel(velA);
681    
682     velB[0] -= rmb * dx;
683     velB[1] -= rmb * dy;
684     velB[2] -= rmb * dz;
685    
686     atoms[b]->setVel(velB);
687    
688     moving[a] = 1;
689     moving[b] = 1;
690     done = 0;
691     }
692 mmeineke 558 }
693     }
694    
695 tim 725 for (i = 0; i < nAtoms; i++){
696 mmeineke 558 moved[i] = moving[i];
697     moving[i] = 0;
698     }
699 tim 725
700 mmeineke 558 iteration++;
701     }
702    
703 tim 725 if (!done){
704     sprintf(painCave.errMsg,
705     "Constraint failure in constrainB, too many iterations: %d\n",
706     iteration);
707 mmeineke 558 painCave.isFatal = 1;
708     simError();
709 tim 725 }
710 mmeineke 558 }
711 tim 1234 */
712 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
713 gezelter 1097 ( StuntDouble* sd, double ji[3] ){
714 mmeineke 778
715     double angle;
716     double A[3][3], I[3][3];
717 tim 1118 int i, j, k;
718 mmeineke 778
719     // use the angular velocities to propagate the rotation matrix a
720     // full time step
721    
722 gezelter 1097 sd->getA(A);
723     sd->getI(I);
724 tim 837
725 tim 1118 if (sd->isLinear()) {
726     i = sd->linearAxis();
727     j = (i+1)%3;
728     k = (i+2)%3;
729    
730     angle = dt2 * ji[j] / I[j][j];
731     this->rotate( k, i, angle, ji, A );
732    
733     angle = dt * ji[k] / I[k][k];
734     this->rotate( i, j, angle, ji, A);
735    
736     angle = dt2 * ji[j] / I[j][j];
737     this->rotate( k, i, angle, ji, A );
738    
739     } else {
740 gezelter 1125 // rotate about the x-axis
741     angle = dt2 * ji[0] / I[0][0];
742     this->rotate( 1, 2, angle, ji, A );
743    
744     // rotate about the y-axis
745     angle = dt2 * ji[1] / I[1][1];
746     this->rotate( 2, 0, angle, ji, A );
747    
748     // rotate about the z-axis
749     angle = dt * ji[2] / I[2][2];
750 chrisfen 1187 sd->addZangle(angle);
751 gezelter 1125 this->rotate( 0, 1, angle, ji, A);
752    
753     // rotate about the y-axis
754     angle = dt2 * ji[1] / I[1][1];
755     this->rotate( 2, 0, angle, ji, A );
756    
757     // rotate about the x-axis
758     angle = dt2 * ji[0] / I[0][0];
759     this->rotate( 1, 2, angle, ji, A );
760    
761 tim 1118 }
762 gezelter 1097 sd->setA( A );
763 mmeineke 778 }
764    
765 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
766     double angle, double ji[3],
767     double A[3][3]){
768     int i, j, k;
769 mmeineke 558 double sinAngle;
770     double cosAngle;
771     double angleSqr;
772     double angleSqrOver4;
773     double top, bottom;
774     double rot[3][3];
775     double tempA[3][3];
776     double tempJ[3];
777    
778     // initialize the tempA
779    
780 tim 725 for (i = 0; i < 3; i++){
781     for (j = 0; j < 3; j++){
782 gezelter 600 tempA[j][i] = A[i][j];
783 mmeineke 558 }
784     }
785    
786     // initialize the tempJ
787    
788 tim 725 for (i = 0; i < 3; i++)
789     tempJ[i] = ji[i];
790    
791 mmeineke 558 // initalize rot as a unit matrix
792    
793     rot[0][0] = 1.0;
794     rot[0][1] = 0.0;
795     rot[0][2] = 0.0;
796    
797     rot[1][0] = 0.0;
798     rot[1][1] = 1.0;
799     rot[1][2] = 0.0;
800 tim 725
801 mmeineke 558 rot[2][0] = 0.0;
802     rot[2][1] = 0.0;
803     rot[2][2] = 1.0;
804 tim 725
805 mmeineke 558 // use a small angle aproximation for sin and cosine
806    
807 tim 725 angleSqr = angle * angle;
808 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
809     top = 1.0 - angleSqrOver4;
810     bottom = 1.0 + angleSqrOver4;
811    
812     cosAngle = top / bottom;
813     sinAngle = angle / bottom;
814    
815     rot[axes1][axes1] = cosAngle;
816     rot[axes2][axes2] = cosAngle;
817    
818     rot[axes1][axes2] = sinAngle;
819     rot[axes2][axes1] = -sinAngle;
820 tim 725
821 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
822 tim 725
823     for (i = 0; i < 3; i++){
824 mmeineke 558 ji[i] = 0.0;
825 tim 725 for (k = 0; k < 3; k++){
826 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
827     }
828     }
829    
830 tim 837 // rotate the Rotation matrix acording to:
831 mmeineke 558 // A[][] = A[][] * transpose(rot[][])
832    
833    
834 mmeineke 561 // NOte for as yet unknown reason, we are performing the
835 mmeineke 558 // calculation as:
836     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
837    
838 tim 725 for (i = 0; i < 3; i++){
839     for (j = 0; j < 3; j++){
840 gezelter 600 A[j][i] = 0.0;
841 tim 725 for (k = 0; k < 3; k++){
842     A[j][i] += tempA[i][k] * rot[j][k];
843 mmeineke 558 }
844     }
845     }
846     }
847 tim 677
848 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
849     myFF->doForces(calcPot, calcStress);
850 tim 677 }
851    
852     template<typename T> void Integrator<T>::thermalize(){
853 tim 725 tStats->velocitize();
854 tim 677 }
855 tim 763
856     template<typename T> double Integrator<T>::getConservedQuantity(void){
857     return tStats->getTotalE();
858 mmeineke 768 }
859 tim 837 template<typename T> string Integrator<T>::getAdditionalParameters(void){
860     //By default, return a null string
861     //The reason we use string instead of char* is that if we use char*, we will
862     //return a pointer point to local variable which might cause problem
863     return string();
864     }