ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 1284
Committed: Mon Jun 21 18:52:21 2004 UTC (20 years, 2 months ago) by tim
File size: 19066 byte(s)
Log Message:
roll in progress

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2 gezelter 829 #include <stdlib.h>
3     #include <math.h>
4 tim 1234 #include "Rattle.hpp"
5 tim 1268 #include "Roll.hpp"
6 mmeineke 558 #ifdef IS_MPI
7     #include "mpiSimulation.hpp"
8     #include <unistd.h>
9     #endif //is_mpi
10    
11 chuckv 892 #ifdef PROFILE
12     #include "mdProfile.hpp"
13     #endif // profile
14    
15 mmeineke 558 #include "Integrator.hpp"
16     #include "simError.h"
17    
18    
19 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
20     ForceFields* the_ff){
21 mmeineke 558 info = theInfo;
22     myFF = the_ff;
23     isFirst = 1;
24    
25     molecules = info->molecules;
26     nMols = info->n_mol;
27    
28     // give a little love back to the SimInfo object
29 tim 725
30     if (info->the_integrator != NULL){
31     delete info->the_integrator;
32     }
33 tim 837
34 mmeineke 558 nAtoms = info->n_atoms;
35 gezelter 1097 integrableObjects = info->integrableObjects;
36 tim 1234
37 tim 1268 consFramework = new RattleFramework(info);
38 tim 1234
39 tim 1268 if(consFramework == NULL){
40 tim 1234 sprintf(painCave.errMsg,
41     "Integrator::Intergrator() Error: Memory allocation error for RattleFramework" );
42     painCave.isFatal = 1;
43     simError();
44     }
45    
46     /*
47 mmeineke 558 // check for constraints
48 tim 725
49     constrainedA = NULL;
50     constrainedB = NULL;
51 mmeineke 558 constrainedDsqr = NULL;
52 tim 725 moving = NULL;
53     moved = NULL;
54     oldPos = NULL;
55    
56 mmeineke 558 nConstrained = 0;
57    
58     checkConstraints();
59 tim 1234 */
60 mmeineke 558 }
61    
62 tim 725 template<typename T> Integrator<T>::~Integrator(){
63 tim 1268 if (consFramework != NULL)
64     delete consFramework;
65 tim 1234 /*
66 tim 725 if (nConstrained){
67 mmeineke 558 delete[] constrainedA;
68     delete[] constrainedB;
69     delete[] constrainedDsqr;
70     delete[] moving;
71     delete[] moved;
72 mmeineke 561 delete[] oldPos;
73 mmeineke 558 }
74 tim 1234 */
75 mmeineke 558 }
76    
77 tim 1234 /*
78 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
79 mmeineke 558 isConstrained = 0;
80    
81 tim 725 Constraint* temp_con;
82     Constraint* dummy_plug;
83 mmeineke 558 temp_con = new Constraint[info->n_SRI];
84     nConstrained = 0;
85     int constrained = 0;
86 tim 725
87 mmeineke 558 SRI** theArray;
88 tim 725 for (int i = 0; i < nMols; i++){
89 tim 1057
90     theArray = (SRI * *) molecules[i].getMyBonds();
91 tim 725 for (int j = 0; j < molecules[i].getNBonds(); j++){
92 mmeineke 558 constrained = theArray[j]->is_constrained();
93 mmeineke 594
94 tim 725 if (constrained){
95     dummy_plug = theArray[j]->get_constraint();
96     temp_con[nConstrained].set_a(dummy_plug->get_a());
97     temp_con[nConstrained].set_b(dummy_plug->get_b());
98     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
99 mmeineke 594
100 tim 725 nConstrained++;
101     constrained = 0;
102     }
103 mmeineke 558 }
104    
105 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
106     for (int j = 0; j < molecules[i].getNBends(); j++){
107 mmeineke 558 constrained = theArray[j]->is_constrained();
108 tim 725
109     if (constrained){
110     dummy_plug = theArray[j]->get_constraint();
111     temp_con[nConstrained].set_a(dummy_plug->get_a());
112 tim 1268 temp_con[nConstrained].set_b(Dummy_plug->get_b());
113 tim 725 temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
114    
115     nConstrained++;
116     constrained = 0;
117 mmeineke 558 }
118     }
119    
120 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
121     for (int j = 0; j < molecules[i].getNTorsions(); j++){
122 mmeineke 558 constrained = theArray[j]->is_constrained();
123 tim 725
124     if (constrained){
125     dummy_plug = theArray[j]->get_constraint();
126     temp_con[nConstrained].set_a(dummy_plug->get_a());
127     temp_con[nConstrained].set_b(dummy_plug->get_b());
128     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
129    
130     nConstrained++;
131     constrained = 0;
132 mmeineke 558 }
133     }
134     }
135    
136 tim 1057
137 tim 725 if (nConstrained > 0){
138 mmeineke 558 isConstrained = 1;
139    
140 tim 725 if (constrainedA != NULL)
141     delete[] constrainedA;
142     if (constrainedB != NULL)
143     delete[] constrainedB;
144     if (constrainedDsqr != NULL)
145     delete[] constrainedDsqr;
146 mmeineke 558
147 tim 725 constrainedA = new int[nConstrained];
148     constrainedB = new int[nConstrained];
149 mmeineke 558 constrainedDsqr = new double[nConstrained];
150 tim 725
151     for (int i = 0; i < nConstrained; i++){
152 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
153     constrainedB[i] = temp_con[i].get_b();
154     constrainedDsqr[i] = temp_con[i].get_dsqr();
155     }
156    
157 tim 725
158 chrisfen 999 // save oldAtoms to check for lode balancing later on.
159 tim 725
160 mmeineke 558 oldAtoms = nAtoms;
161 tim 725
162 mmeineke 558 moving = new int[nAtoms];
163 tim 725 moved = new int[nAtoms];
164 mmeineke 558
165 tim 725 oldPos = new double[nAtoms * 3];
166 mmeineke 558 }
167 tim 725
168 mmeineke 558 delete[] temp_con;
169     }
170 tim 1234 */
171 mmeineke 558
172 tim 725 template<typename T> void Integrator<T>::integrate(void){
173 mmeineke 558
174 tim 725 double runTime = info->run_time;
175     double sampleTime = info->sampleTime;
176     double statusTime = info->statusTime;
177 mmeineke 558 double thermalTime = info->thermalTime;
178 mmeineke 746 double resetTime = info->resetTime;
179 mmeineke 558
180 gezelter 1178 double difference;
181 mmeineke 558 double currSample;
182     double currThermal;
183     double currStatus;
184 mmeineke 746 double currReset;
185 tim 837
186 mmeineke 558 int calcPot, calcStress;
187    
188 tim 725 tStats = new Thermo(info);
189     statOut = new StatWriter(info);
190     dumpOut = new DumpWriter(info);
191 mmeineke 558
192 mmeineke 561 atoms = info->atoms;
193    
194     dt = info->dt;
195 mmeineke 558 dt2 = 0.5 * dt;
196    
197 mmeineke 784 readyCheck();
198    
199 tim 1127 // remove center of mass drift velocity (in case we passed in a configuration
200     // that was drifting
201     tStats->removeCOMdrift();
202    
203 chrisfen 1180 // initialize the retraints if necessary
204 chrisfen 1212 if (info->useSolidThermInt && !info->useLiquidThermInt) {
205 chrisfen 1180 myFF->initRestraints();
206     }
207    
208 mmeineke 558 // initialize the forces before the first step
209    
210 tim 677 calcForce(1, 1);
211 tim 1234
212     //execute constraint algorithm to make sure at the very beginning the system is constrained
213 tim 1284 //consFramework->doPreConstraint();
214     //consFramework->doConstrainA();
215     //calcForce(1, 1);
216     //consFramework->doConstrainB();
217 tim 1035
218 tim 725 if (info->setTemp){
219 tim 677 thermalize();
220 mmeineke 558 }
221 tim 725
222 mmeineke 558 calcPot = 0;
223     calcStress = 0;
224 mmeineke 711 currSample = sampleTime + info->getTime();
225     currThermal = thermalTime+ info->getTime();
226     currStatus = statusTime + info->getTime();
227 mmeineke 746 currReset = resetTime + info->getTime();
228 mmeineke 558
229 tim 725 dumpOut->writeDump(info->getTime());
230     statOut->writeStat(info->getTime());
231 mmeineke 559
232    
233     #ifdef IS_MPI
234 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
235 mmeineke 559 MPIcheckPoint();
236     #endif // is_mpi
237    
238 tim 1113 while (info->getTime() < runTime && !stopIntegrator()){
239 gezelter 1178 difference = info->getTime() + dt - currStatus;
240     if (difference > 0 || fabs(difference) < 1e-4 ){
241 mmeineke 558 calcPot = 1;
242     calcStress = 1;
243     }
244 mmeineke 561
245 chuckv 892 #ifdef PROFILE
246     startProfile( pro1 );
247     #endif
248    
249 tim 725 integrateStep(calcPot, calcStress);
250    
251 chuckv 892 #ifdef PROFILE
252     endProfile( pro1 );
253    
254     startProfile( pro2 );
255     #endif // profile
256    
257 mmeineke 643 info->incrTime(dt);
258 mmeineke 558
259 tim 725 if (info->setTemp){
260     if (info->getTime() >= currThermal){
261     thermalize();
262     currThermal += thermalTime;
263 mmeineke 558 }
264     }
265    
266 tim 725 if (info->getTime() >= currSample){
267     dumpOut->writeDump(info->getTime());
268 mmeineke 558 currSample += sampleTime;
269     }
270    
271 tim 725 if (info->getTime() >= currStatus){
272 tim 837 statOut->writeStat(info->getTime());
273     calcPot = 0;
274 mmeineke 558 calcStress = 0;
275     currStatus += statusTime;
276 tim 837 }
277 mmeineke 559
278 mmeineke 746 if (info->resetIntegrator){
279     if (info->getTime() >= currReset){
280     this->resetIntegrator();
281     currReset += resetTime;
282     }
283     }
284 chuckv 892
285     #ifdef PROFILE
286     endProfile( pro2 );
287     #endif //profile
288 mmeineke 746
289 mmeineke 559 #ifdef IS_MPI
290 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
291 mmeineke 559 MPIcheckPoint();
292     #endif // is_mpi
293 mmeineke 558 }
294    
295 chrisfen 1180 // dump out a file containing the omega values for the final configuration
296 chrisfen 1212 if (info->useSolidThermInt && !info->useLiquidThermInt)
297 chrisfen 1180 myFF->dumpzAngle();
298    
299    
300 mmeineke 561 delete dumpOut;
301     delete statOut;
302 mmeineke 558 }
303    
304 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
305     int calcStress){
306 mmeineke 558 // Position full step, and velocity half step
307 chuckv 892
308     #ifdef PROFILE
309     startProfile(pro3);
310     #endif //profile
311    
312 tim 1234 //save old state (position, velocity etc)
313 tim 1268 consFramework->doPreConstraint();
314 mmeineke 558
315 chuckv 892 #ifdef PROFILE
316     endProfile(pro3);
317    
318     startProfile(pro4);
319     #endif // profile
320    
321 mmeineke 558 moveA();
322    
323 chuckv 892 #ifdef PROFILE
324     endProfile(pro4);
325    
326     startProfile(pro5);
327     #endif//profile
328 tim 725
329    
330 mmeineke 614 #ifdef IS_MPI
331 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
332 mmeineke 614 MPIcheckPoint();
333     #endif // is_mpi
334    
335 mmeineke 558 // calc forces
336 tim 725 calcForce(calcPot, calcStress);
337 mmeineke 558
338 mmeineke 614 #ifdef IS_MPI
339 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
340 mmeineke 614 MPIcheckPoint();
341     #endif // is_mpi
342    
343 chuckv 892 #ifdef PROFILE
344     endProfile( pro5 );
345 tim 725
346 chuckv 892 startProfile( pro6 );
347     #endif //profile
348    
349 mmeineke 558 // finish the velocity half step
350 tim 725
351 mmeineke 558 moveB();
352 tim 725
353 chuckv 892 #ifdef PROFILE
354     endProfile(pro6);
355     #endif // profile
356 tim 725
357 mmeineke 614 #ifdef IS_MPI
358 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
359 mmeineke 614 MPIcheckPoint();
360     #endif // is_mpi
361 mmeineke 558 }
362    
363    
364 tim 725 template<typename T> void Integrator<T>::moveA(void){
365 gezelter 1097 size_t i, j;
366 mmeineke 558 DirectionalAtom* dAtom;
367 gezelter 600 double Tb[3], ji[3];
368     double vel[3], pos[3], frc[3];
369     double mass;
370 chrisfen 1187 double omega;
371 gezelter 1097
372     for (i = 0; i < integrableObjects.size() ; i++){
373     integrableObjects[i]->getVel(vel);
374     integrableObjects[i]->getPos(pos);
375     integrableObjects[i]->getFrc(frc);
376    
377     mass = integrableObjects[i]->getMass();
378 mmeineke 558
379 tim 725 for (j = 0; j < 3; j++){
380 gezelter 600 // velocity half step
381 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
382 gezelter 600 // position whole step
383     pos[j] += dt * vel[j];
384     }
385 mmeineke 594
386 gezelter 1097 integrableObjects[i]->setVel(vel);
387     integrableObjects[i]->setPos(pos);
388 gezelter 600
389 gezelter 1097 if (integrableObjects[i]->isDirectional()){
390 mmeineke 558
391     // get and convert the torque to body frame
392 mmeineke 597
393 gezelter 1097 integrableObjects[i]->getTrq(Tb);
394     integrableObjects[i]->lab2Body(Tb);
395 tim 725
396 mmeineke 558 // get the angular momentum, and propagate a half step
397 gezelter 600
398 gezelter 1097 integrableObjects[i]->getJ(ji);
399 gezelter 600
400 tim 725 for (j = 0; j < 3; j++)
401 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
402 tim 725
403 gezelter 1097 this->rotationPropagation( integrableObjects[i], ji );
404 gezelter 600
405 gezelter 1097 integrableObjects[i]->setJ(ji);
406 tim 725 }
407 mmeineke 558 }
408 mmeineke 768
409 tim 1268 consFramework->doConstrainA();
410 mmeineke 558 }
411    
412    
413 tim 725 template<typename T> void Integrator<T>::moveB(void){
414 gezelter 600 int i, j;
415     double Tb[3], ji[3];
416     double vel[3], frc[3];
417     double mass;
418 mmeineke 558
419 gezelter 1097 for (i = 0; i < integrableObjects.size(); i++){
420     integrableObjects[i]->getVel(vel);
421     integrableObjects[i]->getFrc(frc);
422 mmeineke 558
423 gezelter 1097 mass = integrableObjects[i]->getMass();
424 gezelter 600
425 mmeineke 558 // velocity half step
426 tim 725 for (j = 0; j < 3; j++)
427     vel[j] += (dt2 * frc[j] / mass) * eConvert;
428 gezelter 600
429 gezelter 1097 integrableObjects[i]->setVel(vel);
430 mmeineke 597
431 gezelter 1097 if (integrableObjects[i]->isDirectional()){
432 tim 725
433 tim 837 // get and convert the torque to body frame
434 gezelter 600
435 gezelter 1097 integrableObjects[i]->getTrq(Tb);
436     integrableObjects[i]->lab2Body(Tb);
437 gezelter 600
438     // get the angular momentum, and propagate a half step
439    
440 gezelter 1097 integrableObjects[i]->getJ(ji);
441 gezelter 600
442 tim 725 for (j = 0; j < 3; j++)
443 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
444 mmeineke 597
445 tim 725
446 gezelter 1097 integrableObjects[i]->setJ(ji);
447 mmeineke 558 }
448     }
449 mmeineke 768
450 tim 1268 consFramework->doConstrainB();
451 mmeineke 558 }
452    
453 tim 1234 /*
454 tim 725 template<typename T> void Integrator<T>::preMove(void){
455 gezelter 600 int i, j;
456     double pos[3];
457 mmeineke 558
458 tim 725 if (nConstrained){
459     for (i = 0; i < nAtoms; i++){
460     atoms[i]->getPos(pos);
461 mmeineke 561
462 tim 725 for (j = 0; j < 3; j++){
463     oldPos[3 * i + j] = pos[j];
464 gezelter 600 }
465     }
466 tim 725 }
467 gezelter 600 }
468    
469 tim 645 template<typename T> void Integrator<T>::constrainA(){
470 mmeineke 787 int i, j;
471 mmeineke 558 int done;
472 gezelter 600 double posA[3], posB[3];
473     double velA[3], velB[3];
474 mmeineke 572 double pab[3];
475     double rab[3];
476 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
477 mmeineke 558 double rma, rmb;
478     double dx, dy, dz;
479 mmeineke 561 double rpab;
480 mmeineke 558 double rabsq, pabsq, rpabsq;
481     double diffsq;
482     double gab;
483     int iteration;
484    
485 tim 725 for (i = 0; i < nAtoms; i++){
486 mmeineke 558 moving[i] = 0;
487 tim 725 moved[i] = 1;
488 mmeineke 558 }
489 mmeineke 567
490 mmeineke 558 iteration = 0;
491     done = 0;
492 tim 725 while (!done && (iteration < maxIteration)){
493 mmeineke 558 done = 1;
494 tim 725 for (i = 0; i < nConstrained; i++){
495 mmeineke 558 a = constrainedA[i];
496     b = constrainedB[i];
497 mmeineke 563
498 tim 725 ax = (a * 3) + 0;
499     ay = (a * 3) + 1;
500     az = (a * 3) + 2;
501 mmeineke 563
502 tim 725 bx = (b * 3) + 0;
503     by = (b * 3) + 1;
504     bz = (b * 3) + 2;
505    
506     if (moved[a] || moved[b]){
507     atoms[a]->getPos(posA);
508     atoms[b]->getPos(posB);
509    
510     for (j = 0; j < 3; j++)
511 gezelter 600 pab[j] = posA[j] - posB[j];
512 mmeineke 567
513 tim 725 //periodic boundary condition
514 mmeineke 567
515 tim 725 info->wrapVector(pab);
516 mmeineke 572
517 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
518 mmeineke 558
519 tim 725 rabsq = constrainedDsqr[i];
520     diffsq = rabsq - pabsq;
521 mmeineke 567
522 tim 725 // the original rattle code from alan tidesley
523     if (fabs(diffsq) > (tol * rabsq * 2)){
524     rab[0] = oldPos[ax] - oldPos[bx];
525     rab[1] = oldPos[ay] - oldPos[by];
526     rab[2] = oldPos[az] - oldPos[bz];
527 mmeineke 558
528 tim 725 info->wrapVector(rab);
529 mmeineke 567
530 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
531 mmeineke 558
532 tim 725 rpabsq = rpab * rpab;
533 mmeineke 558
534 mmeineke 563
535 tim 725 if (rpabsq < (rabsq * -diffsq)){
536 mmeineke 558 #ifdef IS_MPI
537 tim 725 a = atoms[a]->getGlobalIndex();
538     b = atoms[b]->getGlobalIndex();
539 mmeineke 558 #endif //is_mpi
540 tim 725 sprintf(painCave.errMsg,
541     "Constraint failure in constrainA at atom %d and %d.\n", a,
542     b);
543     painCave.isFatal = 1;
544     simError();
545     }
546 mmeineke 558
547 tim 725 rma = 1.0 / atoms[a]->getMass();
548     rmb = 1.0 / atoms[b]->getMass();
549 mmeineke 567
550 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
551 mmeineke 567
552 mmeineke 572 dx = rab[0] * gab;
553     dy = rab[1] * gab;
554     dz = rab[2] * gab;
555 mmeineke 558
556 tim 725 posA[0] += rma * dx;
557     posA[1] += rma * dy;
558     posA[2] += rma * dz;
559 mmeineke 558
560 tim 725 atoms[a]->setPos(posA);
561 mmeineke 558
562 tim 725 posB[0] -= rmb * dx;
563     posB[1] -= rmb * dy;
564     posB[2] -= rmb * dz;
565 gezelter 600
566 tim 725 atoms[b]->setPos(posB);
567 gezelter 600
568 mmeineke 558 dx = dx / dt;
569     dy = dy / dt;
570     dz = dz / dt;
571    
572 tim 725 atoms[a]->getVel(velA);
573 mmeineke 558
574 tim 725 velA[0] += rma * dx;
575     velA[1] += rma * dy;
576     velA[2] += rma * dz;
577 mmeineke 558
578 tim 725 atoms[a]->setVel(velA);
579 gezelter 600
580 tim 725 atoms[b]->getVel(velB);
581 gezelter 600
582 tim 725 velB[0] -= rmb * dx;
583     velB[1] -= rmb * dy;
584     velB[2] -= rmb * dz;
585 gezelter 600
586 tim 725 atoms[b]->setVel(velB);
587 gezelter 600
588 tim 725 moving[a] = 1;
589     moving[b] = 1;
590     done = 0;
591     }
592 mmeineke 558 }
593     }
594 tim 725
595     for (i = 0; i < nAtoms; i++){
596 mmeineke 558 moved[i] = moving[i];
597     moving[i] = 0;
598     }
599    
600     iteration++;
601     }
602    
603 tim 725 if (!done){
604     sprintf(painCave.errMsg,
605     "Constraint failure in constrainA, too many iterations: %d\n",
606     iteration);
607 mmeineke 558 painCave.isFatal = 1;
608     simError();
609     }
610 mmeineke 768
611 mmeineke 558 }
612    
613 tim 725 template<typename T> void Integrator<T>::constrainB(void){
614 mmeineke 787 int i, j;
615 mmeineke 558 int done;
616 gezelter 600 double posA[3], posB[3];
617     double velA[3], velB[3];
618 mmeineke 558 double vxab, vyab, vzab;
619 mmeineke 572 double rab[3];
620 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
621 mmeineke 558 double rma, rmb;
622     double dx, dy, dz;
623 mmeineke 787 double rvab;
624 mmeineke 558 double gab;
625     int iteration;
626    
627 tim 725 for (i = 0; i < nAtoms; i++){
628 mmeineke 558 moving[i] = 0;
629     moved[i] = 1;
630     }
631    
632     done = 0;
633 mmeineke 561 iteration = 0;
634 tim 725 while (!done && (iteration < maxIteration)){
635 mmeineke 567 done = 1;
636    
637 tim 725 for (i = 0; i < nConstrained; i++){
638 mmeineke 558 a = constrainedA[i];
639     b = constrainedB[i];
640    
641 tim 725 ax = (a * 3) + 0;
642     ay = (a * 3) + 1;
643     az = (a * 3) + 2;
644 mmeineke 563
645 tim 725 bx = (b * 3) + 0;
646     by = (b * 3) + 1;
647     bz = (b * 3) + 2;
648 mmeineke 563
649 tim 725 if (moved[a] || moved[b]){
650     atoms[a]->getVel(velA);
651     atoms[b]->getVel(velB);
652 mmeineke 558
653 tim 725 vxab = velA[0] - velB[0];
654     vyab = velA[1] - velB[1];
655     vzab = velA[2] - velB[2];
656 gezelter 600
657 tim 725 atoms[a]->getPos(posA);
658     atoms[b]->getPos(posB);
659 gezelter 600
660 tim 725 for (j = 0; j < 3; j++)
661 gezelter 600 rab[j] = posA[j] - posB[j];
662 mmeineke 558
663 tim 725 info->wrapVector(rab);
664 mmeineke 558
665 tim 725 rma = 1.0 / atoms[a]->getMass();
666     rmb = 1.0 / atoms[b]->getMass();
667 mmeineke 558
668 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
669 gezelter 600
670 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
671 gezelter 600
672 tim 725 if (fabs(gab) > tol){
673     dx = rab[0] * gab;
674     dy = rab[1] * gab;
675     dz = rab[2] * gab;
676    
677     velA[0] += rma * dx;
678     velA[1] += rma * dy;
679     velA[2] += rma * dz;
680    
681     atoms[a]->setVel(velA);
682    
683     velB[0] -= rmb * dx;
684     velB[1] -= rmb * dy;
685     velB[2] -= rmb * dz;
686    
687     atoms[b]->setVel(velB);
688    
689     moving[a] = 1;
690     moving[b] = 1;
691     done = 0;
692     }
693 mmeineke 558 }
694     }
695    
696 tim 725 for (i = 0; i < nAtoms; i++){
697 mmeineke 558 moved[i] = moving[i];
698     moving[i] = 0;
699     }
700 tim 725
701 mmeineke 558 iteration++;
702     }
703    
704 tim 725 if (!done){
705     sprintf(painCave.errMsg,
706     "Constraint failure in constrainB, too many iterations: %d\n",
707     iteration);
708 mmeineke 558 painCave.isFatal = 1;
709     simError();
710 tim 725 }
711 mmeineke 558 }
712 tim 1234 */
713 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
714 gezelter 1097 ( StuntDouble* sd, double ji[3] ){
715 mmeineke 778
716     double angle;
717     double A[3][3], I[3][3];
718 tim 1118 int i, j, k;
719 mmeineke 778
720     // use the angular velocities to propagate the rotation matrix a
721     // full time step
722    
723 gezelter 1097 sd->getA(A);
724     sd->getI(I);
725 tim 837
726 tim 1118 if (sd->isLinear()) {
727     i = sd->linearAxis();
728     j = (i+1)%3;
729     k = (i+2)%3;
730    
731     angle = dt2 * ji[j] / I[j][j];
732     this->rotate( k, i, angle, ji, A );
733    
734     angle = dt * ji[k] / I[k][k];
735     this->rotate( i, j, angle, ji, A);
736    
737     angle = dt2 * ji[j] / I[j][j];
738     this->rotate( k, i, angle, ji, A );
739    
740     } else {
741 gezelter 1125 // rotate about the x-axis
742     angle = dt2 * ji[0] / I[0][0];
743     this->rotate( 1, 2, angle, ji, A );
744    
745     // rotate about the y-axis
746     angle = dt2 * ji[1] / I[1][1];
747     this->rotate( 2, 0, angle, ji, A );
748    
749     // rotate about the z-axis
750     angle = dt * ji[2] / I[2][2];
751 chrisfen 1187 sd->addZangle(angle);
752 gezelter 1125 this->rotate( 0, 1, angle, ji, A);
753    
754     // rotate about the y-axis
755     angle = dt2 * ji[1] / I[1][1];
756     this->rotate( 2, 0, angle, ji, A );
757    
758     // rotate about the x-axis
759     angle = dt2 * ji[0] / I[0][0];
760     this->rotate( 1, 2, angle, ji, A );
761    
762 tim 1118 }
763 gezelter 1097 sd->setA( A );
764 mmeineke 778 }
765    
766 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
767     double angle, double ji[3],
768     double A[3][3]){
769     int i, j, k;
770 mmeineke 558 double sinAngle;
771     double cosAngle;
772     double angleSqr;
773     double angleSqrOver4;
774     double top, bottom;
775     double rot[3][3];
776     double tempA[3][3];
777     double tempJ[3];
778    
779     // initialize the tempA
780    
781 tim 725 for (i = 0; i < 3; i++){
782     for (j = 0; j < 3; j++){
783 gezelter 600 tempA[j][i] = A[i][j];
784 mmeineke 558 }
785     }
786    
787     // initialize the tempJ
788    
789 tim 725 for (i = 0; i < 3; i++)
790     tempJ[i] = ji[i];
791    
792 mmeineke 558 // initalize rot as a unit matrix
793    
794     rot[0][0] = 1.0;
795     rot[0][1] = 0.0;
796     rot[0][2] = 0.0;
797    
798     rot[1][0] = 0.0;
799     rot[1][1] = 1.0;
800     rot[1][2] = 0.0;
801 tim 725
802 mmeineke 558 rot[2][0] = 0.0;
803     rot[2][1] = 0.0;
804     rot[2][2] = 1.0;
805 tim 725
806 mmeineke 558 // use a small angle aproximation for sin and cosine
807    
808 tim 725 angleSqr = angle * angle;
809 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
810     top = 1.0 - angleSqrOver4;
811     bottom = 1.0 + angleSqrOver4;
812    
813     cosAngle = top / bottom;
814     sinAngle = angle / bottom;
815    
816     rot[axes1][axes1] = cosAngle;
817     rot[axes2][axes2] = cosAngle;
818    
819     rot[axes1][axes2] = sinAngle;
820     rot[axes2][axes1] = -sinAngle;
821 tim 725
822 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
823 tim 725
824     for (i = 0; i < 3; i++){
825 mmeineke 558 ji[i] = 0.0;
826 tim 725 for (k = 0; k < 3; k++){
827 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
828     }
829     }
830    
831 tim 837 // rotate the Rotation matrix acording to:
832 mmeineke 558 // A[][] = A[][] * transpose(rot[][])
833    
834    
835 mmeineke 561 // NOte for as yet unknown reason, we are performing the
836 mmeineke 558 // calculation as:
837     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
838    
839 tim 725 for (i = 0; i < 3; i++){
840     for (j = 0; j < 3; j++){
841 gezelter 600 A[j][i] = 0.0;
842 tim 725 for (k = 0; k < 3; k++){
843     A[j][i] += tempA[i][k] * rot[j][k];
844 mmeineke 558 }
845     }
846     }
847     }
848 tim 677
849 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
850     myFF->doForces(calcPot, calcStress);
851 tim 677 }
852    
853     template<typename T> void Integrator<T>::thermalize(){
854 tim 725 tStats->velocitize();
855 tim 677 }
856 tim 763
857     template<typename T> double Integrator<T>::getConservedQuantity(void){
858     return tStats->getTotalE();
859 mmeineke 768 }
860 tim 837 template<typename T> string Integrator<T>::getAdditionalParameters(void){
861     //By default, return a null string
862     //The reason we use string instead of char* is that if we use char*, we will
863     //return a pointer point to local variable which might cause problem
864     return string();
865     }