ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 600
Committed: Mon Jul 14 22:38:13 2003 UTC (20 years, 11 months ago) by gezelter
File size: 15099 byte(s)
Log Message:
Fixes for get and set routines in Atom and DirectionalAtom

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2     #include <cstdlib>
3 mmeineke 561 #include <cmath>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14 mmeineke 561 Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){
15 mmeineke 558
16     info = theInfo;
17     myFF = the_ff;
18     isFirst = 1;
19    
20     molecules = info->molecules;
21     nMols = info->n_mol;
22    
23     // give a little love back to the SimInfo object
24    
25     if( info->the_integrator != NULL ) delete info->the_integrator;
26     info->the_integrator = this;
27    
28     nAtoms = info->n_atoms;
29    
30 mmeineke 594 std::cerr << "integ nAtoms = " << nAtoms << "\n";
31    
32 mmeineke 558 // check for constraints
33    
34     constrainedA = NULL;
35     constrainedB = NULL;
36     constrainedDsqr = NULL;
37     moving = NULL;
38     moved = NULL;
39 mmeineke 561 oldPos = NULL;
40 mmeineke 558
41     nConstrained = 0;
42    
43     checkConstraints();
44     }
45    
46     Integrator::~Integrator() {
47    
48     if( nConstrained ){
49     delete[] constrainedA;
50     delete[] constrainedB;
51     delete[] constrainedDsqr;
52     delete[] moving;
53     delete[] moved;
54 mmeineke 561 delete[] oldPos;
55 mmeineke 558 }
56    
57     }
58    
59     void Integrator::checkConstraints( void ){
60    
61    
62     isConstrained = 0;
63    
64     Constraint *temp_con;
65     Constraint *dummy_plug;
66     temp_con = new Constraint[info->n_SRI];
67     nConstrained = 0;
68     int constrained = 0;
69    
70     SRI** theArray;
71     for(int i = 0; i < nMols; i++){
72    
73     theArray = (SRI**) molecules[i].getMyBonds();
74     for(int j=0; j<molecules[i].getNBonds(); j++){
75    
76     constrained = theArray[j]->is_constrained();
77 mmeineke 594
78     std::cerr << "Is the folowing bond constrained \n";
79     theArray[j]->printMe();
80 mmeineke 558
81     if(constrained){
82    
83 mmeineke 594 std::cerr << "Yes\n";
84    
85 mmeineke 558 dummy_plug = theArray[j]->get_constraint();
86     temp_con[nConstrained].set_a( dummy_plug->get_a() );
87     temp_con[nConstrained].set_b( dummy_plug->get_b() );
88     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
89    
90     nConstrained++;
91     constrained = 0;
92 mmeineke 594 }
93     else std::cerr << "No.\n";
94 mmeineke 558 }
95    
96     theArray = (SRI**) molecules[i].getMyBends();
97     for(int j=0; j<molecules[i].getNBends(); j++){
98    
99     constrained = theArray[j]->is_constrained();
100    
101     if(constrained){
102    
103     dummy_plug = theArray[j]->get_constraint();
104     temp_con[nConstrained].set_a( dummy_plug->get_a() );
105     temp_con[nConstrained].set_b( dummy_plug->get_b() );
106     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
107    
108     nConstrained++;
109     constrained = 0;
110     }
111     }
112    
113     theArray = (SRI**) molecules[i].getMyTorsions();
114     for(int j=0; j<molecules[i].getNTorsions(); j++){
115    
116     constrained = theArray[j]->is_constrained();
117    
118     if(constrained){
119    
120     dummy_plug = theArray[j]->get_constraint();
121     temp_con[nConstrained].set_a( dummy_plug->get_a() );
122     temp_con[nConstrained].set_b( dummy_plug->get_b() );
123     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
124    
125     nConstrained++;
126     constrained = 0;
127     }
128     }
129     }
130    
131     if(nConstrained > 0){
132    
133     isConstrained = 1;
134    
135     if(constrainedA != NULL ) delete[] constrainedA;
136     if(constrainedB != NULL ) delete[] constrainedB;
137     if(constrainedDsqr != NULL ) delete[] constrainedDsqr;
138    
139     constrainedA = new int[nConstrained];
140     constrainedB = new int[nConstrained];
141     constrainedDsqr = new double[nConstrained];
142    
143     for( int i = 0; i < nConstrained; i++){
144    
145     constrainedA[i] = temp_con[i].get_a();
146     constrainedB[i] = temp_con[i].get_b();
147     constrainedDsqr[i] = temp_con[i].get_dsqr();
148 mmeineke 563
149 mmeineke 558 }
150    
151    
152     // save oldAtoms to check for lode balanceing later on.
153    
154     oldAtoms = nAtoms;
155    
156     moving = new int[nAtoms];
157     moved = new int[nAtoms];
158    
159 mmeineke 561 oldPos = new double[nAtoms*3];
160 mmeineke 558 }
161    
162     delete[] temp_con;
163     }
164    
165    
166     void Integrator::integrate( void ){
167    
168     int i, j; // loop counters
169    
170     double runTime = info->run_time;
171     double sampleTime = info->sampleTime;
172     double statusTime = info->statusTime;
173     double thermalTime = info->thermalTime;
174    
175     double currSample;
176     double currThermal;
177     double currStatus;
178     double currTime;
179    
180     int calcPot, calcStress;
181     int isError;
182    
183     tStats = new Thermo( info );
184 mmeineke 561 statOut = new StatWriter( info );
185     dumpOut = new DumpWriter( info );
186 mmeineke 558
187 mmeineke 561 atoms = info->atoms;
188 mmeineke 558 DirectionalAtom* dAtom;
189 mmeineke 561
190     dt = info->dt;
191 mmeineke 558 dt2 = 0.5 * dt;
192    
193     // initialize the forces before the first step
194    
195     myFF->doForces(1,1);
196    
197     if( info->setTemp ){
198    
199     tStats->velocitize();
200     }
201    
202 mmeineke 561 dumpOut->writeDump( 0.0 );
203     statOut->writeStat( 0.0 );
204 mmeineke 558
205     calcPot = 0;
206     calcStress = 0;
207     currSample = sampleTime;
208     currThermal = thermalTime;
209     currStatus = statusTime;
210     currTime = 0.0;;
211    
212 mmeineke 559
213     readyCheck();
214    
215     #ifdef IS_MPI
216     strcpy( checkPointMsg,
217     "The integrator is ready to go." );
218     MPIcheckPoint();
219     #endif // is_mpi
220    
221 mmeineke 558 while( currTime < runTime ){
222    
223     if( (currTime+dt) >= currStatus ){
224     calcPot = 1;
225     calcStress = 1;
226     }
227 mmeineke 561
228 mmeineke 597 std::cerr << currTime << "\n";
229 mmeineke 594
230 mmeineke 558 integrateStep( calcPot, calcStress );
231    
232     currTime += dt;
233    
234     if( info->setTemp ){
235     if( currTime >= currThermal ){
236     tStats->velocitize();
237     currThermal += thermalTime;
238     }
239     }
240    
241     if( currTime >= currSample ){
242 mmeineke 561 dumpOut->writeDump( currTime );
243 mmeineke 558 currSample += sampleTime;
244     }
245    
246     if( currTime >= currStatus ){
247 mmeineke 561 statOut->writeStat( currTime );
248 mmeineke 558 calcPot = 0;
249     calcStress = 0;
250     currStatus += statusTime;
251     }
252 mmeineke 559
253     #ifdef IS_MPI
254     strcpy( checkPointMsg,
255     "successfully took a time step." );
256     MPIcheckPoint();
257     #endif // is_mpi
258    
259 mmeineke 558 }
260    
261 mmeineke 572 dumpOut->writeFinal(currTime);
262 mmeineke 558
263 mmeineke 561 delete dumpOut;
264     delete statOut;
265 mmeineke 558 }
266    
267     void Integrator::integrateStep( int calcPot, int calcStress ){
268    
269 mmeineke 561
270    
271 mmeineke 558 // Position full step, and velocity half step
272    
273 mmeineke 561 preMove();
274 mmeineke 558 moveA();
275 gezelter 600 if( nConstrained ) constrainA();
276 mmeineke 558
277     // calc forces
278    
279     myFF->doForces(calcPot,calcStress);
280    
281     // finish the velocity half step
282    
283     moveB();
284     if( nConstrained ) constrainB();
285    
286     }
287    
288    
289     void Integrator::moveA( void ){
290    
291 gezelter 600 int i, j;
292 mmeineke 558 DirectionalAtom* dAtom;
293 gezelter 600 double Tb[3], ji[3];
294     double A[3][3], I[3][3];
295 mmeineke 561 double angle;
296 gezelter 600 double vel[3], pos[3], frc[3];
297     double mass;
298 mmeineke 558
299     for( i=0; i<nAtoms; i++ ){
300 mmeineke 567
301 gezelter 600 atoms[i]->getVel( vel );
302     atoms[i]->getPos( pos );
303     atoms[i]->getFrc( frc );
304 mmeineke 558
305 gezelter 600 mass = atoms[i]->getMass();
306 mmeineke 594
307 gezelter 600 for (j=0; j < 3; j++) {
308     // velocity half step
309     vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
310     // position whole step
311     pos[j] += dt * vel[j];
312     }
313 mmeineke 594
314 gezelter 600 atoms[i]->setVel( vel );
315     atoms[i]->setPos( pos );
316    
317 mmeineke 558 if( atoms[i]->isDirectional() ){
318    
319     dAtom = (DirectionalAtom *)atoms[i];
320    
321     // get and convert the torque to body frame
322    
323 gezelter 600 dAtom->getTrq( Tb );
324 mmeineke 558 dAtom->lab2Body( Tb );
325 mmeineke 597
326 mmeineke 558 // get the angular momentum, and propagate a half step
327 gezelter 600
328     dAtom->getJ( ji );
329    
330     for (j=0; j < 3; j++)
331     ji[j] += (dt2 * Tb[j]) * eConvert;
332 mmeineke 558
333     // use the angular velocities to propagate the rotation matrix a
334     // full time step
335 gezelter 600
336     dAtom->getA(A);
337     dAtom->getI(I);
338    
339 mmeineke 558 // rotate about the x-axis
340 gezelter 600 angle = dt2 * ji[0] / I[0][0];
341     this->rotate( 1, 2, angle, ji, A );
342 mmeineke 597
343 mmeineke 558 // rotate about the y-axis
344 gezelter 600 angle = dt2 * ji[1] / I[1][1];
345     this->rotate( 2, 0, angle, ji, A );
346 mmeineke 558
347     // rotate about the z-axis
348 gezelter 600 angle = dt * ji[2] / I[2][2];
349     this->rotate( 0, 1, angle, ji, A);
350 mmeineke 558
351     // rotate about the y-axis
352 gezelter 600 angle = dt2 * ji[1] / I[1][1];
353     this->rotate( 2, 0, angle, ji, A );
354 mmeineke 558
355     // rotate about the x-axis
356 gezelter 600 angle = dt2 * ji[0] / I[0][0];
357     this->rotate( 1, 2, angle, ji, A );
358 mmeineke 558
359 mmeineke 597
360 gezelter 600 dAtom->setJ( ji );
361     dAtom->setA( A );
362 mmeineke 597
363 gezelter 600 }
364 mmeineke 558 }
365     }
366    
367    
368     void Integrator::moveB( void ){
369 gezelter 600 int i, j;
370 mmeineke 558 DirectionalAtom* dAtom;
371 gezelter 600 double Tb[3], ji[3];
372     double vel[3], frc[3];
373     double mass;
374 mmeineke 558
375     for( i=0; i<nAtoms; i++ ){
376 gezelter 600
377     atoms[i]->getVel( vel );
378     atoms[i]->getFrc( frc );
379 mmeineke 558
380 gezelter 600 mass = atoms[i]->getMass();
381    
382 mmeineke 558 // velocity half step
383 gezelter 600 for (j=0; j < 3; j++)
384     vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
385    
386     atoms[i]->setVel( vel );
387 mmeineke 597
388 mmeineke 558 if( atoms[i]->isDirectional() ){
389 gezelter 600
390 mmeineke 558 dAtom = (DirectionalAtom *)atoms[i];
391 mmeineke 597
392 gezelter 600 // get and convert the torque to body frame
393    
394     dAtom->getTrq( Tb );
395 mmeineke 558 dAtom->lab2Body( Tb );
396 gezelter 600
397     // get the angular momentum, and propagate a half step
398    
399     dAtom->getJ( ji );
400    
401     for (j=0; j < 3; j++)
402     ji[j] += (dt2 * Tb[j]) * eConvert;
403 mmeineke 558
404 mmeineke 597
405 gezelter 600 dAtom->setJ( ji );
406 mmeineke 558 }
407     }
408     }
409    
410     void Integrator::preMove( void ){
411 gezelter 600 int i, j;
412     double pos[3];
413 mmeineke 558
414     if( nConstrained ){
415 mmeineke 561
416 gezelter 600 for(i=0; i < nAtoms; i++) {
417    
418     atoms[i]->getPos( pos );
419 mmeineke 558
420 gezelter 600 for (j = 0; j < 3; j++) {
421     oldPos[3*i + j] = pos[j];
422     }
423    
424     }
425     }
426     }
427    
428 mmeineke 558 void Integrator::constrainA(){
429    
430     int i,j,k;
431     int done;
432 gezelter 600 double posA[3], posB[3];
433     double velA[3], velB[3];
434 mmeineke 572 double pab[3];
435     double rab[3];
436 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
437 mmeineke 558 double rma, rmb;
438     double dx, dy, dz;
439 mmeineke 561 double rpab;
440 mmeineke 558 double rabsq, pabsq, rpabsq;
441     double diffsq;
442     double gab;
443     int iteration;
444    
445 gezelter 600 for( i=0; i<nAtoms; i++){
446 mmeineke 558 moving[i] = 0;
447     moved[i] = 1;
448     }
449 mmeineke 567
450 mmeineke 558 iteration = 0;
451     done = 0;
452     while( !done && (iteration < maxIteration )){
453    
454     done = 1;
455     for(i=0; i<nConstrained; i++){
456    
457     a = constrainedA[i];
458     b = constrainedB[i];
459 mmeineke 563
460     ax = (a*3) + 0;
461     ay = (a*3) + 1;
462     az = (a*3) + 2;
463    
464     bx = (b*3) + 0;
465     by = (b*3) + 1;
466     bz = (b*3) + 2;
467    
468 mmeineke 558 if( moved[a] || moved[b] ){
469 gezelter 600
470     atoms[a]->getPos( posA );
471     atoms[b]->getPos( posB );
472    
473     for (j = 0; j < 3; j++ )
474     pab[j] = posA[j] - posB[j];
475    
476 mmeineke 567 //periodic boundary condition
477    
478 mmeineke 572 info->wrapVector( pab );
479 mmeineke 567
480 mmeineke 572 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
481    
482 mmeineke 561 rabsq = constrainedDsqr[i];
483 mmeineke 567 diffsq = rabsq - pabsq;
484 mmeineke 558
485     // the original rattle code from alan tidesley
486 mmeineke 563 if (fabs(diffsq) > (tol*rabsq*2)) {
487 mmeineke 572 rab[0] = oldPos[ax] - oldPos[bx];
488     rab[1] = oldPos[ay] - oldPos[by];
489     rab[2] = oldPos[az] - oldPos[bz];
490 mmeineke 567
491 mmeineke 572 info->wrapVector( rab );
492 mmeineke 558
493 mmeineke 572 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
494 mmeineke 567
495 mmeineke 558 rpabsq = rpab * rpab;
496    
497    
498     if (rpabsq < (rabsq * -diffsq)){
499 mmeineke 563
500 mmeineke 558 #ifdef IS_MPI
501     a = atoms[a]->getGlobalIndex();
502     b = atoms[b]->getGlobalIndex();
503     #endif //is_mpi
504     sprintf( painCave.errMsg,
505 mmeineke 563 "Constraint failure in constrainA at atom %d and %d.\n",
506 mmeineke 558 a, b );
507     painCave.isFatal = 1;
508     simError();
509     }
510    
511     rma = 1.0 / atoms[a]->getMass();
512     rmb = 1.0 / atoms[b]->getMass();
513 mmeineke 567
514 mmeineke 558 gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab );
515 mmeineke 567
516 mmeineke 572 dx = rab[0] * gab;
517     dy = rab[1] * gab;
518     dz = rab[2] * gab;
519 mmeineke 558
520 gezelter 600 posA[0] += rma * dx;
521     posA[1] += rma * dy;
522     posA[2] += rma * dz;
523 mmeineke 558
524 gezelter 600 atoms[a]->setPos( posA );
525 mmeineke 558
526 gezelter 600 posB[0] -= rmb * dx;
527     posB[1] -= rmb * dy;
528     posB[2] -= rmb * dz;
529    
530     atoms[b]->setPos( posB );
531    
532 mmeineke 558 dx = dx / dt;
533     dy = dy / dt;
534     dz = dz / dt;
535    
536 gezelter 600 atoms[a]->getVel( velA );
537 mmeineke 558
538 gezelter 600 velA[0] += rma * dx;
539     velA[1] += rma * dy;
540     velA[2] += rma * dz;
541 mmeineke 558
542 gezelter 600 atoms[a]->setVel( velA );
543    
544     atoms[b]->getVel( velB );
545    
546     velB[0] -= rmb * dx;
547     velB[1] -= rmb * dy;
548     velB[2] -= rmb * dz;
549    
550     atoms[b]->setVel( velB );
551    
552 mmeineke 558 moving[a] = 1;
553     moving[b] = 1;
554     done = 0;
555     }
556     }
557     }
558    
559     for(i=0; i<nAtoms; i++){
560    
561     moved[i] = moving[i];
562     moving[i] = 0;
563     }
564    
565     iteration++;
566     }
567    
568     if( !done ){
569    
570 mmeineke 561 sprintf( painCave.errMsg,
571 mmeineke 558 "Constraint failure in constrainA, too many iterations: %d\n",
572 mmeineke 561 iteration );
573 mmeineke 558 painCave.isFatal = 1;
574     simError();
575     }
576    
577     }
578    
579     void Integrator::constrainB( void ){
580    
581     int i,j,k;
582     int done;
583 gezelter 600 double posA[3], posB[3];
584     double velA[3], velB[3];
585 mmeineke 558 double vxab, vyab, vzab;
586 mmeineke 572 double rab[3];
587 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
588 mmeineke 558 double rma, rmb;
589     double dx, dy, dz;
590     double rabsq, pabsq, rvab;
591     double diffsq;
592     double gab;
593     int iteration;
594    
595 mmeineke 561 for(i=0; i<nAtoms; i++){
596 mmeineke 558 moving[i] = 0;
597     moved[i] = 1;
598     }
599    
600     done = 0;
601 mmeineke 561 iteration = 0;
602 mmeineke 558 while( !done && (iteration < maxIteration ) ){
603    
604 mmeineke 567 done = 1;
605    
606 mmeineke 558 for(i=0; i<nConstrained; i++){
607    
608     a = constrainedA[i];
609     b = constrainedB[i];
610    
611 mmeineke 567 ax = (a*3) + 0;
612     ay = (a*3) + 1;
613     az = (a*3) + 2;
614 mmeineke 563
615 mmeineke 567 bx = (b*3) + 0;
616     by = (b*3) + 1;
617     bz = (b*3) + 2;
618 mmeineke 563
619 mmeineke 558 if( moved[a] || moved[b] ){
620    
621 gezelter 600 atoms[a]->getVel( velA );
622     atoms[b]->getVel( velB );
623    
624     vxab = velA[0] - velB[0];
625     vyab = velA[1] - velB[1];
626     vzab = velA[2] - velB[2];
627    
628     atoms[a]->getPos( posA );
629     atoms[b]->getPos( posB );
630    
631     for (j = 0; j < 3; j++)
632     rab[j] = posA[j] - posB[j];
633    
634 mmeineke 572 info->wrapVector( rab );
635 mmeineke 567
636 mmeineke 558 rma = 1.0 / atoms[a]->getMass();
637     rmb = 1.0 / atoms[b]->getMass();
638    
639 mmeineke 572 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
640 mmeineke 558
641 mmeineke 561 gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] );
642 mmeineke 558
643     if (fabs(gab) > tol) {
644    
645 mmeineke 572 dx = rab[0] * gab;
646     dy = rab[1] * gab;
647     dz = rab[2] * gab;
648 gezelter 600
649     velA[0] += rma * dx;
650     velA[1] += rma * dy;
651     velA[2] += rma * dz;
652 mmeineke 558
653 gezelter 600 atoms[a]->setVel( velA );
654    
655     velB[0] -= rmb * dx;
656     velB[1] -= rmb * dy;
657     velB[2] -= rmb * dz;
658    
659     atoms[b]->setVel( velB );
660 mmeineke 558
661     moving[a] = 1;
662     moving[b] = 1;
663     done = 0;
664     }
665     }
666     }
667    
668     for(i=0; i<nAtoms; i++){
669     moved[i] = moving[i];
670     moving[i] = 0;
671     }
672    
673     iteration++;
674     }
675 gezelter 600
676 mmeineke 558 if( !done ){
677    
678    
679 mmeineke 561 sprintf( painCave.errMsg,
680 mmeineke 558 "Constraint failure in constrainB, too many iterations: %d\n",
681 mmeineke 561 iteration );
682 mmeineke 558 painCave.isFatal = 1;
683     simError();
684     }
685    
686     }
687    
688     void Integrator::rotate( int axes1, int axes2, double angle, double ji[3],
689 gezelter 600 double A[3][3] ){
690 mmeineke 558
691     int i,j,k;
692     double sinAngle;
693     double cosAngle;
694     double angleSqr;
695     double angleSqrOver4;
696     double top, bottom;
697     double rot[3][3];
698     double tempA[3][3];
699     double tempJ[3];
700    
701     // initialize the tempA
702    
703     for(i=0; i<3; i++){
704     for(j=0; j<3; j++){
705 gezelter 600 tempA[j][i] = A[i][j];
706 mmeineke 558 }
707     }
708    
709     // initialize the tempJ
710    
711     for( i=0; i<3; i++) tempJ[i] = ji[i];
712    
713     // initalize rot as a unit matrix
714    
715     rot[0][0] = 1.0;
716     rot[0][1] = 0.0;
717     rot[0][2] = 0.0;
718    
719     rot[1][0] = 0.0;
720     rot[1][1] = 1.0;
721     rot[1][2] = 0.0;
722    
723     rot[2][0] = 0.0;
724     rot[2][1] = 0.0;
725     rot[2][2] = 1.0;
726    
727     // use a small angle aproximation for sin and cosine
728    
729     angleSqr = angle * angle;
730     angleSqrOver4 = angleSqr / 4.0;
731     top = 1.0 - angleSqrOver4;
732     bottom = 1.0 + angleSqrOver4;
733    
734     cosAngle = top / bottom;
735     sinAngle = angle / bottom;
736    
737     rot[axes1][axes1] = cosAngle;
738     rot[axes2][axes2] = cosAngle;
739    
740     rot[axes1][axes2] = sinAngle;
741     rot[axes2][axes1] = -sinAngle;
742    
743     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
744    
745     for(i=0; i<3; i++){
746     ji[i] = 0.0;
747     for(k=0; k<3; k++){
748     ji[i] += rot[i][k] * tempJ[k];
749     }
750     }
751    
752     // rotate the Rotation matrix acording to:
753     // A[][] = A[][] * transpose(rot[][])
754    
755    
756 mmeineke 561 // NOte for as yet unknown reason, we are performing the
757 mmeineke 558 // calculation as:
758     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
759    
760     for(i=0; i<3; i++){
761     for(j=0; j<3; j++){
762 gezelter 600 A[j][i] = 0.0;
763 mmeineke 558 for(k=0; k<3; k++){
764 gezelter 600 A[j][i] += tempA[i][k] * rot[j][k];
765 mmeineke 558 }
766     }
767     }
768     }