ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 601
Committed: Mon Jul 14 23:06:09 2003 UTC (20 years, 11 months ago) by gezelter
File size: 15009 byte(s)
Log Message:
Removed some debugging write statements

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2     #include <cstdlib>
3 mmeineke 561 #include <cmath>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14 mmeineke 561 Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){
15 mmeineke 558
16     info = theInfo;
17     myFF = the_ff;
18     isFirst = 1;
19    
20     molecules = info->molecules;
21     nMols = info->n_mol;
22    
23     // give a little love back to the SimInfo object
24    
25     if( info->the_integrator != NULL ) delete info->the_integrator;
26     info->the_integrator = this;
27    
28     nAtoms = info->n_atoms;
29    
30     // check for constraints
31    
32     constrainedA = NULL;
33     constrainedB = NULL;
34     constrainedDsqr = NULL;
35     moving = NULL;
36     moved = NULL;
37 mmeineke 561 oldPos = NULL;
38 mmeineke 558
39     nConstrained = 0;
40    
41     checkConstraints();
42     }
43    
44     Integrator::~Integrator() {
45    
46     if( nConstrained ){
47     delete[] constrainedA;
48     delete[] constrainedB;
49     delete[] constrainedDsqr;
50     delete[] moving;
51     delete[] moved;
52 mmeineke 561 delete[] oldPos;
53 mmeineke 558 }
54    
55     }
56    
57     void Integrator::checkConstraints( void ){
58    
59    
60     isConstrained = 0;
61    
62     Constraint *temp_con;
63     Constraint *dummy_plug;
64     temp_con = new Constraint[info->n_SRI];
65     nConstrained = 0;
66     int constrained = 0;
67    
68     SRI** theArray;
69     for(int i = 0; i < nMols; i++){
70    
71     theArray = (SRI**) molecules[i].getMyBonds();
72     for(int j=0; j<molecules[i].getNBonds(); j++){
73    
74     constrained = theArray[j]->is_constrained();
75 mmeineke 594
76     std::cerr << "Is the folowing bond constrained \n";
77     theArray[j]->printMe();
78 mmeineke 558
79     if(constrained){
80    
81 mmeineke 594 std::cerr << "Yes\n";
82    
83 mmeineke 558 dummy_plug = theArray[j]->get_constraint();
84     temp_con[nConstrained].set_a( dummy_plug->get_a() );
85     temp_con[nConstrained].set_b( dummy_plug->get_b() );
86     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
87    
88     nConstrained++;
89     constrained = 0;
90 mmeineke 594 }
91     else std::cerr << "No.\n";
92 mmeineke 558 }
93    
94     theArray = (SRI**) molecules[i].getMyBends();
95     for(int j=0; j<molecules[i].getNBends(); j++){
96    
97     constrained = theArray[j]->is_constrained();
98    
99     if(constrained){
100    
101     dummy_plug = theArray[j]->get_constraint();
102     temp_con[nConstrained].set_a( dummy_plug->get_a() );
103     temp_con[nConstrained].set_b( dummy_plug->get_b() );
104     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
105    
106     nConstrained++;
107     constrained = 0;
108     }
109     }
110    
111     theArray = (SRI**) molecules[i].getMyTorsions();
112     for(int j=0; j<molecules[i].getNTorsions(); j++){
113    
114     constrained = theArray[j]->is_constrained();
115    
116     if(constrained){
117    
118     dummy_plug = theArray[j]->get_constraint();
119     temp_con[nConstrained].set_a( dummy_plug->get_a() );
120     temp_con[nConstrained].set_b( dummy_plug->get_b() );
121     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
122    
123     nConstrained++;
124     constrained = 0;
125     }
126     }
127     }
128    
129     if(nConstrained > 0){
130    
131     isConstrained = 1;
132    
133     if(constrainedA != NULL ) delete[] constrainedA;
134     if(constrainedB != NULL ) delete[] constrainedB;
135     if(constrainedDsqr != NULL ) delete[] constrainedDsqr;
136    
137     constrainedA = new int[nConstrained];
138     constrainedB = new int[nConstrained];
139     constrainedDsqr = new double[nConstrained];
140    
141     for( int i = 0; i < nConstrained; i++){
142    
143     constrainedA[i] = temp_con[i].get_a();
144     constrainedB[i] = temp_con[i].get_b();
145     constrainedDsqr[i] = temp_con[i].get_dsqr();
146 mmeineke 563
147 mmeineke 558 }
148    
149    
150     // save oldAtoms to check for lode balanceing later on.
151    
152     oldAtoms = nAtoms;
153    
154     moving = new int[nAtoms];
155     moved = new int[nAtoms];
156    
157 mmeineke 561 oldPos = new double[nAtoms*3];
158 mmeineke 558 }
159    
160     delete[] temp_con;
161     }
162    
163    
164     void Integrator::integrate( void ){
165    
166     int i, j; // loop counters
167    
168     double runTime = info->run_time;
169     double sampleTime = info->sampleTime;
170     double statusTime = info->statusTime;
171     double thermalTime = info->thermalTime;
172    
173     double currSample;
174     double currThermal;
175     double currStatus;
176     double currTime;
177    
178     int calcPot, calcStress;
179     int isError;
180    
181     tStats = new Thermo( info );
182 mmeineke 561 statOut = new StatWriter( info );
183     dumpOut = new DumpWriter( info );
184 mmeineke 558
185 mmeineke 561 atoms = info->atoms;
186 mmeineke 558 DirectionalAtom* dAtom;
187 mmeineke 561
188     dt = info->dt;
189 mmeineke 558 dt2 = 0.5 * dt;
190    
191     // initialize the forces before the first step
192    
193     myFF->doForces(1,1);
194    
195     if( info->setTemp ){
196    
197     tStats->velocitize();
198     }
199    
200 mmeineke 561 dumpOut->writeDump( 0.0 );
201     statOut->writeStat( 0.0 );
202 mmeineke 558
203     calcPot = 0;
204     calcStress = 0;
205     currSample = sampleTime;
206     currThermal = thermalTime;
207     currStatus = statusTime;
208     currTime = 0.0;;
209    
210 mmeineke 559
211     readyCheck();
212    
213     #ifdef IS_MPI
214     strcpy( checkPointMsg,
215     "The integrator is ready to go." );
216     MPIcheckPoint();
217     #endif // is_mpi
218    
219 mmeineke 558 while( currTime < runTime ){
220    
221     if( (currTime+dt) >= currStatus ){
222     calcPot = 1;
223     calcStress = 1;
224     }
225 mmeineke 561
226 mmeineke 558 integrateStep( calcPot, calcStress );
227    
228     currTime += dt;
229    
230     if( info->setTemp ){
231     if( currTime >= currThermal ){
232     tStats->velocitize();
233     currThermal += thermalTime;
234     }
235     }
236    
237     if( currTime >= currSample ){
238 mmeineke 561 dumpOut->writeDump( currTime );
239 mmeineke 558 currSample += sampleTime;
240     }
241    
242     if( currTime >= currStatus ){
243 mmeineke 561 statOut->writeStat( currTime );
244 mmeineke 558 calcPot = 0;
245     calcStress = 0;
246     currStatus += statusTime;
247     }
248 mmeineke 559
249     #ifdef IS_MPI
250     strcpy( checkPointMsg,
251     "successfully took a time step." );
252     MPIcheckPoint();
253     #endif // is_mpi
254    
255 mmeineke 558 }
256    
257 mmeineke 572 dumpOut->writeFinal(currTime);
258 mmeineke 558
259 mmeineke 561 delete dumpOut;
260     delete statOut;
261 mmeineke 558 }
262    
263     void Integrator::integrateStep( int calcPot, int calcStress ){
264    
265 mmeineke 561
266    
267 mmeineke 558 // Position full step, and velocity half step
268    
269 mmeineke 561 preMove();
270 mmeineke 558 moveA();
271 gezelter 600 if( nConstrained ) constrainA();
272 mmeineke 558
273     // calc forces
274    
275     myFF->doForces(calcPot,calcStress);
276    
277     // finish the velocity half step
278    
279     moveB();
280     if( nConstrained ) constrainB();
281    
282     }
283    
284    
285     void Integrator::moveA( void ){
286    
287 gezelter 600 int i, j;
288 mmeineke 558 DirectionalAtom* dAtom;
289 gezelter 600 double Tb[3], ji[3];
290     double A[3][3], I[3][3];
291 mmeineke 561 double angle;
292 gezelter 600 double vel[3], pos[3], frc[3];
293     double mass;
294 mmeineke 558
295     for( i=0; i<nAtoms; i++ ){
296 mmeineke 567
297 gezelter 600 atoms[i]->getVel( vel );
298     atoms[i]->getPos( pos );
299     atoms[i]->getFrc( frc );
300 mmeineke 558
301 gezelter 600 mass = atoms[i]->getMass();
302 mmeineke 594
303 gezelter 600 for (j=0; j < 3; j++) {
304     // velocity half step
305     vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
306     // position whole step
307     pos[j] += dt * vel[j];
308     }
309 mmeineke 594
310 gezelter 600 atoms[i]->setVel( vel );
311     atoms[i]->setPos( pos );
312    
313 mmeineke 558 if( atoms[i]->isDirectional() ){
314    
315     dAtom = (DirectionalAtom *)atoms[i];
316    
317     // get and convert the torque to body frame
318    
319 gezelter 600 dAtom->getTrq( Tb );
320 mmeineke 558 dAtom->lab2Body( Tb );
321 mmeineke 597
322 mmeineke 558 // get the angular momentum, and propagate a half step
323 gezelter 600
324     dAtom->getJ( ji );
325    
326     for (j=0; j < 3; j++)
327     ji[j] += (dt2 * Tb[j]) * eConvert;
328 mmeineke 558
329     // use the angular velocities to propagate the rotation matrix a
330     // full time step
331 gezelter 600
332     dAtom->getA(A);
333     dAtom->getI(I);
334    
335 mmeineke 558 // rotate about the x-axis
336 gezelter 600 angle = dt2 * ji[0] / I[0][0];
337     this->rotate( 1, 2, angle, ji, A );
338 mmeineke 597
339 mmeineke 558 // rotate about the y-axis
340 gezelter 600 angle = dt2 * ji[1] / I[1][1];
341     this->rotate( 2, 0, angle, ji, A );
342 mmeineke 558
343     // rotate about the z-axis
344 gezelter 600 angle = dt * ji[2] / I[2][2];
345     this->rotate( 0, 1, angle, ji, A);
346 mmeineke 558
347     // rotate about the y-axis
348 gezelter 600 angle = dt2 * ji[1] / I[1][1];
349     this->rotate( 2, 0, angle, ji, A );
350 mmeineke 558
351     // rotate about the x-axis
352 gezelter 600 angle = dt2 * ji[0] / I[0][0];
353     this->rotate( 1, 2, angle, ji, A );
354 mmeineke 558
355 mmeineke 597
356 gezelter 600 dAtom->setJ( ji );
357     dAtom->setA( A );
358 mmeineke 597
359 gezelter 600 }
360 mmeineke 558 }
361     }
362    
363    
364     void Integrator::moveB( void ){
365 gezelter 600 int i, j;
366 mmeineke 558 DirectionalAtom* dAtom;
367 gezelter 600 double Tb[3], ji[3];
368     double vel[3], frc[3];
369     double mass;
370 mmeineke 558
371     for( i=0; i<nAtoms; i++ ){
372 gezelter 600
373     atoms[i]->getVel( vel );
374     atoms[i]->getFrc( frc );
375 mmeineke 558
376 gezelter 600 mass = atoms[i]->getMass();
377    
378 mmeineke 558 // velocity half step
379 gezelter 600 for (j=0; j < 3; j++)
380     vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
381    
382     atoms[i]->setVel( vel );
383 mmeineke 597
384 mmeineke 558 if( atoms[i]->isDirectional() ){
385 gezelter 600
386 mmeineke 558 dAtom = (DirectionalAtom *)atoms[i];
387 mmeineke 597
388 gezelter 600 // get and convert the torque to body frame
389    
390     dAtom->getTrq( Tb );
391 mmeineke 558 dAtom->lab2Body( Tb );
392 gezelter 600
393     // get the angular momentum, and propagate a half step
394    
395     dAtom->getJ( ji );
396    
397     for (j=0; j < 3; j++)
398     ji[j] += (dt2 * Tb[j]) * eConvert;
399 mmeineke 558
400 mmeineke 597
401 gezelter 600 dAtom->setJ( ji );
402 mmeineke 558 }
403     }
404     }
405    
406     void Integrator::preMove( void ){
407 gezelter 600 int i, j;
408     double pos[3];
409 mmeineke 558
410     if( nConstrained ){
411 mmeineke 561
412 gezelter 600 for(i=0; i < nAtoms; i++) {
413    
414     atoms[i]->getPos( pos );
415 mmeineke 558
416 gezelter 600 for (j = 0; j < 3; j++) {
417     oldPos[3*i + j] = pos[j];
418     }
419    
420     }
421     }
422     }
423    
424 mmeineke 558 void Integrator::constrainA(){
425    
426     int i,j,k;
427     int done;
428 gezelter 600 double posA[3], posB[3];
429     double velA[3], velB[3];
430 mmeineke 572 double pab[3];
431     double rab[3];
432 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
433 mmeineke 558 double rma, rmb;
434     double dx, dy, dz;
435 mmeineke 561 double rpab;
436 mmeineke 558 double rabsq, pabsq, rpabsq;
437     double diffsq;
438     double gab;
439     int iteration;
440    
441 gezelter 600 for( i=0; i<nAtoms; i++){
442 mmeineke 558 moving[i] = 0;
443     moved[i] = 1;
444     }
445 mmeineke 567
446 mmeineke 558 iteration = 0;
447     done = 0;
448     while( !done && (iteration < maxIteration )){
449    
450     done = 1;
451     for(i=0; i<nConstrained; i++){
452    
453     a = constrainedA[i];
454     b = constrainedB[i];
455 mmeineke 563
456     ax = (a*3) + 0;
457     ay = (a*3) + 1;
458     az = (a*3) + 2;
459    
460     bx = (b*3) + 0;
461     by = (b*3) + 1;
462     bz = (b*3) + 2;
463    
464 mmeineke 558 if( moved[a] || moved[b] ){
465 gezelter 600
466     atoms[a]->getPos( posA );
467     atoms[b]->getPos( posB );
468    
469     for (j = 0; j < 3; j++ )
470     pab[j] = posA[j] - posB[j];
471    
472 mmeineke 567 //periodic boundary condition
473    
474 mmeineke 572 info->wrapVector( pab );
475 mmeineke 567
476 mmeineke 572 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
477    
478 mmeineke 561 rabsq = constrainedDsqr[i];
479 mmeineke 567 diffsq = rabsq - pabsq;
480 mmeineke 558
481     // the original rattle code from alan tidesley
482 mmeineke 563 if (fabs(diffsq) > (tol*rabsq*2)) {
483 mmeineke 572 rab[0] = oldPos[ax] - oldPos[bx];
484     rab[1] = oldPos[ay] - oldPos[by];
485     rab[2] = oldPos[az] - oldPos[bz];
486 mmeineke 567
487 mmeineke 572 info->wrapVector( rab );
488 mmeineke 558
489 mmeineke 572 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
490 mmeineke 567
491 mmeineke 558 rpabsq = rpab * rpab;
492    
493    
494     if (rpabsq < (rabsq * -diffsq)){
495 mmeineke 563
496 mmeineke 558 #ifdef IS_MPI
497     a = atoms[a]->getGlobalIndex();
498     b = atoms[b]->getGlobalIndex();
499     #endif //is_mpi
500     sprintf( painCave.errMsg,
501 mmeineke 563 "Constraint failure in constrainA at atom %d and %d.\n",
502 mmeineke 558 a, b );
503     painCave.isFatal = 1;
504     simError();
505     }
506    
507     rma = 1.0 / atoms[a]->getMass();
508     rmb = 1.0 / atoms[b]->getMass();
509 mmeineke 567
510 mmeineke 558 gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab );
511 mmeineke 567
512 mmeineke 572 dx = rab[0] * gab;
513     dy = rab[1] * gab;
514     dz = rab[2] * gab;
515 mmeineke 558
516 gezelter 600 posA[0] += rma * dx;
517     posA[1] += rma * dy;
518     posA[2] += rma * dz;
519 mmeineke 558
520 gezelter 600 atoms[a]->setPos( posA );
521 mmeineke 558
522 gezelter 600 posB[0] -= rmb * dx;
523     posB[1] -= rmb * dy;
524     posB[2] -= rmb * dz;
525    
526     atoms[b]->setPos( posB );
527    
528 mmeineke 558 dx = dx / dt;
529     dy = dy / dt;
530     dz = dz / dt;
531    
532 gezelter 600 atoms[a]->getVel( velA );
533 mmeineke 558
534 gezelter 600 velA[0] += rma * dx;
535     velA[1] += rma * dy;
536     velA[2] += rma * dz;
537 mmeineke 558
538 gezelter 600 atoms[a]->setVel( velA );
539    
540     atoms[b]->getVel( velB );
541    
542     velB[0] -= rmb * dx;
543     velB[1] -= rmb * dy;
544     velB[2] -= rmb * dz;
545    
546     atoms[b]->setVel( velB );
547    
548 mmeineke 558 moving[a] = 1;
549     moving[b] = 1;
550     done = 0;
551     }
552     }
553     }
554    
555     for(i=0; i<nAtoms; i++){
556    
557     moved[i] = moving[i];
558     moving[i] = 0;
559     }
560    
561     iteration++;
562     }
563    
564     if( !done ){
565    
566 mmeineke 561 sprintf( painCave.errMsg,
567 mmeineke 558 "Constraint failure in constrainA, too many iterations: %d\n",
568 mmeineke 561 iteration );
569 mmeineke 558 painCave.isFatal = 1;
570     simError();
571     }
572    
573     }
574    
575     void Integrator::constrainB( void ){
576    
577     int i,j,k;
578     int done;
579 gezelter 600 double posA[3], posB[3];
580     double velA[3], velB[3];
581 mmeineke 558 double vxab, vyab, vzab;
582 mmeineke 572 double rab[3];
583 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
584 mmeineke 558 double rma, rmb;
585     double dx, dy, dz;
586     double rabsq, pabsq, rvab;
587     double diffsq;
588     double gab;
589     int iteration;
590    
591 mmeineke 561 for(i=0; i<nAtoms; i++){
592 mmeineke 558 moving[i] = 0;
593     moved[i] = 1;
594     }
595    
596     done = 0;
597 mmeineke 561 iteration = 0;
598 mmeineke 558 while( !done && (iteration < maxIteration ) ){
599    
600 mmeineke 567 done = 1;
601    
602 mmeineke 558 for(i=0; i<nConstrained; i++){
603    
604     a = constrainedA[i];
605     b = constrainedB[i];
606    
607 mmeineke 567 ax = (a*3) + 0;
608     ay = (a*3) + 1;
609     az = (a*3) + 2;
610 mmeineke 563
611 mmeineke 567 bx = (b*3) + 0;
612     by = (b*3) + 1;
613     bz = (b*3) + 2;
614 mmeineke 563
615 mmeineke 558 if( moved[a] || moved[b] ){
616    
617 gezelter 600 atoms[a]->getVel( velA );
618     atoms[b]->getVel( velB );
619    
620     vxab = velA[0] - velB[0];
621     vyab = velA[1] - velB[1];
622     vzab = velA[2] - velB[2];
623    
624     atoms[a]->getPos( posA );
625     atoms[b]->getPos( posB );
626    
627     for (j = 0; j < 3; j++)
628     rab[j] = posA[j] - posB[j];
629    
630 mmeineke 572 info->wrapVector( rab );
631 mmeineke 567
632 mmeineke 558 rma = 1.0 / atoms[a]->getMass();
633     rmb = 1.0 / atoms[b]->getMass();
634    
635 mmeineke 572 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
636 mmeineke 558
637 mmeineke 561 gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] );
638 mmeineke 558
639     if (fabs(gab) > tol) {
640    
641 mmeineke 572 dx = rab[0] * gab;
642     dy = rab[1] * gab;
643     dz = rab[2] * gab;
644 gezelter 600
645     velA[0] += rma * dx;
646     velA[1] += rma * dy;
647     velA[2] += rma * dz;
648 mmeineke 558
649 gezelter 600 atoms[a]->setVel( velA );
650    
651     velB[0] -= rmb * dx;
652     velB[1] -= rmb * dy;
653     velB[2] -= rmb * dz;
654    
655     atoms[b]->setVel( velB );
656 mmeineke 558
657     moving[a] = 1;
658     moving[b] = 1;
659     done = 0;
660     }
661     }
662     }
663    
664     for(i=0; i<nAtoms; i++){
665     moved[i] = moving[i];
666     moving[i] = 0;
667     }
668    
669     iteration++;
670     }
671 gezelter 600
672 mmeineke 558 if( !done ){
673    
674    
675 mmeineke 561 sprintf( painCave.errMsg,
676 mmeineke 558 "Constraint failure in constrainB, too many iterations: %d\n",
677 mmeineke 561 iteration );
678 mmeineke 558 painCave.isFatal = 1;
679     simError();
680     }
681    
682     }
683    
684     void Integrator::rotate( int axes1, int axes2, double angle, double ji[3],
685 gezelter 600 double A[3][3] ){
686 mmeineke 558
687     int i,j,k;
688     double sinAngle;
689     double cosAngle;
690     double angleSqr;
691     double angleSqrOver4;
692     double top, bottom;
693     double rot[3][3];
694     double tempA[3][3];
695     double tempJ[3];
696    
697     // initialize the tempA
698    
699     for(i=0; i<3; i++){
700     for(j=0; j<3; j++){
701 gezelter 600 tempA[j][i] = A[i][j];
702 mmeineke 558 }
703     }
704    
705     // initialize the tempJ
706    
707     for( i=0; i<3; i++) tempJ[i] = ji[i];
708    
709     // initalize rot as a unit matrix
710    
711     rot[0][0] = 1.0;
712     rot[0][1] = 0.0;
713     rot[0][2] = 0.0;
714    
715     rot[1][0] = 0.0;
716     rot[1][1] = 1.0;
717     rot[1][2] = 0.0;
718    
719     rot[2][0] = 0.0;
720     rot[2][1] = 0.0;
721     rot[2][2] = 1.0;
722    
723     // use a small angle aproximation for sin and cosine
724    
725     angleSqr = angle * angle;
726     angleSqrOver4 = angleSqr / 4.0;
727     top = 1.0 - angleSqrOver4;
728     bottom = 1.0 + angleSqrOver4;
729    
730     cosAngle = top / bottom;
731     sinAngle = angle / bottom;
732    
733     rot[axes1][axes1] = cosAngle;
734     rot[axes2][axes2] = cosAngle;
735    
736     rot[axes1][axes2] = sinAngle;
737     rot[axes2][axes1] = -sinAngle;
738    
739     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
740    
741     for(i=0; i<3; i++){
742     ji[i] = 0.0;
743     for(k=0; k<3; k++){
744     ji[i] += rot[i][k] * tempJ[k];
745     }
746     }
747    
748     // rotate the Rotation matrix acording to:
749     // A[][] = A[][] * transpose(rot[][])
750    
751    
752 mmeineke 561 // NOte for as yet unknown reason, we are performing the
753 mmeineke 558 // calculation as:
754     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
755    
756     for(i=0; i<3; i++){
757     for(j=0; j<3; j++){
758 gezelter 600 A[j][i] = 0.0;
759 mmeineke 558 for(k=0; k<3; k++){
760 gezelter 600 A[j][i] += tempA[i][k] * rot[j][k];
761 mmeineke 558 }
762     }
763     }
764     }