ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 614
Committed: Tue Jul 15 17:57:04 2003 UTC (20 years, 11 months ago) by mmeineke
File size: 15168 byte(s)
Log Message:
fixed some bugs, Changed entry_plug to info where appropriate

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2     #include <cstdlib>
3 mmeineke 561 #include <cmath>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14 mmeineke 561 Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){
15 mmeineke 558
16     info = theInfo;
17     myFF = the_ff;
18     isFirst = 1;
19    
20     molecules = info->molecules;
21     nMols = info->n_mol;
22    
23     // give a little love back to the SimInfo object
24    
25     if( info->the_integrator != NULL ) delete info->the_integrator;
26     info->the_integrator = this;
27    
28     nAtoms = info->n_atoms;
29    
30     // check for constraints
31    
32     constrainedA = NULL;
33     constrainedB = NULL;
34     constrainedDsqr = NULL;
35     moving = NULL;
36     moved = NULL;
37 mmeineke 561 oldPos = NULL;
38 mmeineke 558
39     nConstrained = 0;
40    
41     checkConstraints();
42     }
43    
44     Integrator::~Integrator() {
45    
46     if( nConstrained ){
47     delete[] constrainedA;
48     delete[] constrainedB;
49     delete[] constrainedDsqr;
50     delete[] moving;
51     delete[] moved;
52 mmeineke 561 delete[] oldPos;
53 mmeineke 558 }
54    
55     }
56    
57     void Integrator::checkConstraints( void ){
58    
59    
60     isConstrained = 0;
61    
62     Constraint *temp_con;
63     Constraint *dummy_plug;
64     temp_con = new Constraint[info->n_SRI];
65     nConstrained = 0;
66     int constrained = 0;
67    
68     SRI** theArray;
69     for(int i = 0; i < nMols; i++){
70    
71     theArray = (SRI**) molecules[i].getMyBonds();
72     for(int j=0; j<molecules[i].getNBonds(); j++){
73    
74     constrained = theArray[j]->is_constrained();
75 mmeineke 594
76 mmeineke 558 if(constrained){
77 mmeineke 594
78 mmeineke 558 dummy_plug = theArray[j]->get_constraint();
79     temp_con[nConstrained].set_a( dummy_plug->get_a() );
80     temp_con[nConstrained].set_b( dummy_plug->get_b() );
81     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
82    
83     nConstrained++;
84     constrained = 0;
85 mmeineke 594 }
86 mmeineke 558 }
87    
88     theArray = (SRI**) molecules[i].getMyBends();
89     for(int j=0; j<molecules[i].getNBends(); j++){
90    
91     constrained = theArray[j]->is_constrained();
92    
93     if(constrained){
94    
95     dummy_plug = theArray[j]->get_constraint();
96     temp_con[nConstrained].set_a( dummy_plug->get_a() );
97     temp_con[nConstrained].set_b( dummy_plug->get_b() );
98     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
99    
100     nConstrained++;
101     constrained = 0;
102     }
103     }
104    
105     theArray = (SRI**) molecules[i].getMyTorsions();
106     for(int j=0; j<molecules[i].getNTorsions(); j++){
107    
108     constrained = theArray[j]->is_constrained();
109    
110     if(constrained){
111    
112     dummy_plug = theArray[j]->get_constraint();
113     temp_con[nConstrained].set_a( dummy_plug->get_a() );
114     temp_con[nConstrained].set_b( dummy_plug->get_b() );
115     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
116    
117     nConstrained++;
118     constrained = 0;
119     }
120     }
121     }
122    
123     if(nConstrained > 0){
124    
125     isConstrained = 1;
126    
127     if(constrainedA != NULL ) delete[] constrainedA;
128     if(constrainedB != NULL ) delete[] constrainedB;
129     if(constrainedDsqr != NULL ) delete[] constrainedDsqr;
130    
131     constrainedA = new int[nConstrained];
132     constrainedB = new int[nConstrained];
133     constrainedDsqr = new double[nConstrained];
134    
135     for( int i = 0; i < nConstrained; i++){
136    
137     constrainedA[i] = temp_con[i].get_a();
138     constrainedB[i] = temp_con[i].get_b();
139     constrainedDsqr[i] = temp_con[i].get_dsqr();
140 mmeineke 563
141 mmeineke 558 }
142    
143    
144     // save oldAtoms to check for lode balanceing later on.
145    
146     oldAtoms = nAtoms;
147    
148     moving = new int[nAtoms];
149     moved = new int[nAtoms];
150    
151 mmeineke 561 oldPos = new double[nAtoms*3];
152 mmeineke 558 }
153    
154     delete[] temp_con;
155     }
156    
157    
158     void Integrator::integrate( void ){
159    
160     int i, j; // loop counters
161    
162     double runTime = info->run_time;
163     double sampleTime = info->sampleTime;
164     double statusTime = info->statusTime;
165     double thermalTime = info->thermalTime;
166    
167     double currSample;
168     double currThermal;
169     double currStatus;
170     double currTime;
171    
172     int calcPot, calcStress;
173     int isError;
174    
175     tStats = new Thermo( info );
176 mmeineke 561 statOut = new StatWriter( info );
177     dumpOut = new DumpWriter( info );
178 mmeineke 558
179 mmeineke 561 atoms = info->atoms;
180 mmeineke 558 DirectionalAtom* dAtom;
181 mmeineke 561
182     dt = info->dt;
183 mmeineke 558 dt2 = 0.5 * dt;
184    
185     // initialize the forces before the first step
186    
187     myFF->doForces(1,1);
188    
189     if( info->setTemp ){
190    
191     tStats->velocitize();
192     }
193    
194 mmeineke 561 dumpOut->writeDump( 0.0 );
195     statOut->writeStat( 0.0 );
196 mmeineke 558
197     calcPot = 0;
198     calcStress = 0;
199     currSample = sampleTime;
200     currThermal = thermalTime;
201     currStatus = statusTime;
202     currTime = 0.0;;
203    
204 mmeineke 559
205     readyCheck();
206    
207     #ifdef IS_MPI
208     strcpy( checkPointMsg,
209     "The integrator is ready to go." );
210     MPIcheckPoint();
211     #endif // is_mpi
212    
213 mmeineke 558 while( currTime < runTime ){
214    
215     if( (currTime+dt) >= currStatus ){
216     calcPot = 1;
217     calcStress = 1;
218     }
219 mmeineke 561
220 mmeineke 558 integrateStep( calcPot, calcStress );
221    
222     currTime += dt;
223    
224     if( info->setTemp ){
225     if( currTime >= currThermal ){
226     tStats->velocitize();
227     currThermal += thermalTime;
228     }
229     }
230    
231     if( currTime >= currSample ){
232 mmeineke 561 dumpOut->writeDump( currTime );
233 mmeineke 558 currSample += sampleTime;
234     }
235    
236     if( currTime >= currStatus ){
237 mmeineke 561 statOut->writeStat( currTime );
238 mmeineke 558 calcPot = 0;
239     calcStress = 0;
240     currStatus += statusTime;
241     }
242 mmeineke 559
243     #ifdef IS_MPI
244     strcpy( checkPointMsg,
245     "successfully took a time step." );
246     MPIcheckPoint();
247     #endif // is_mpi
248    
249 mmeineke 558 }
250    
251 mmeineke 572 dumpOut->writeFinal(currTime);
252 mmeineke 558
253 mmeineke 561 delete dumpOut;
254     delete statOut;
255 mmeineke 558 }
256    
257     void Integrator::integrateStep( int calcPot, int calcStress ){
258    
259 mmeineke 561
260    
261 mmeineke 558 // Position full step, and velocity half step
262    
263 mmeineke 561 preMove();
264 mmeineke 558 moveA();
265 gezelter 600 if( nConstrained ) constrainA();
266 mmeineke 558
267 mmeineke 614
268     #ifdef IS_MPI
269     strcpy( checkPointMsg, "Succesful moveA\n" );
270     MPIcheckPoint();
271     #endif // is_mpi
272    
273    
274 mmeineke 558 // calc forces
275    
276     myFF->doForces(calcPot,calcStress);
277    
278 mmeineke 614 #ifdef IS_MPI
279     strcpy( checkPointMsg, "Succesful doForces\n" );
280     MPIcheckPoint();
281     #endif // is_mpi
282    
283    
284 mmeineke 558 // finish the velocity half step
285    
286     moveB();
287     if( nConstrained ) constrainB();
288 mmeineke 614
289     #ifdef IS_MPI
290     strcpy( checkPointMsg, "Succesful moveB\n" );
291     MPIcheckPoint();
292     #endif // is_mpi
293    
294    
295 mmeineke 558 }
296    
297    
298     void Integrator::moveA( void ){
299    
300 gezelter 600 int i, j;
301 mmeineke 558 DirectionalAtom* dAtom;
302 gezelter 600 double Tb[3], ji[3];
303     double A[3][3], I[3][3];
304 mmeineke 561 double angle;
305 gezelter 600 double vel[3], pos[3], frc[3];
306     double mass;
307 mmeineke 558
308     for( i=0; i<nAtoms; i++ ){
309 mmeineke 567
310 gezelter 600 atoms[i]->getVel( vel );
311     atoms[i]->getPos( pos );
312     atoms[i]->getFrc( frc );
313 mmeineke 558
314 gezelter 600 mass = atoms[i]->getMass();
315 mmeineke 594
316 gezelter 600 for (j=0; j < 3; j++) {
317     // velocity half step
318     vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
319     // position whole step
320     pos[j] += dt * vel[j];
321     }
322 mmeineke 594
323 gezelter 600 atoms[i]->setVel( vel );
324     atoms[i]->setPos( pos );
325    
326 mmeineke 558 if( atoms[i]->isDirectional() ){
327    
328     dAtom = (DirectionalAtom *)atoms[i];
329    
330     // get and convert the torque to body frame
331    
332 gezelter 600 dAtom->getTrq( Tb );
333 mmeineke 558 dAtom->lab2Body( Tb );
334 mmeineke 597
335 mmeineke 558 // get the angular momentum, and propagate a half step
336 gezelter 600
337     dAtom->getJ( ji );
338    
339     for (j=0; j < 3; j++)
340     ji[j] += (dt2 * Tb[j]) * eConvert;
341 mmeineke 558
342     // use the angular velocities to propagate the rotation matrix a
343     // full time step
344 gezelter 600
345     dAtom->getA(A);
346     dAtom->getI(I);
347    
348 mmeineke 558 // rotate about the x-axis
349 gezelter 600 angle = dt2 * ji[0] / I[0][0];
350     this->rotate( 1, 2, angle, ji, A );
351 mmeineke 597
352 mmeineke 558 // rotate about the y-axis
353 gezelter 600 angle = dt2 * ji[1] / I[1][1];
354     this->rotate( 2, 0, angle, ji, A );
355 mmeineke 558
356     // rotate about the z-axis
357 gezelter 600 angle = dt * ji[2] / I[2][2];
358     this->rotate( 0, 1, angle, ji, A);
359 mmeineke 558
360     // rotate about the y-axis
361 gezelter 600 angle = dt2 * ji[1] / I[1][1];
362     this->rotate( 2, 0, angle, ji, A );
363 mmeineke 558
364     // rotate about the x-axis
365 gezelter 600 angle = dt2 * ji[0] / I[0][0];
366     this->rotate( 1, 2, angle, ji, A );
367 mmeineke 558
368 mmeineke 597
369 gezelter 600 dAtom->setJ( ji );
370     dAtom->setA( A );
371 mmeineke 597
372 gezelter 600 }
373 mmeineke 558 }
374     }
375    
376    
377     void Integrator::moveB( void ){
378 gezelter 600 int i, j;
379 mmeineke 558 DirectionalAtom* dAtom;
380 gezelter 600 double Tb[3], ji[3];
381     double vel[3], frc[3];
382     double mass;
383 mmeineke 558
384     for( i=0; i<nAtoms; i++ ){
385 gezelter 600
386     atoms[i]->getVel( vel );
387     atoms[i]->getFrc( frc );
388 mmeineke 558
389 gezelter 600 mass = atoms[i]->getMass();
390    
391 mmeineke 558 // velocity half step
392 gezelter 600 for (j=0; j < 3; j++)
393     vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
394    
395     atoms[i]->setVel( vel );
396 mmeineke 597
397 mmeineke 558 if( atoms[i]->isDirectional() ){
398 gezelter 600
399 mmeineke 558 dAtom = (DirectionalAtom *)atoms[i];
400 mmeineke 597
401 gezelter 600 // get and convert the torque to body frame
402    
403     dAtom->getTrq( Tb );
404 mmeineke 558 dAtom->lab2Body( Tb );
405 gezelter 600
406     // get the angular momentum, and propagate a half step
407    
408     dAtom->getJ( ji );
409    
410     for (j=0; j < 3; j++)
411     ji[j] += (dt2 * Tb[j]) * eConvert;
412 mmeineke 558
413 mmeineke 597
414 gezelter 600 dAtom->setJ( ji );
415 mmeineke 558 }
416     }
417     }
418    
419     void Integrator::preMove( void ){
420 gezelter 600 int i, j;
421     double pos[3];
422 mmeineke 558
423     if( nConstrained ){
424 mmeineke 561
425 gezelter 600 for(i=0; i < nAtoms; i++) {
426    
427     atoms[i]->getPos( pos );
428 mmeineke 558
429 gezelter 600 for (j = 0; j < 3; j++) {
430     oldPos[3*i + j] = pos[j];
431     }
432    
433     }
434     }
435     }
436    
437 mmeineke 558 void Integrator::constrainA(){
438    
439     int i,j,k;
440     int done;
441 gezelter 600 double posA[3], posB[3];
442     double velA[3], velB[3];
443 mmeineke 572 double pab[3];
444     double rab[3];
445 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
446 mmeineke 558 double rma, rmb;
447     double dx, dy, dz;
448 mmeineke 561 double rpab;
449 mmeineke 558 double rabsq, pabsq, rpabsq;
450     double diffsq;
451     double gab;
452     int iteration;
453    
454 gezelter 600 for( i=0; i<nAtoms; i++){
455 mmeineke 558 moving[i] = 0;
456     moved[i] = 1;
457     }
458 mmeineke 567
459 mmeineke 558 iteration = 0;
460     done = 0;
461     while( !done && (iteration < maxIteration )){
462    
463     done = 1;
464     for(i=0; i<nConstrained; i++){
465    
466     a = constrainedA[i];
467     b = constrainedB[i];
468 mmeineke 563
469     ax = (a*3) + 0;
470     ay = (a*3) + 1;
471     az = (a*3) + 2;
472    
473     bx = (b*3) + 0;
474     by = (b*3) + 1;
475     bz = (b*3) + 2;
476    
477 mmeineke 558 if( moved[a] || moved[b] ){
478 gezelter 600
479     atoms[a]->getPos( posA );
480     atoms[b]->getPos( posB );
481    
482     for (j = 0; j < 3; j++ )
483     pab[j] = posA[j] - posB[j];
484    
485 mmeineke 567 //periodic boundary condition
486    
487 mmeineke 572 info->wrapVector( pab );
488 mmeineke 567
489 mmeineke 572 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
490    
491 mmeineke 561 rabsq = constrainedDsqr[i];
492 mmeineke 567 diffsq = rabsq - pabsq;
493 mmeineke 558
494     // the original rattle code from alan tidesley
495 mmeineke 563 if (fabs(diffsq) > (tol*rabsq*2)) {
496 mmeineke 572 rab[0] = oldPos[ax] - oldPos[bx];
497     rab[1] = oldPos[ay] - oldPos[by];
498     rab[2] = oldPos[az] - oldPos[bz];
499 mmeineke 567
500 mmeineke 572 info->wrapVector( rab );
501 mmeineke 558
502 mmeineke 572 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
503 mmeineke 567
504 mmeineke 558 rpabsq = rpab * rpab;
505    
506    
507     if (rpabsq < (rabsq * -diffsq)){
508 mmeineke 563
509 mmeineke 558 #ifdef IS_MPI
510     a = atoms[a]->getGlobalIndex();
511     b = atoms[b]->getGlobalIndex();
512     #endif //is_mpi
513     sprintf( painCave.errMsg,
514 mmeineke 563 "Constraint failure in constrainA at atom %d and %d.\n",
515 mmeineke 558 a, b );
516     painCave.isFatal = 1;
517     simError();
518     }
519    
520     rma = 1.0 / atoms[a]->getMass();
521     rmb = 1.0 / atoms[b]->getMass();
522 mmeineke 567
523 mmeineke 558 gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab );
524 mmeineke 567
525 mmeineke 572 dx = rab[0] * gab;
526     dy = rab[1] * gab;
527     dz = rab[2] * gab;
528 mmeineke 558
529 gezelter 600 posA[0] += rma * dx;
530     posA[1] += rma * dy;
531     posA[2] += rma * dz;
532 mmeineke 558
533 gezelter 600 atoms[a]->setPos( posA );
534 mmeineke 558
535 gezelter 600 posB[0] -= rmb * dx;
536     posB[1] -= rmb * dy;
537     posB[2] -= rmb * dz;
538    
539     atoms[b]->setPos( posB );
540    
541 mmeineke 558 dx = dx / dt;
542     dy = dy / dt;
543     dz = dz / dt;
544    
545 gezelter 600 atoms[a]->getVel( velA );
546 mmeineke 558
547 gezelter 600 velA[0] += rma * dx;
548     velA[1] += rma * dy;
549     velA[2] += rma * dz;
550 mmeineke 558
551 gezelter 600 atoms[a]->setVel( velA );
552    
553     atoms[b]->getVel( velB );
554    
555     velB[0] -= rmb * dx;
556     velB[1] -= rmb * dy;
557     velB[2] -= rmb * dz;
558    
559     atoms[b]->setVel( velB );
560    
561 mmeineke 558 moving[a] = 1;
562     moving[b] = 1;
563     done = 0;
564     }
565     }
566     }
567    
568     for(i=0; i<nAtoms; i++){
569    
570     moved[i] = moving[i];
571     moving[i] = 0;
572     }
573    
574     iteration++;
575     }
576    
577     if( !done ){
578    
579 mmeineke 561 sprintf( painCave.errMsg,
580 mmeineke 558 "Constraint failure in constrainA, too many iterations: %d\n",
581 mmeineke 561 iteration );
582 mmeineke 558 painCave.isFatal = 1;
583     simError();
584     }
585    
586     }
587    
588     void Integrator::constrainB( void ){
589    
590     int i,j,k;
591     int done;
592 gezelter 600 double posA[3], posB[3];
593     double velA[3], velB[3];
594 mmeineke 558 double vxab, vyab, vzab;
595 mmeineke 572 double rab[3];
596 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
597 mmeineke 558 double rma, rmb;
598     double dx, dy, dz;
599     double rabsq, pabsq, rvab;
600     double diffsq;
601     double gab;
602     int iteration;
603    
604 mmeineke 561 for(i=0; i<nAtoms; i++){
605 mmeineke 558 moving[i] = 0;
606     moved[i] = 1;
607     }
608    
609     done = 0;
610 mmeineke 561 iteration = 0;
611 mmeineke 558 while( !done && (iteration < maxIteration ) ){
612    
613 mmeineke 567 done = 1;
614    
615 mmeineke 558 for(i=0; i<nConstrained; i++){
616    
617     a = constrainedA[i];
618     b = constrainedB[i];
619    
620 mmeineke 567 ax = (a*3) + 0;
621     ay = (a*3) + 1;
622     az = (a*3) + 2;
623 mmeineke 563
624 mmeineke 567 bx = (b*3) + 0;
625     by = (b*3) + 1;
626     bz = (b*3) + 2;
627 mmeineke 563
628 mmeineke 558 if( moved[a] || moved[b] ){
629    
630 gezelter 600 atoms[a]->getVel( velA );
631     atoms[b]->getVel( velB );
632    
633     vxab = velA[0] - velB[0];
634     vyab = velA[1] - velB[1];
635     vzab = velA[2] - velB[2];
636    
637     atoms[a]->getPos( posA );
638     atoms[b]->getPos( posB );
639    
640     for (j = 0; j < 3; j++)
641     rab[j] = posA[j] - posB[j];
642    
643 mmeineke 572 info->wrapVector( rab );
644 mmeineke 567
645 mmeineke 558 rma = 1.0 / atoms[a]->getMass();
646     rmb = 1.0 / atoms[b]->getMass();
647    
648 mmeineke 572 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
649 mmeineke 558
650 mmeineke 561 gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] );
651 mmeineke 558
652     if (fabs(gab) > tol) {
653    
654 mmeineke 572 dx = rab[0] * gab;
655     dy = rab[1] * gab;
656     dz = rab[2] * gab;
657 gezelter 600
658     velA[0] += rma * dx;
659     velA[1] += rma * dy;
660     velA[2] += rma * dz;
661 mmeineke 558
662 gezelter 600 atoms[a]->setVel( velA );
663    
664     velB[0] -= rmb * dx;
665     velB[1] -= rmb * dy;
666     velB[2] -= rmb * dz;
667    
668     atoms[b]->setVel( velB );
669 mmeineke 558
670     moving[a] = 1;
671     moving[b] = 1;
672     done = 0;
673     }
674     }
675     }
676    
677     for(i=0; i<nAtoms; i++){
678     moved[i] = moving[i];
679     moving[i] = 0;
680     }
681    
682     iteration++;
683     }
684 gezelter 600
685 mmeineke 558 if( !done ){
686    
687    
688 mmeineke 561 sprintf( painCave.errMsg,
689 mmeineke 558 "Constraint failure in constrainB, too many iterations: %d\n",
690 mmeineke 561 iteration );
691 mmeineke 558 painCave.isFatal = 1;
692     simError();
693     }
694    
695     }
696    
697     void Integrator::rotate( int axes1, int axes2, double angle, double ji[3],
698 gezelter 600 double A[3][3] ){
699 mmeineke 558
700     int i,j,k;
701     double sinAngle;
702     double cosAngle;
703     double angleSqr;
704     double angleSqrOver4;
705     double top, bottom;
706     double rot[3][3];
707     double tempA[3][3];
708     double tempJ[3];
709    
710     // initialize the tempA
711    
712     for(i=0; i<3; i++){
713     for(j=0; j<3; j++){
714 gezelter 600 tempA[j][i] = A[i][j];
715 mmeineke 558 }
716     }
717    
718     // initialize the tempJ
719    
720     for( i=0; i<3; i++) tempJ[i] = ji[i];
721    
722     // initalize rot as a unit matrix
723    
724     rot[0][0] = 1.0;
725     rot[0][1] = 0.0;
726     rot[0][2] = 0.0;
727    
728     rot[1][0] = 0.0;
729     rot[1][1] = 1.0;
730     rot[1][2] = 0.0;
731    
732     rot[2][0] = 0.0;
733     rot[2][1] = 0.0;
734     rot[2][2] = 1.0;
735    
736     // use a small angle aproximation for sin and cosine
737    
738     angleSqr = angle * angle;
739     angleSqrOver4 = angleSqr / 4.0;
740     top = 1.0 - angleSqrOver4;
741     bottom = 1.0 + angleSqrOver4;
742    
743     cosAngle = top / bottom;
744     sinAngle = angle / bottom;
745    
746     rot[axes1][axes1] = cosAngle;
747     rot[axes2][axes2] = cosAngle;
748    
749     rot[axes1][axes2] = sinAngle;
750     rot[axes2][axes1] = -sinAngle;
751    
752     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
753    
754     for(i=0; i<3; i++){
755     ji[i] = 0.0;
756     for(k=0; k<3; k++){
757     ji[i] += rot[i][k] * tempJ[k];
758     }
759     }
760    
761     // rotate the Rotation matrix acording to:
762     // A[][] = A[][] * transpose(rot[][])
763    
764    
765 mmeineke 561 // NOte for as yet unknown reason, we are performing the
766 mmeineke 558 // calculation as:
767     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
768    
769     for(i=0; i<3; i++){
770     for(j=0; j<3; j++){
771 gezelter 600 A[j][i] = 0.0;
772 mmeineke 558 for(k=0; k<3; k++){
773 gezelter 600 A[j][i] += tempA[i][k] * rot[j][k];
774 mmeineke 558 }
775     }
776     }
777     }