ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 637
Committed: Thu Jul 17 21:50:01 2003 UTC (20 years, 11 months ago) by gezelter
File size: 15197 byte(s)
Log Message:
Started work on a DumpReader

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2     #include <cstdlib>
3 mmeineke 561 #include <cmath>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14 mmeineke 561 Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){
15 mmeineke 558
16     info = theInfo;
17     myFF = the_ff;
18     isFirst = 1;
19    
20     molecules = info->molecules;
21     nMols = info->n_mol;
22    
23     // give a little love back to the SimInfo object
24    
25     if( info->the_integrator != NULL ) delete info->the_integrator;
26     info->the_integrator = this;
27    
28     nAtoms = info->n_atoms;
29    
30     // check for constraints
31    
32     constrainedA = NULL;
33     constrainedB = NULL;
34     constrainedDsqr = NULL;
35     moving = NULL;
36     moved = NULL;
37 mmeineke 561 oldPos = NULL;
38 mmeineke 558
39     nConstrained = 0;
40    
41     checkConstraints();
42     }
43    
44     Integrator::~Integrator() {
45    
46     if( nConstrained ){
47     delete[] constrainedA;
48     delete[] constrainedB;
49     delete[] constrainedDsqr;
50     delete[] moving;
51     delete[] moved;
52 mmeineke 561 delete[] oldPos;
53 mmeineke 558 }
54    
55     }
56    
57     void Integrator::checkConstraints( void ){
58    
59    
60     isConstrained = 0;
61    
62     Constraint *temp_con;
63     Constraint *dummy_plug;
64     temp_con = new Constraint[info->n_SRI];
65     nConstrained = 0;
66     int constrained = 0;
67    
68     SRI** theArray;
69     for(int i = 0; i < nMols; i++){
70    
71     theArray = (SRI**) molecules[i].getMyBonds();
72     for(int j=0; j<molecules[i].getNBonds(); j++){
73    
74     constrained = theArray[j]->is_constrained();
75 mmeineke 594
76 mmeineke 558 if(constrained){
77 mmeineke 594
78 mmeineke 558 dummy_plug = theArray[j]->get_constraint();
79     temp_con[nConstrained].set_a( dummy_plug->get_a() );
80     temp_con[nConstrained].set_b( dummy_plug->get_b() );
81     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
82    
83     nConstrained++;
84     constrained = 0;
85 mmeineke 594 }
86 mmeineke 558 }
87    
88     theArray = (SRI**) molecules[i].getMyBends();
89     for(int j=0; j<molecules[i].getNBends(); j++){
90    
91     constrained = theArray[j]->is_constrained();
92    
93     if(constrained){
94    
95     dummy_plug = theArray[j]->get_constraint();
96     temp_con[nConstrained].set_a( dummy_plug->get_a() );
97     temp_con[nConstrained].set_b( dummy_plug->get_b() );
98     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
99    
100     nConstrained++;
101     constrained = 0;
102     }
103     }
104    
105     theArray = (SRI**) molecules[i].getMyTorsions();
106     for(int j=0; j<molecules[i].getNTorsions(); j++){
107    
108     constrained = theArray[j]->is_constrained();
109    
110     if(constrained){
111    
112     dummy_plug = theArray[j]->get_constraint();
113     temp_con[nConstrained].set_a( dummy_plug->get_a() );
114     temp_con[nConstrained].set_b( dummy_plug->get_b() );
115     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
116    
117     nConstrained++;
118     constrained = 0;
119     }
120     }
121     }
122    
123     if(nConstrained > 0){
124    
125     isConstrained = 1;
126    
127     if(constrainedA != NULL ) delete[] constrainedA;
128     if(constrainedB != NULL ) delete[] constrainedB;
129     if(constrainedDsqr != NULL ) delete[] constrainedDsqr;
130    
131     constrainedA = new int[nConstrained];
132     constrainedB = new int[nConstrained];
133     constrainedDsqr = new double[nConstrained];
134    
135     for( int i = 0; i < nConstrained; i++){
136    
137     constrainedA[i] = temp_con[i].get_a();
138     constrainedB[i] = temp_con[i].get_b();
139     constrainedDsqr[i] = temp_con[i].get_dsqr();
140 mmeineke 563
141 mmeineke 558 }
142    
143    
144     // save oldAtoms to check for lode balanceing later on.
145    
146     oldAtoms = nAtoms;
147    
148     moving = new int[nAtoms];
149     moved = new int[nAtoms];
150    
151 mmeineke 561 oldPos = new double[nAtoms*3];
152 mmeineke 558 }
153    
154     delete[] temp_con;
155     }
156    
157    
158     void Integrator::integrate( void ){
159    
160     int i, j; // loop counters
161    
162     double runTime = info->run_time;
163     double sampleTime = info->sampleTime;
164     double statusTime = info->statusTime;
165     double thermalTime = info->thermalTime;
166    
167     double currSample;
168     double currThermal;
169     double currStatus;
170     double currTime;
171    
172     int calcPot, calcStress;
173     int isError;
174    
175     tStats = new Thermo( info );
176 mmeineke 561 statOut = new StatWriter( info );
177     dumpOut = new DumpWriter( info );
178 mmeineke 558
179 mmeineke 561 atoms = info->atoms;
180 mmeineke 558 DirectionalAtom* dAtom;
181 mmeineke 561
182     dt = info->dt;
183 mmeineke 558 dt2 = 0.5 * dt;
184    
185     // initialize the forces before the first step
186    
187     myFF->doForces(1,1);
188    
189     if( info->setTemp ){
190    
191     tStats->velocitize();
192     }
193    
194 mmeineke 561 dumpOut->writeDump( 0.0 );
195     statOut->writeStat( 0.0 );
196 mmeineke 558
197     calcPot = 0;
198     calcStress = 0;
199     currSample = sampleTime;
200     currThermal = thermalTime;
201     currStatus = statusTime;
202     currTime = 0.0;;
203    
204 mmeineke 559
205     readyCheck();
206    
207     #ifdef IS_MPI
208     strcpy( checkPointMsg,
209     "The integrator is ready to go." );
210     MPIcheckPoint();
211     #endif // is_mpi
212    
213 mmeineke 558 while( currTime < runTime ){
214    
215     if( (currTime+dt) >= currStatus ){
216     calcPot = 1;
217     calcStress = 1;
218     }
219 mmeineke 561
220 mmeineke 558 integrateStep( calcPot, calcStress );
221    
222     currTime += dt;
223 gezelter 637 info->setTime(currTime);
224 mmeineke 558
225     if( info->setTemp ){
226     if( currTime >= currThermal ){
227     tStats->velocitize();
228     currThermal += thermalTime;
229     }
230     }
231    
232     if( currTime >= currSample ){
233 mmeineke 561 dumpOut->writeDump( currTime );
234 mmeineke 558 currSample += sampleTime;
235     }
236    
237     if( currTime >= currStatus ){
238 mmeineke 561 statOut->writeStat( currTime );
239 mmeineke 558 calcPot = 0;
240     calcStress = 0;
241     currStatus += statusTime;
242     }
243 mmeineke 559
244     #ifdef IS_MPI
245     strcpy( checkPointMsg,
246     "successfully took a time step." );
247     MPIcheckPoint();
248     #endif // is_mpi
249    
250 mmeineke 558 }
251    
252 mmeineke 572 dumpOut->writeFinal(currTime);
253 mmeineke 558
254 mmeineke 561 delete dumpOut;
255     delete statOut;
256 mmeineke 558 }
257    
258     void Integrator::integrateStep( int calcPot, int calcStress ){
259    
260 mmeineke 561
261    
262 mmeineke 558 // Position full step, and velocity half step
263    
264 mmeineke 561 preMove();
265 mmeineke 558 moveA();
266 gezelter 600 if( nConstrained ) constrainA();
267 mmeineke 558
268 mmeineke 614
269     #ifdef IS_MPI
270     strcpy( checkPointMsg, "Succesful moveA\n" );
271     MPIcheckPoint();
272     #endif // is_mpi
273    
274    
275 mmeineke 558 // calc forces
276    
277     myFF->doForces(calcPot,calcStress);
278    
279 mmeineke 614 #ifdef IS_MPI
280     strcpy( checkPointMsg, "Succesful doForces\n" );
281     MPIcheckPoint();
282     #endif // is_mpi
283    
284    
285 mmeineke 558 // finish the velocity half step
286    
287     moveB();
288     if( nConstrained ) constrainB();
289 mmeineke 614
290     #ifdef IS_MPI
291     strcpy( checkPointMsg, "Succesful moveB\n" );
292     MPIcheckPoint();
293     #endif // is_mpi
294    
295    
296 mmeineke 558 }
297    
298    
299     void Integrator::moveA( void ){
300    
301 gezelter 600 int i, j;
302 mmeineke 558 DirectionalAtom* dAtom;
303 gezelter 600 double Tb[3], ji[3];
304     double A[3][3], I[3][3];
305 mmeineke 561 double angle;
306 gezelter 600 double vel[3], pos[3], frc[3];
307     double mass;
308 mmeineke 558
309     for( i=0; i<nAtoms; i++ ){
310 mmeineke 567
311 gezelter 600 atoms[i]->getVel( vel );
312     atoms[i]->getPos( pos );
313     atoms[i]->getFrc( frc );
314 mmeineke 558
315 gezelter 600 mass = atoms[i]->getMass();
316 mmeineke 594
317 gezelter 600 for (j=0; j < 3; j++) {
318     // velocity half step
319     vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
320     // position whole step
321     pos[j] += dt * vel[j];
322     }
323 mmeineke 594
324 gezelter 600 atoms[i]->setVel( vel );
325     atoms[i]->setPos( pos );
326    
327 mmeineke 558 if( atoms[i]->isDirectional() ){
328    
329     dAtom = (DirectionalAtom *)atoms[i];
330    
331     // get and convert the torque to body frame
332    
333 gezelter 600 dAtom->getTrq( Tb );
334 mmeineke 558 dAtom->lab2Body( Tb );
335 mmeineke 597
336 mmeineke 558 // get the angular momentum, and propagate a half step
337 gezelter 600
338     dAtom->getJ( ji );
339    
340     for (j=0; j < 3; j++)
341     ji[j] += (dt2 * Tb[j]) * eConvert;
342 mmeineke 558
343     // use the angular velocities to propagate the rotation matrix a
344     // full time step
345 gezelter 600
346     dAtom->getA(A);
347     dAtom->getI(I);
348    
349 mmeineke 558 // rotate about the x-axis
350 gezelter 600 angle = dt2 * ji[0] / I[0][0];
351     this->rotate( 1, 2, angle, ji, A );
352 mmeineke 597
353 mmeineke 558 // rotate about the y-axis
354 gezelter 600 angle = dt2 * ji[1] / I[1][1];
355     this->rotate( 2, 0, angle, ji, A );
356 mmeineke 558
357     // rotate about the z-axis
358 gezelter 600 angle = dt * ji[2] / I[2][2];
359     this->rotate( 0, 1, angle, ji, A);
360 mmeineke 558
361     // rotate about the y-axis
362 gezelter 600 angle = dt2 * ji[1] / I[1][1];
363     this->rotate( 2, 0, angle, ji, A );
364 mmeineke 558
365     // rotate about the x-axis
366 gezelter 600 angle = dt2 * ji[0] / I[0][0];
367     this->rotate( 1, 2, angle, ji, A );
368 mmeineke 558
369 mmeineke 597
370 gezelter 600 dAtom->setJ( ji );
371     dAtom->setA( A );
372 mmeineke 597
373 gezelter 600 }
374 mmeineke 558 }
375     }
376    
377    
378     void Integrator::moveB( void ){
379 gezelter 600 int i, j;
380 mmeineke 558 DirectionalAtom* dAtom;
381 gezelter 600 double Tb[3], ji[3];
382     double vel[3], frc[3];
383     double mass;
384 mmeineke 558
385     for( i=0; i<nAtoms; i++ ){
386 gezelter 600
387     atoms[i]->getVel( vel );
388     atoms[i]->getFrc( frc );
389 mmeineke 558
390 gezelter 600 mass = atoms[i]->getMass();
391    
392 mmeineke 558 // velocity half step
393 gezelter 600 for (j=0; j < 3; j++)
394     vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
395    
396     atoms[i]->setVel( vel );
397 mmeineke 597
398 mmeineke 558 if( atoms[i]->isDirectional() ){
399 gezelter 600
400 mmeineke 558 dAtom = (DirectionalAtom *)atoms[i];
401 mmeineke 597
402 gezelter 600 // get and convert the torque to body frame
403    
404     dAtom->getTrq( Tb );
405 mmeineke 558 dAtom->lab2Body( Tb );
406 gezelter 600
407     // get the angular momentum, and propagate a half step
408    
409     dAtom->getJ( ji );
410    
411     for (j=0; j < 3; j++)
412     ji[j] += (dt2 * Tb[j]) * eConvert;
413 mmeineke 558
414 mmeineke 597
415 gezelter 600 dAtom->setJ( ji );
416 mmeineke 558 }
417     }
418     }
419    
420     void Integrator::preMove( void ){
421 gezelter 600 int i, j;
422     double pos[3];
423 mmeineke 558
424     if( nConstrained ){
425 mmeineke 561
426 gezelter 600 for(i=0; i < nAtoms; i++) {
427    
428     atoms[i]->getPos( pos );
429 mmeineke 558
430 gezelter 600 for (j = 0; j < 3; j++) {
431     oldPos[3*i + j] = pos[j];
432     }
433    
434     }
435     }
436     }
437    
438 mmeineke 558 void Integrator::constrainA(){
439    
440     int i,j,k;
441     int done;
442 gezelter 600 double posA[3], posB[3];
443     double velA[3], velB[3];
444 mmeineke 572 double pab[3];
445     double rab[3];
446 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
447 mmeineke 558 double rma, rmb;
448     double dx, dy, dz;
449 mmeineke 561 double rpab;
450 mmeineke 558 double rabsq, pabsq, rpabsq;
451     double diffsq;
452     double gab;
453     int iteration;
454    
455 gezelter 600 for( i=0; i<nAtoms; i++){
456 mmeineke 558 moving[i] = 0;
457     moved[i] = 1;
458     }
459 mmeineke 567
460 mmeineke 558 iteration = 0;
461     done = 0;
462     while( !done && (iteration < maxIteration )){
463    
464     done = 1;
465     for(i=0; i<nConstrained; i++){
466    
467     a = constrainedA[i];
468     b = constrainedB[i];
469 mmeineke 563
470     ax = (a*3) + 0;
471     ay = (a*3) + 1;
472     az = (a*3) + 2;
473    
474     bx = (b*3) + 0;
475     by = (b*3) + 1;
476     bz = (b*3) + 2;
477    
478 mmeineke 558 if( moved[a] || moved[b] ){
479 gezelter 600
480     atoms[a]->getPos( posA );
481     atoms[b]->getPos( posB );
482    
483     for (j = 0; j < 3; j++ )
484     pab[j] = posA[j] - posB[j];
485    
486 mmeineke 567 //periodic boundary condition
487    
488 mmeineke 572 info->wrapVector( pab );
489 mmeineke 567
490 mmeineke 572 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
491    
492 mmeineke 561 rabsq = constrainedDsqr[i];
493 mmeineke 567 diffsq = rabsq - pabsq;
494 mmeineke 558
495     // the original rattle code from alan tidesley
496 mmeineke 563 if (fabs(diffsq) > (tol*rabsq*2)) {
497 mmeineke 572 rab[0] = oldPos[ax] - oldPos[bx];
498     rab[1] = oldPos[ay] - oldPos[by];
499     rab[2] = oldPos[az] - oldPos[bz];
500 mmeineke 567
501 mmeineke 572 info->wrapVector( rab );
502 mmeineke 558
503 mmeineke 572 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
504 mmeineke 567
505 mmeineke 558 rpabsq = rpab * rpab;
506    
507    
508     if (rpabsq < (rabsq * -diffsq)){
509 mmeineke 563
510 mmeineke 558 #ifdef IS_MPI
511     a = atoms[a]->getGlobalIndex();
512     b = atoms[b]->getGlobalIndex();
513     #endif //is_mpi
514     sprintf( painCave.errMsg,
515 mmeineke 563 "Constraint failure in constrainA at atom %d and %d.\n",
516 mmeineke 558 a, b );
517     painCave.isFatal = 1;
518     simError();
519     }
520    
521     rma = 1.0 / atoms[a]->getMass();
522     rmb = 1.0 / atoms[b]->getMass();
523 mmeineke 567
524 mmeineke 558 gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab );
525 mmeineke 567
526 mmeineke 572 dx = rab[0] * gab;
527     dy = rab[1] * gab;
528     dz = rab[2] * gab;
529 mmeineke 558
530 gezelter 600 posA[0] += rma * dx;
531     posA[1] += rma * dy;
532     posA[2] += rma * dz;
533 mmeineke 558
534 gezelter 600 atoms[a]->setPos( posA );
535 mmeineke 558
536 gezelter 600 posB[0] -= rmb * dx;
537     posB[1] -= rmb * dy;
538     posB[2] -= rmb * dz;
539    
540     atoms[b]->setPos( posB );
541    
542 mmeineke 558 dx = dx / dt;
543     dy = dy / dt;
544     dz = dz / dt;
545    
546 gezelter 600 atoms[a]->getVel( velA );
547 mmeineke 558
548 gezelter 600 velA[0] += rma * dx;
549     velA[1] += rma * dy;
550     velA[2] += rma * dz;
551 mmeineke 558
552 gezelter 600 atoms[a]->setVel( velA );
553    
554     atoms[b]->getVel( velB );
555    
556     velB[0] -= rmb * dx;
557     velB[1] -= rmb * dy;
558     velB[2] -= rmb * dz;
559    
560     atoms[b]->setVel( velB );
561    
562 mmeineke 558 moving[a] = 1;
563     moving[b] = 1;
564     done = 0;
565     }
566     }
567     }
568    
569     for(i=0; i<nAtoms; i++){
570    
571     moved[i] = moving[i];
572     moving[i] = 0;
573     }
574    
575     iteration++;
576     }
577    
578     if( !done ){
579    
580 mmeineke 561 sprintf( painCave.errMsg,
581 mmeineke 558 "Constraint failure in constrainA, too many iterations: %d\n",
582 mmeineke 561 iteration );
583 mmeineke 558 painCave.isFatal = 1;
584     simError();
585     }
586    
587     }
588    
589     void Integrator::constrainB( void ){
590    
591     int i,j,k;
592     int done;
593 gezelter 600 double posA[3], posB[3];
594     double velA[3], velB[3];
595 mmeineke 558 double vxab, vyab, vzab;
596 mmeineke 572 double rab[3];
597 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
598 mmeineke 558 double rma, rmb;
599     double dx, dy, dz;
600     double rabsq, pabsq, rvab;
601     double diffsq;
602     double gab;
603     int iteration;
604    
605 mmeineke 561 for(i=0; i<nAtoms; i++){
606 mmeineke 558 moving[i] = 0;
607     moved[i] = 1;
608     }
609    
610     done = 0;
611 mmeineke 561 iteration = 0;
612 mmeineke 558 while( !done && (iteration < maxIteration ) ){
613    
614 mmeineke 567 done = 1;
615    
616 mmeineke 558 for(i=0; i<nConstrained; i++){
617    
618     a = constrainedA[i];
619     b = constrainedB[i];
620    
621 mmeineke 567 ax = (a*3) + 0;
622     ay = (a*3) + 1;
623     az = (a*3) + 2;
624 mmeineke 563
625 mmeineke 567 bx = (b*3) + 0;
626     by = (b*3) + 1;
627     bz = (b*3) + 2;
628 mmeineke 563
629 mmeineke 558 if( moved[a] || moved[b] ){
630    
631 gezelter 600 atoms[a]->getVel( velA );
632     atoms[b]->getVel( velB );
633    
634     vxab = velA[0] - velB[0];
635     vyab = velA[1] - velB[1];
636     vzab = velA[2] - velB[2];
637    
638     atoms[a]->getPos( posA );
639     atoms[b]->getPos( posB );
640    
641     for (j = 0; j < 3; j++)
642     rab[j] = posA[j] - posB[j];
643    
644 mmeineke 572 info->wrapVector( rab );
645 mmeineke 567
646 mmeineke 558 rma = 1.0 / atoms[a]->getMass();
647     rmb = 1.0 / atoms[b]->getMass();
648    
649 mmeineke 572 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
650 mmeineke 558
651 mmeineke 561 gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] );
652 mmeineke 558
653     if (fabs(gab) > tol) {
654    
655 mmeineke 572 dx = rab[0] * gab;
656     dy = rab[1] * gab;
657     dz = rab[2] * gab;
658 gezelter 600
659     velA[0] += rma * dx;
660     velA[1] += rma * dy;
661     velA[2] += rma * dz;
662 mmeineke 558
663 gezelter 600 atoms[a]->setVel( velA );
664    
665     velB[0] -= rmb * dx;
666     velB[1] -= rmb * dy;
667     velB[2] -= rmb * dz;
668    
669     atoms[b]->setVel( velB );
670 mmeineke 558
671     moving[a] = 1;
672     moving[b] = 1;
673     done = 0;
674     }
675     }
676     }
677    
678     for(i=0; i<nAtoms; i++){
679     moved[i] = moving[i];
680     moving[i] = 0;
681     }
682    
683     iteration++;
684     }
685 gezelter 600
686 mmeineke 558 if( !done ){
687    
688    
689 mmeineke 561 sprintf( painCave.errMsg,
690 mmeineke 558 "Constraint failure in constrainB, too many iterations: %d\n",
691 mmeineke 561 iteration );
692 mmeineke 558 painCave.isFatal = 1;
693     simError();
694     }
695    
696     }
697    
698     void Integrator::rotate( int axes1, int axes2, double angle, double ji[3],
699 gezelter 600 double A[3][3] ){
700 mmeineke 558
701     int i,j,k;
702     double sinAngle;
703     double cosAngle;
704     double angleSqr;
705     double angleSqrOver4;
706     double top, bottom;
707     double rot[3][3];
708     double tempA[3][3];
709     double tempJ[3];
710    
711     // initialize the tempA
712    
713     for(i=0; i<3; i++){
714     for(j=0; j<3; j++){
715 gezelter 600 tempA[j][i] = A[i][j];
716 mmeineke 558 }
717     }
718    
719     // initialize the tempJ
720    
721     for( i=0; i<3; i++) tempJ[i] = ji[i];
722    
723     // initalize rot as a unit matrix
724    
725     rot[0][0] = 1.0;
726     rot[0][1] = 0.0;
727     rot[0][2] = 0.0;
728    
729     rot[1][0] = 0.0;
730     rot[1][1] = 1.0;
731     rot[1][2] = 0.0;
732    
733     rot[2][0] = 0.0;
734     rot[2][1] = 0.0;
735     rot[2][2] = 1.0;
736    
737     // use a small angle aproximation for sin and cosine
738    
739     angleSqr = angle * angle;
740     angleSqrOver4 = angleSqr / 4.0;
741     top = 1.0 - angleSqrOver4;
742     bottom = 1.0 + angleSqrOver4;
743    
744     cosAngle = top / bottom;
745     sinAngle = angle / bottom;
746    
747     rot[axes1][axes1] = cosAngle;
748     rot[axes2][axes2] = cosAngle;
749    
750     rot[axes1][axes2] = sinAngle;
751     rot[axes2][axes1] = -sinAngle;
752    
753     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
754    
755     for(i=0; i<3; i++){
756     ji[i] = 0.0;
757     for(k=0; k<3; k++){
758     ji[i] += rot[i][k] * tempJ[k];
759     }
760     }
761    
762     // rotate the Rotation matrix acording to:
763     // A[][] = A[][] * transpose(rot[][])
764    
765    
766 mmeineke 561 // NOte for as yet unknown reason, we are performing the
767 mmeineke 558 // calculation as:
768     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
769    
770     for(i=0; i<3; i++){
771     for(j=0; j<3; j++){
772 gezelter 600 A[j][i] = 0.0;
773 mmeineke 558 for(k=0; k<3; k++){
774 gezelter 600 A[j][i] += tempA[i][k] * rot[j][k];
775 mmeineke 558 }
776     }
777     }
778     }