ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 677
Committed: Mon Aug 11 19:41:36 2003 UTC (20 years, 10 months ago) by tim
File size: 15660 byte(s)
Log Message:
added method of moving zconstraint molecules to specified positions

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2     #include <cstdlib>
3 mmeineke 561 #include <cmath>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14 tim 645 template<typename T> Integrator<T>::Integrator( SimInfo *theInfo, ForceFields* the_ff ) {
15 mmeineke 558
16     info = theInfo;
17     myFF = the_ff;
18     isFirst = 1;
19    
20     molecules = info->molecules;
21     nMols = info->n_mol;
22    
23     // give a little love back to the SimInfo object
24    
25     if( info->the_integrator != NULL ) delete info->the_integrator;
26     info->the_integrator = this;
27    
28     nAtoms = info->n_atoms;
29    
30     // check for constraints
31    
32     constrainedA = NULL;
33     constrainedB = NULL;
34     constrainedDsqr = NULL;
35     moving = NULL;
36     moved = NULL;
37 mmeineke 561 oldPos = NULL;
38 mmeineke 558
39     nConstrained = 0;
40    
41     checkConstraints();
42     }
43    
44 tim 645 template<typename T> Integrator<T>::~Integrator() {
45 mmeineke 558
46     if( nConstrained ){
47     delete[] constrainedA;
48     delete[] constrainedB;
49     delete[] constrainedDsqr;
50     delete[] moving;
51     delete[] moved;
52 mmeineke 561 delete[] oldPos;
53 mmeineke 558 }
54    
55     }
56    
57 tim 645 template<typename T> void Integrator<T>::checkConstraints( void ){
58 mmeineke 558
59    
60     isConstrained = 0;
61    
62     Constraint *temp_con;
63     Constraint *dummy_plug;
64     temp_con = new Constraint[info->n_SRI];
65     nConstrained = 0;
66     int constrained = 0;
67    
68     SRI** theArray;
69     for(int i = 0; i < nMols; i++){
70    
71     theArray = (SRI**) molecules[i].getMyBonds();
72     for(int j=0; j<molecules[i].getNBonds(); j++){
73    
74     constrained = theArray[j]->is_constrained();
75 mmeineke 594
76 mmeineke 558 if(constrained){
77 mmeineke 594
78 mmeineke 558 dummy_plug = theArray[j]->get_constraint();
79     temp_con[nConstrained].set_a( dummy_plug->get_a() );
80     temp_con[nConstrained].set_b( dummy_plug->get_b() );
81     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
82    
83     nConstrained++;
84     constrained = 0;
85 mmeineke 594 }
86 mmeineke 558 }
87    
88     theArray = (SRI**) molecules[i].getMyBends();
89     for(int j=0; j<molecules[i].getNBends(); j++){
90    
91     constrained = theArray[j]->is_constrained();
92    
93     if(constrained){
94    
95     dummy_plug = theArray[j]->get_constraint();
96     temp_con[nConstrained].set_a( dummy_plug->get_a() );
97     temp_con[nConstrained].set_b( dummy_plug->get_b() );
98     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
99    
100     nConstrained++;
101     constrained = 0;
102     }
103     }
104    
105     theArray = (SRI**) molecules[i].getMyTorsions();
106     for(int j=0; j<molecules[i].getNTorsions(); j++){
107    
108     constrained = theArray[j]->is_constrained();
109    
110     if(constrained){
111    
112     dummy_plug = theArray[j]->get_constraint();
113     temp_con[nConstrained].set_a( dummy_plug->get_a() );
114     temp_con[nConstrained].set_b( dummy_plug->get_b() );
115     temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
116    
117     nConstrained++;
118     constrained = 0;
119     }
120     }
121     }
122    
123     if(nConstrained > 0){
124    
125     isConstrained = 1;
126    
127     if(constrainedA != NULL ) delete[] constrainedA;
128     if(constrainedB != NULL ) delete[] constrainedB;
129     if(constrainedDsqr != NULL ) delete[] constrainedDsqr;
130    
131     constrainedA = new int[nConstrained];
132     constrainedB = new int[nConstrained];
133     constrainedDsqr = new double[nConstrained];
134    
135     for( int i = 0; i < nConstrained; i++){
136    
137     constrainedA[i] = temp_con[i].get_a();
138     constrainedB[i] = temp_con[i].get_b();
139     constrainedDsqr[i] = temp_con[i].get_dsqr();
140 mmeineke 563
141 mmeineke 558 }
142    
143    
144     // save oldAtoms to check for lode balanceing later on.
145    
146     oldAtoms = nAtoms;
147    
148     moving = new int[nAtoms];
149     moved = new int[nAtoms];
150    
151 mmeineke 561 oldPos = new double[nAtoms*3];
152 mmeineke 558 }
153    
154     delete[] temp_con;
155     }
156    
157    
158 tim 645 template<typename T> void Integrator<T>::integrate( void ){
159 mmeineke 558
160     int i, j; // loop counters
161    
162     double runTime = info->run_time;
163     double sampleTime = info->sampleTime;
164     double statusTime = info->statusTime;
165     double thermalTime = info->thermalTime;
166    
167     double currSample;
168     double currThermal;
169     double currStatus;
170    
171     int calcPot, calcStress;
172     int isError;
173    
174     tStats = new Thermo( info );
175 mmeineke 561 statOut = new StatWriter( info );
176     dumpOut = new DumpWriter( info );
177 mmeineke 558
178 mmeineke 561 atoms = info->atoms;
179 mmeineke 558 DirectionalAtom* dAtom;
180 mmeineke 561
181     dt = info->dt;
182 mmeineke 558 dt2 = 0.5 * dt;
183    
184     // initialize the forces before the first step
185    
186 tim 677 calcForce(1, 1);
187 mmeineke 558
188     if( info->setTemp ){
189    
190 tim 677 thermalize();
191 mmeineke 558 }
192    
193     calcPot = 0;
194     calcStress = 0;
195     currSample = sampleTime;
196     currThermal = thermalTime;
197     currStatus = statusTime;
198    
199 mmeineke 643 dumpOut->writeDump( info->getTime() );
200     statOut->writeStat( info->getTime() );
201 mmeineke 559
202     readyCheck();
203    
204     #ifdef IS_MPI
205     strcpy( checkPointMsg,
206     "The integrator is ready to go." );
207     MPIcheckPoint();
208     #endif // is_mpi
209    
210 mmeineke 643 while( info->getTime() < runTime ){
211 mmeineke 558
212 mmeineke 643 if( (info->getTime()+dt) >= currStatus ){
213 mmeineke 558 calcPot = 1;
214     calcStress = 1;
215     }
216 mmeineke 561
217 mmeineke 558 integrateStep( calcPot, calcStress );
218    
219 mmeineke 643 info->incrTime(dt);
220 mmeineke 558
221     if( info->setTemp ){
222 mmeineke 643 if( info->getTime() >= currThermal ){
223 tim 677 thermalize();
224 mmeineke 558 currThermal += thermalTime;
225     }
226     }
227    
228 mmeineke 643 if( info->getTime() >= currSample ){
229     dumpOut->writeDump( info->getTime() );
230 mmeineke 558 currSample += sampleTime;
231     }
232    
233 mmeineke 643 if( info->getTime() >= currStatus ){
234     statOut->writeStat( info->getTime() );
235 mmeineke 558 calcPot = 0;
236     calcStress = 0;
237     currStatus += statusTime;
238     }
239 mmeineke 559
240     #ifdef IS_MPI
241     strcpy( checkPointMsg,
242     "successfully took a time step." );
243     MPIcheckPoint();
244     #endif // is_mpi
245    
246 mmeineke 558 }
247    
248 mmeineke 643 dumpOut->writeFinal(info->getTime());
249 mmeineke 558
250 mmeineke 561 delete dumpOut;
251     delete statOut;
252 mmeineke 558 }
253    
254 tim 645 template<typename T> void Integrator<T>::integrateStep( int calcPot, int calcStress ){
255 mmeineke 558
256 mmeineke 561
257    
258 mmeineke 558 // Position full step, and velocity half step
259    
260 mmeineke 561 preMove();
261 mmeineke 558 moveA();
262 gezelter 600 if( nConstrained ) constrainA();
263 mmeineke 558
264 mmeineke 614
265     #ifdef IS_MPI
266     strcpy( checkPointMsg, "Succesful moveA\n" );
267     MPIcheckPoint();
268     #endif // is_mpi
269    
270    
271 mmeineke 558 // calc forces
272    
273 tim 677 calcForce(calcPot,calcStress);
274 mmeineke 558
275 mmeineke 614 #ifdef IS_MPI
276     strcpy( checkPointMsg, "Succesful doForces\n" );
277     MPIcheckPoint();
278     #endif // is_mpi
279    
280    
281 mmeineke 558 // finish the velocity half step
282    
283     moveB();
284     if( nConstrained ) constrainB();
285 mmeineke 614
286     #ifdef IS_MPI
287     strcpy( checkPointMsg, "Succesful moveB\n" );
288     MPIcheckPoint();
289     #endif // is_mpi
290    
291    
292 mmeineke 558 }
293    
294    
295 tim 645 template<typename T> void Integrator<T>::moveA( void ){
296 mmeineke 558
297 gezelter 600 int i, j;
298 mmeineke 558 DirectionalAtom* dAtom;
299 gezelter 600 double Tb[3], ji[3];
300     double A[3][3], I[3][3];
301 mmeineke 561 double angle;
302 gezelter 600 double vel[3], pos[3], frc[3];
303     double mass;
304 mmeineke 558
305     for( i=0; i<nAtoms; i++ ){
306 mmeineke 567
307 gezelter 600 atoms[i]->getVel( vel );
308     atoms[i]->getPos( pos );
309     atoms[i]->getFrc( frc );
310 mmeineke 558
311 gezelter 600 mass = atoms[i]->getMass();
312 mmeineke 594
313 gezelter 600 for (j=0; j < 3; j++) {
314     // velocity half step
315     vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
316     // position whole step
317     pos[j] += dt * vel[j];
318     }
319 mmeineke 594
320 gezelter 600 atoms[i]->setVel( vel );
321     atoms[i]->setPos( pos );
322    
323 mmeineke 558 if( atoms[i]->isDirectional() ){
324    
325     dAtom = (DirectionalAtom *)atoms[i];
326    
327     // get and convert the torque to body frame
328    
329 gezelter 600 dAtom->getTrq( Tb );
330 mmeineke 558 dAtom->lab2Body( Tb );
331 mmeineke 597
332 mmeineke 558 // get the angular momentum, and propagate a half step
333 gezelter 600
334     dAtom->getJ( ji );
335    
336     for (j=0; j < 3; j++)
337     ji[j] += (dt2 * Tb[j]) * eConvert;
338 mmeineke 558
339     // use the angular velocities to propagate the rotation matrix a
340     // full time step
341 gezelter 600
342     dAtom->getA(A);
343     dAtom->getI(I);
344    
345 mmeineke 558 // rotate about the x-axis
346 gezelter 600 angle = dt2 * ji[0] / I[0][0];
347     this->rotate( 1, 2, angle, ji, A );
348 mmeineke 597
349 mmeineke 558 // rotate about the y-axis
350 gezelter 600 angle = dt2 * ji[1] / I[1][1];
351     this->rotate( 2, 0, angle, ji, A );
352 mmeineke 558
353     // rotate about the z-axis
354 gezelter 600 angle = dt * ji[2] / I[2][2];
355     this->rotate( 0, 1, angle, ji, A);
356 mmeineke 558
357     // rotate about the y-axis
358 gezelter 600 angle = dt2 * ji[1] / I[1][1];
359     this->rotate( 2, 0, angle, ji, A );
360 mmeineke 558
361     // rotate about the x-axis
362 gezelter 600 angle = dt2 * ji[0] / I[0][0];
363     this->rotate( 1, 2, angle, ji, A );
364 mmeineke 558
365 mmeineke 597
366 gezelter 600 dAtom->setJ( ji );
367     dAtom->setA( A );
368 mmeineke 597
369 gezelter 600 }
370 mmeineke 558 }
371     }
372    
373    
374 tim 645 template<typename T> void Integrator<T>::moveB( void ){
375 gezelter 600 int i, j;
376 mmeineke 558 DirectionalAtom* dAtom;
377 gezelter 600 double Tb[3], ji[3];
378     double vel[3], frc[3];
379     double mass;
380 mmeineke 558
381     for( i=0; i<nAtoms; i++ ){
382 gezelter 600
383     atoms[i]->getVel( vel );
384     atoms[i]->getFrc( frc );
385 mmeineke 558
386 gezelter 600 mass = atoms[i]->getMass();
387    
388 mmeineke 558 // velocity half step
389 gezelter 600 for (j=0; j < 3; j++)
390     vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
391    
392     atoms[i]->setVel( vel );
393 mmeineke 597
394 mmeineke 558 if( atoms[i]->isDirectional() ){
395 gezelter 600
396 mmeineke 558 dAtom = (DirectionalAtom *)atoms[i];
397 mmeineke 597
398 gezelter 600 // get and convert the torque to body frame
399    
400     dAtom->getTrq( Tb );
401 mmeineke 558 dAtom->lab2Body( Tb );
402 gezelter 600
403     // get the angular momentum, and propagate a half step
404    
405     dAtom->getJ( ji );
406    
407     for (j=0; j < 3; j++)
408     ji[j] += (dt2 * Tb[j]) * eConvert;
409 mmeineke 558
410 mmeineke 597
411 gezelter 600 dAtom->setJ( ji );
412 mmeineke 558 }
413     }
414     }
415    
416 tim 645 template<typename T> void Integrator<T>::preMove( void ){
417 gezelter 600 int i, j;
418     double pos[3];
419 mmeineke 558
420     if( nConstrained ){
421 mmeineke 561
422 gezelter 600 for(i=0; i < nAtoms; i++) {
423    
424     atoms[i]->getPos( pos );
425 mmeineke 558
426 gezelter 600 for (j = 0; j < 3; j++) {
427     oldPos[3*i + j] = pos[j];
428     }
429    
430     }
431     }
432     }
433    
434 tim 645 template<typename T> void Integrator<T>::constrainA(){
435 mmeineke 558
436     int i,j,k;
437     int done;
438 gezelter 600 double posA[3], posB[3];
439     double velA[3], velB[3];
440 mmeineke 572 double pab[3];
441     double rab[3];
442 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
443 mmeineke 558 double rma, rmb;
444     double dx, dy, dz;
445 mmeineke 561 double rpab;
446 mmeineke 558 double rabsq, pabsq, rpabsq;
447     double diffsq;
448     double gab;
449     int iteration;
450    
451 gezelter 600 for( i=0; i<nAtoms; i++){
452 mmeineke 558 moving[i] = 0;
453     moved[i] = 1;
454     }
455 mmeineke 567
456 mmeineke 558 iteration = 0;
457     done = 0;
458     while( !done && (iteration < maxIteration )){
459    
460     done = 1;
461     for(i=0; i<nConstrained; i++){
462    
463     a = constrainedA[i];
464     b = constrainedB[i];
465 mmeineke 563
466     ax = (a*3) + 0;
467     ay = (a*3) + 1;
468     az = (a*3) + 2;
469    
470     bx = (b*3) + 0;
471     by = (b*3) + 1;
472     bz = (b*3) + 2;
473    
474 mmeineke 558 if( moved[a] || moved[b] ){
475 gezelter 600
476     atoms[a]->getPos( posA );
477     atoms[b]->getPos( posB );
478    
479     for (j = 0; j < 3; j++ )
480     pab[j] = posA[j] - posB[j];
481    
482 mmeineke 567 //periodic boundary condition
483    
484 mmeineke 572 info->wrapVector( pab );
485 mmeineke 567
486 mmeineke 572 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
487    
488 mmeineke 561 rabsq = constrainedDsqr[i];
489 mmeineke 567 diffsq = rabsq - pabsq;
490 mmeineke 558
491     // the original rattle code from alan tidesley
492 mmeineke 563 if (fabs(diffsq) > (tol*rabsq*2)) {
493 mmeineke 572 rab[0] = oldPos[ax] - oldPos[bx];
494     rab[1] = oldPos[ay] - oldPos[by];
495     rab[2] = oldPos[az] - oldPos[bz];
496 mmeineke 567
497 mmeineke 572 info->wrapVector( rab );
498 mmeineke 558
499 mmeineke 572 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
500 mmeineke 567
501 mmeineke 558 rpabsq = rpab * rpab;
502    
503    
504     if (rpabsq < (rabsq * -diffsq)){
505 mmeineke 563
506 mmeineke 558 #ifdef IS_MPI
507     a = atoms[a]->getGlobalIndex();
508     b = atoms[b]->getGlobalIndex();
509     #endif //is_mpi
510     sprintf( painCave.errMsg,
511 mmeineke 563 "Constraint failure in constrainA at atom %d and %d.\n",
512 mmeineke 558 a, b );
513     painCave.isFatal = 1;
514     simError();
515     }
516    
517     rma = 1.0 / atoms[a]->getMass();
518     rmb = 1.0 / atoms[b]->getMass();
519 mmeineke 567
520 mmeineke 558 gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab );
521 mmeineke 567
522 mmeineke 572 dx = rab[0] * gab;
523     dy = rab[1] * gab;
524     dz = rab[2] * gab;
525 mmeineke 558
526 gezelter 600 posA[0] += rma * dx;
527     posA[1] += rma * dy;
528     posA[2] += rma * dz;
529 mmeineke 558
530 gezelter 600 atoms[a]->setPos( posA );
531 mmeineke 558
532 gezelter 600 posB[0] -= rmb * dx;
533     posB[1] -= rmb * dy;
534     posB[2] -= rmb * dz;
535    
536     atoms[b]->setPos( posB );
537    
538 mmeineke 558 dx = dx / dt;
539     dy = dy / dt;
540     dz = dz / dt;
541    
542 gezelter 600 atoms[a]->getVel( velA );
543 mmeineke 558
544 gezelter 600 velA[0] += rma * dx;
545     velA[1] += rma * dy;
546     velA[2] += rma * dz;
547 mmeineke 558
548 gezelter 600 atoms[a]->setVel( velA );
549    
550     atoms[b]->getVel( velB );
551    
552     velB[0] -= rmb * dx;
553     velB[1] -= rmb * dy;
554     velB[2] -= rmb * dz;
555    
556     atoms[b]->setVel( velB );
557    
558 mmeineke 558 moving[a] = 1;
559     moving[b] = 1;
560     done = 0;
561     }
562     }
563     }
564    
565     for(i=0; i<nAtoms; i++){
566    
567     moved[i] = moving[i];
568     moving[i] = 0;
569     }
570    
571     iteration++;
572     }
573    
574     if( !done ){
575    
576 mmeineke 561 sprintf( painCave.errMsg,
577 mmeineke 558 "Constraint failure in constrainA, too many iterations: %d\n",
578 mmeineke 561 iteration );
579 mmeineke 558 painCave.isFatal = 1;
580     simError();
581     }
582    
583     }
584    
585 tim 645 template<typename T> void Integrator<T>::constrainB( void ){
586 mmeineke 558
587     int i,j,k;
588     int done;
589 gezelter 600 double posA[3], posB[3];
590     double velA[3], velB[3];
591 mmeineke 558 double vxab, vyab, vzab;
592 mmeineke 572 double rab[3];
593 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
594 mmeineke 558 double rma, rmb;
595     double dx, dy, dz;
596     double rabsq, pabsq, rvab;
597     double diffsq;
598     double gab;
599     int iteration;
600    
601 mmeineke 561 for(i=0; i<nAtoms; i++){
602 mmeineke 558 moving[i] = 0;
603     moved[i] = 1;
604     }
605    
606     done = 0;
607 mmeineke 561 iteration = 0;
608 mmeineke 558 while( !done && (iteration < maxIteration ) ){
609    
610 mmeineke 567 done = 1;
611    
612 mmeineke 558 for(i=0; i<nConstrained; i++){
613    
614     a = constrainedA[i];
615     b = constrainedB[i];
616    
617 mmeineke 567 ax = (a*3) + 0;
618     ay = (a*3) + 1;
619     az = (a*3) + 2;
620 mmeineke 563
621 mmeineke 567 bx = (b*3) + 0;
622     by = (b*3) + 1;
623     bz = (b*3) + 2;
624 mmeineke 563
625 mmeineke 558 if( moved[a] || moved[b] ){
626    
627 gezelter 600 atoms[a]->getVel( velA );
628     atoms[b]->getVel( velB );
629    
630     vxab = velA[0] - velB[0];
631     vyab = velA[1] - velB[1];
632     vzab = velA[2] - velB[2];
633    
634     atoms[a]->getPos( posA );
635     atoms[b]->getPos( posB );
636    
637     for (j = 0; j < 3; j++)
638     rab[j] = posA[j] - posB[j];
639    
640 mmeineke 572 info->wrapVector( rab );
641 mmeineke 567
642 mmeineke 558 rma = 1.0 / atoms[a]->getMass();
643     rmb = 1.0 / atoms[b]->getMass();
644    
645 mmeineke 572 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
646 mmeineke 558
647 mmeineke 561 gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] );
648 mmeineke 558
649     if (fabs(gab) > tol) {
650    
651 mmeineke 572 dx = rab[0] * gab;
652     dy = rab[1] * gab;
653     dz = rab[2] * gab;
654 gezelter 600
655     velA[0] += rma * dx;
656     velA[1] += rma * dy;
657     velA[2] += rma * dz;
658 mmeineke 558
659 gezelter 600 atoms[a]->setVel( velA );
660    
661     velB[0] -= rmb * dx;
662     velB[1] -= rmb * dy;
663     velB[2] -= rmb * dz;
664    
665     atoms[b]->setVel( velB );
666 mmeineke 558
667     moving[a] = 1;
668     moving[b] = 1;
669     done = 0;
670     }
671     }
672     }
673    
674     for(i=0; i<nAtoms; i++){
675     moved[i] = moving[i];
676     moving[i] = 0;
677     }
678    
679     iteration++;
680     }
681 gezelter 600
682 mmeineke 558 if( !done ){
683    
684    
685 mmeineke 561 sprintf( painCave.errMsg,
686 mmeineke 558 "Constraint failure in constrainB, too many iterations: %d\n",
687 mmeineke 561 iteration );
688 mmeineke 558 painCave.isFatal = 1;
689     simError();
690     }
691    
692     }
693    
694 tim 645 template<typename T> void Integrator<T>::rotate( int axes1, int axes2, double angle, double ji[3],
695 gezelter 600 double A[3][3] ){
696 mmeineke 558
697     int i,j,k;
698     double sinAngle;
699     double cosAngle;
700     double angleSqr;
701     double angleSqrOver4;
702     double top, bottom;
703     double rot[3][3];
704     double tempA[3][3];
705     double tempJ[3];
706    
707     // initialize the tempA
708    
709     for(i=0; i<3; i++){
710     for(j=0; j<3; j++){
711 gezelter 600 tempA[j][i] = A[i][j];
712 mmeineke 558 }
713     }
714    
715     // initialize the tempJ
716    
717     for( i=0; i<3; i++) tempJ[i] = ji[i];
718    
719     // initalize rot as a unit matrix
720    
721     rot[0][0] = 1.0;
722     rot[0][1] = 0.0;
723     rot[0][2] = 0.0;
724    
725     rot[1][0] = 0.0;
726     rot[1][1] = 1.0;
727     rot[1][2] = 0.0;
728    
729     rot[2][0] = 0.0;
730     rot[2][1] = 0.0;
731     rot[2][2] = 1.0;
732    
733     // use a small angle aproximation for sin and cosine
734    
735     angleSqr = angle * angle;
736     angleSqrOver4 = angleSqr / 4.0;
737     top = 1.0 - angleSqrOver4;
738     bottom = 1.0 + angleSqrOver4;
739    
740     cosAngle = top / bottom;
741     sinAngle = angle / bottom;
742    
743     rot[axes1][axes1] = cosAngle;
744     rot[axes2][axes2] = cosAngle;
745    
746     rot[axes1][axes2] = sinAngle;
747     rot[axes2][axes1] = -sinAngle;
748    
749     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
750    
751     for(i=0; i<3; i++){
752     ji[i] = 0.0;
753     for(k=0; k<3; k++){
754     ji[i] += rot[i][k] * tempJ[k];
755     }
756     }
757    
758     // rotate the Rotation matrix acording to:
759     // A[][] = A[][] * transpose(rot[][])
760    
761    
762 mmeineke 561 // NOte for as yet unknown reason, we are performing the
763 mmeineke 558 // calculation as:
764     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
765    
766     for(i=0; i<3; i++){
767     for(j=0; j<3; j++){
768 gezelter 600 A[j][i] = 0.0;
769 mmeineke 558 for(k=0; k<3; k++){
770 gezelter 600 A[j][i] += tempA[i][k] * rot[j][k];
771 mmeineke 558 }
772     }
773     }
774     }
775 tim 677
776     template<typename T> void Integrator<T>::calcForce( int calcPot, int calcStress ){
777     myFF->doForces(calcPot,calcStress);
778    
779     }
780    
781     template<typename T> void Integrator<T>::thermalize(){
782     tStats->velocitize();
783     }