ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 725
Committed: Tue Aug 26 20:29:26 2003 UTC (20 years, 10 months ago) by tim
File size: 16269 byte(s)
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2     #include <cstdlib>
3 mmeineke 561 #include <cmath>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
15     ForceFields* the_ff){
16 mmeineke 558 info = theInfo;
17     myFF = the_ff;
18     isFirst = 1;
19    
20     molecules = info->molecules;
21     nMols = info->n_mol;
22    
23     // give a little love back to the SimInfo object
24 tim 725
25     if (info->the_integrator != NULL){
26     delete info->the_integrator;
27     }
28 mmeineke 558 info->the_integrator = this;
29    
30     nAtoms = info->n_atoms;
31    
32     // check for constraints
33 tim 725
34     constrainedA = NULL;
35     constrainedB = NULL;
36 mmeineke 558 constrainedDsqr = NULL;
37 tim 725 moving = NULL;
38     moved = NULL;
39     oldPos = NULL;
40    
41 mmeineke 558 nConstrained = 0;
42    
43     checkConstraints();
44     }
45    
46 tim 725 template<typename T> Integrator<T>::~Integrator(){
47     if (nConstrained){
48 mmeineke 558 delete[] constrainedA;
49     delete[] constrainedB;
50     delete[] constrainedDsqr;
51     delete[] moving;
52     delete[] moved;
53 mmeineke 561 delete[] oldPos;
54 mmeineke 558 }
55     }
56    
57 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
58 mmeineke 558 isConstrained = 0;
59    
60 tim 725 Constraint* temp_con;
61     Constraint* dummy_plug;
62 mmeineke 558 temp_con = new Constraint[info->n_SRI];
63     nConstrained = 0;
64     int constrained = 0;
65 tim 725
66 mmeineke 558 SRI** theArray;
67 tim 725 for (int i = 0; i < nMols; i++){
68     theArray = (SRI * *) molecules[i].getMyBonds();
69     for (int j = 0; j < molecules[i].getNBonds(); j++){
70 mmeineke 558 constrained = theArray[j]->is_constrained();
71 mmeineke 594
72 tim 725 if (constrained){
73     dummy_plug = theArray[j]->get_constraint();
74     temp_con[nConstrained].set_a(dummy_plug->get_a());
75     temp_con[nConstrained].set_b(dummy_plug->get_b());
76     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
77 mmeineke 594
78 tim 725 nConstrained++;
79     constrained = 0;
80     }
81 mmeineke 558 }
82    
83 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
84     for (int j = 0; j < molecules[i].getNBends(); j++){
85 mmeineke 558 constrained = theArray[j]->is_constrained();
86 tim 725
87     if (constrained){
88     dummy_plug = theArray[j]->get_constraint();
89     temp_con[nConstrained].set_a(dummy_plug->get_a());
90     temp_con[nConstrained].set_b(dummy_plug->get_b());
91     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
92    
93     nConstrained++;
94     constrained = 0;
95 mmeineke 558 }
96     }
97    
98 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
99     for (int j = 0; j < molecules[i].getNTorsions(); j++){
100 mmeineke 558 constrained = theArray[j]->is_constrained();
101 tim 725
102     if (constrained){
103     dummy_plug = theArray[j]->get_constraint();
104     temp_con[nConstrained].set_a(dummy_plug->get_a());
105     temp_con[nConstrained].set_b(dummy_plug->get_b());
106     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
107    
108     nConstrained++;
109     constrained = 0;
110 mmeineke 558 }
111     }
112     }
113    
114 tim 725 if (nConstrained > 0){
115 mmeineke 558 isConstrained = 1;
116    
117 tim 725 if (constrainedA != NULL)
118     delete[] constrainedA;
119     if (constrainedB != NULL)
120     delete[] constrainedB;
121     if (constrainedDsqr != NULL)
122     delete[] constrainedDsqr;
123 mmeineke 558
124 tim 725 constrainedA = new int[nConstrained];
125     constrainedB = new int[nConstrained];
126 mmeineke 558 constrainedDsqr = new double[nConstrained];
127 tim 725
128     for (int i = 0; i < nConstrained; i++){
129 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
130     constrainedB[i] = temp_con[i].get_b();
131     constrainedDsqr[i] = temp_con[i].get_dsqr();
132     }
133    
134 tim 725
135 mmeineke 558 // save oldAtoms to check for lode balanceing later on.
136 tim 725
137 mmeineke 558 oldAtoms = nAtoms;
138 tim 725
139 mmeineke 558 moving = new int[nAtoms];
140 tim 725 moved = new int[nAtoms];
141 mmeineke 558
142 tim 725 oldPos = new double[nAtoms * 3];
143 mmeineke 558 }
144 tim 725
145 mmeineke 558 delete[] temp_con;
146     }
147    
148    
149 tim 725 template<typename T> void Integrator<T>::integrate(void){
150 mmeineke 558 int i, j; // loop counters
151    
152 tim 725 double runTime = info->run_time;
153     double sampleTime = info->sampleTime;
154     double statusTime = info->statusTime;
155 mmeineke 558 double thermalTime = info->thermalTime;
156    
157     double currSample;
158     double currThermal;
159     double currStatus;
160    
161     int calcPot, calcStress;
162     int isError;
163    
164 tim 725 tStats = new Thermo(info);
165     statOut = new StatWriter(info);
166     dumpOut = new DumpWriter(info);
167 mmeineke 558
168 mmeineke 561 atoms = info->atoms;
169 mmeineke 558 DirectionalAtom* dAtom;
170 mmeineke 561
171     dt = info->dt;
172 mmeineke 558 dt2 = 0.5 * dt;
173    
174     // initialize the forces before the first step
175    
176 tim 677 calcForce(1, 1);
177 tim 693 // myFF->doForces(1,1);
178 tim 725
179     if (info->setTemp){
180 tim 677 thermalize();
181 mmeineke 558 }
182 tim 725
183     calcPot = 0;
184     calcStress = 0;
185     currSample = sampleTime;
186     currThermal = thermalTime;
187     currStatus = statusTime;
188 mmeineke 558
189     calcPot = 0;
190     calcStress = 0;
191 mmeineke 711 currSample = sampleTime + info->getTime();
192     currThermal = thermalTime+ info->getTime();
193     currStatus = statusTime + info->getTime();
194 tim 725 >>>>>>> 1.18
195 mmeineke 558
196 tim 725 dumpOut->writeDump(info->getTime());
197     statOut->writeStat(info->getTime());
198 mmeineke 559
199     readyCheck();
200    
201     #ifdef IS_MPI
202 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
203 mmeineke 559 MPIcheckPoint();
204     #endif // is_mpi
205    
206 tim 725 while (info->getTime() < runTime){
207     if ((info->getTime() + dt) >= currStatus){
208 mmeineke 558 calcPot = 1;
209     calcStress = 1;
210     }
211 mmeineke 561
212 tim 725 integrateStep(calcPot, calcStress);
213    
214 mmeineke 643 info->incrTime(dt);
215 mmeineke 558
216 tim 725 if (info->setTemp){
217     if (info->getTime() >= currThermal){
218     thermalize();
219     currThermal += thermalTime;
220 mmeineke 558 }
221     }
222    
223 tim 725 if (info->getTime() >= currSample){
224     dumpOut->writeDump(info->getTime());
225 mmeineke 558 currSample += sampleTime;
226     }
227    
228 tim 725 if (info->getTime() >= currStatus){
229     statOut->writeStat(info->getTime());
230 mmeineke 558 calcPot = 0;
231     calcStress = 0;
232     currStatus += statusTime;
233     }
234 mmeineke 559
235     #ifdef IS_MPI
236 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
237 mmeineke 559 MPIcheckPoint();
238     #endif // is_mpi
239 mmeineke 558 }
240    
241 mmeineke 643 dumpOut->writeFinal(info->getTime());
242 mmeineke 558
243 mmeineke 561 delete dumpOut;
244     delete statOut;
245 mmeineke 558 }
246    
247 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
248     int calcStress){
249 mmeineke 558 // Position full step, and velocity half step
250 tim 725 preMove();
251 mmeineke 558
252     moveA();
253    
254 tim 725 if (nConstrained){
255     constrainA();
256     }
257    
258    
259 mmeineke 614 #ifdef IS_MPI
260 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
261 mmeineke 614 MPIcheckPoint();
262     #endif // is_mpi
263    
264 tim 725
265 mmeineke 558 // calc forces
266    
267 tim 725 calcForce(calcPot, calcStress);
268 mmeineke 558
269 mmeineke 614 #ifdef IS_MPI
270 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
271 mmeineke 614 MPIcheckPoint();
272     #endif // is_mpi
273    
274 tim 725
275 mmeineke 558 // finish the velocity half step
276 tim 725
277 mmeineke 558 moveB();
278 tim 725
279     if (nConstrained){
280     constrainB();
281     }
282    
283 mmeineke 614 #ifdef IS_MPI
284 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
285 mmeineke 614 MPIcheckPoint();
286     #endif // is_mpi
287 mmeineke 558 }
288    
289    
290 tim 725 template<typename T> void Integrator<T>::moveA(void){
291 gezelter 600 int i, j;
292 mmeineke 558 DirectionalAtom* dAtom;
293 gezelter 600 double Tb[3], ji[3];
294     double A[3][3], I[3][3];
295 mmeineke 561 double angle;
296 gezelter 600 double vel[3], pos[3], frc[3];
297     double mass;
298 mmeineke 558
299 tim 725 for (i = 0; i < nAtoms; i++){
300     atoms[i]->getVel(vel);
301     atoms[i]->getPos(pos);
302     atoms[i]->getFrc(frc);
303 mmeineke 567
304 gezelter 600 mass = atoms[i]->getMass();
305 mmeineke 594
306 tim 725 for (j = 0; j < 3; j++){
307 gezelter 600 // velocity half step
308 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
309 gezelter 600 // position whole step
310     pos[j] += dt * vel[j];
311     }
312 mmeineke 594
313 tim 725 atoms[i]->setVel(vel);
314     atoms[i]->setPos(pos);
315 gezelter 600
316 tim 725 if (atoms[i]->isDirectional()){
317     dAtom = (DirectionalAtom *) atoms[i];
318 mmeineke 558
319     // get and convert the torque to body frame
320 mmeineke 597
321 tim 725 dAtom->getTrq(Tb);
322     dAtom->lab2Body(Tb);
323    
324 mmeineke 558 // get the angular momentum, and propagate a half step
325 gezelter 600
326 tim 725 dAtom->getJ(ji);
327 gezelter 600
328 tim 725 for (j = 0; j < 3; j++)
329 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
330 tim 725
331 mmeineke 558 // use the angular velocities to propagate the rotation matrix a
332     // full time step
333 gezelter 600
334     dAtom->getA(A);
335     dAtom->getI(I);
336 tim 725
337 mmeineke 558 // rotate about the x-axis
338 gezelter 600 angle = dt2 * ji[0] / I[0][0];
339 tim 725 this->rotate(1, 2, angle, ji, A);
340 mmeineke 597
341 mmeineke 558 // rotate about the y-axis
342 gezelter 600 angle = dt2 * ji[1] / I[1][1];
343 tim 725 this->rotate(2, 0, angle, ji, A);
344    
345 mmeineke 558 // rotate about the z-axis
346 gezelter 600 angle = dt * ji[2] / I[2][2];
347 tim 725 this->rotate(0, 1, angle, ji, A);
348    
349 mmeineke 558 // rotate about the y-axis
350 gezelter 600 angle = dt2 * ji[1] / I[1][1];
351 tim 725 this->rotate(2, 0, angle, ji, A);
352    
353     // rotate about the x-axis
354 gezelter 600 angle = dt2 * ji[0] / I[0][0];
355 tim 725 this->rotate(1, 2, angle, ji, A);
356 mmeineke 597
357 tim 725
358     dAtom->setJ(ji);
359     dAtom->setA(A);
360     }
361 mmeineke 558 }
362     }
363    
364    
365 tim 725 template<typename T> void Integrator<T>::moveB(void){
366 gezelter 600 int i, j;
367 mmeineke 558 DirectionalAtom* dAtom;
368 gezelter 600 double Tb[3], ji[3];
369     double vel[3], frc[3];
370     double mass;
371 mmeineke 558
372 tim 725 for (i = 0; i < nAtoms; i++){
373     atoms[i]->getVel(vel);
374     atoms[i]->getFrc(frc);
375 mmeineke 558
376 gezelter 600 mass = atoms[i]->getMass();
377    
378 mmeineke 558 // velocity half step
379 tim 725 for (j = 0; j < 3; j++)
380     vel[j] += (dt2 * frc[j] / mass) * eConvert;
381 gezelter 600
382 tim 725 atoms[i]->setVel(vel);
383 mmeineke 597
384 tim 725 if (atoms[i]->isDirectional()){
385     dAtom = (DirectionalAtom *) atoms[i];
386    
387 gezelter 600 // get and convert the torque to body frame
388    
389 tim 725 dAtom->getTrq(Tb);
390     dAtom->lab2Body(Tb);
391 gezelter 600
392     // get the angular momentum, and propagate a half step
393    
394 tim 725 dAtom->getJ(ji);
395 gezelter 600
396 tim 725 for (j = 0; j < 3; j++)
397 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
398 mmeineke 597
399 tim 725
400     dAtom->setJ(ji);
401 mmeineke 558 }
402     }
403     }
404    
405 tim 725 template<typename T> void Integrator<T>::preMove(void){
406 gezelter 600 int i, j;
407     double pos[3];
408 mmeineke 558
409 tim 725 if (nConstrained){
410     for (i = 0; i < nAtoms; i++){
411     atoms[i]->getPos(pos);
412 mmeineke 561
413 tim 725 for (j = 0; j < 3; j++){
414     oldPos[3 * i + j] = pos[j];
415 gezelter 600 }
416     }
417 tim 725 }
418 gezelter 600 }
419    
420 tim 645 template<typename T> void Integrator<T>::constrainA(){
421 tim 725 int i, j, k;
422 mmeineke 558 int done;
423 gezelter 600 double posA[3], posB[3];
424     double velA[3], velB[3];
425 mmeineke 572 double pab[3];
426     double rab[3];
427 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
428 mmeineke 558 double rma, rmb;
429     double dx, dy, dz;
430 mmeineke 561 double rpab;
431 mmeineke 558 double rabsq, pabsq, rpabsq;
432     double diffsq;
433     double gab;
434     int iteration;
435    
436 tim 725 for (i = 0; i < nAtoms; i++){
437 mmeineke 558 moving[i] = 0;
438 tim 725 moved[i] = 1;
439 mmeineke 558 }
440 mmeineke 567
441 mmeineke 558 iteration = 0;
442     done = 0;
443 tim 725 while (!done && (iteration < maxIteration)){
444 mmeineke 558 done = 1;
445 tim 725 for (i = 0; i < nConstrained; i++){
446 mmeineke 558 a = constrainedA[i];
447     b = constrainedB[i];
448 mmeineke 563
449 tim 725 ax = (a * 3) + 0;
450     ay = (a * 3) + 1;
451     az = (a * 3) + 2;
452 mmeineke 563
453 tim 725 bx = (b * 3) + 0;
454     by = (b * 3) + 1;
455     bz = (b * 3) + 2;
456    
457     if (moved[a] || moved[b]){
458     atoms[a]->getPos(posA);
459     atoms[b]->getPos(posB);
460    
461     for (j = 0; j < 3; j++)
462 gezelter 600 pab[j] = posA[j] - posB[j];
463 mmeineke 567
464 tim 725 //periodic boundary condition
465 mmeineke 567
466 tim 725 info->wrapVector(pab);
467 mmeineke 572
468 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
469 mmeineke 558
470 tim 725 rabsq = constrainedDsqr[i];
471     diffsq = rabsq - pabsq;
472 mmeineke 567
473 tim 725 // the original rattle code from alan tidesley
474     if (fabs(diffsq) > (tol * rabsq * 2)){
475     rab[0] = oldPos[ax] - oldPos[bx];
476     rab[1] = oldPos[ay] - oldPos[by];
477     rab[2] = oldPos[az] - oldPos[bz];
478 mmeineke 558
479 tim 725 info->wrapVector(rab);
480 mmeineke 567
481 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
482 mmeineke 558
483 tim 725 rpabsq = rpab * rpab;
484 mmeineke 558
485 mmeineke 563
486 tim 725 if (rpabsq < (rabsq * -diffsq)){
487 mmeineke 558 #ifdef IS_MPI
488 tim 725 a = atoms[a]->getGlobalIndex();
489     b = atoms[b]->getGlobalIndex();
490 mmeineke 558 #endif //is_mpi
491 tim 725 sprintf(painCave.errMsg,
492     "Constraint failure in constrainA at atom %d and %d.\n", a,
493     b);
494     painCave.isFatal = 1;
495     simError();
496     }
497 mmeineke 558
498 tim 725 rma = 1.0 / atoms[a]->getMass();
499     rmb = 1.0 / atoms[b]->getMass();
500 mmeineke 567
501 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
502 mmeineke 567
503 mmeineke 572 dx = rab[0] * gab;
504     dy = rab[1] * gab;
505     dz = rab[2] * gab;
506 mmeineke 558
507 tim 725 posA[0] += rma * dx;
508     posA[1] += rma * dy;
509     posA[2] += rma * dz;
510 mmeineke 558
511 tim 725 atoms[a]->setPos(posA);
512 mmeineke 558
513 tim 725 posB[0] -= rmb * dx;
514     posB[1] -= rmb * dy;
515     posB[2] -= rmb * dz;
516 gezelter 600
517 tim 725 atoms[b]->setPos(posB);
518 gezelter 600
519 mmeineke 558 dx = dx / dt;
520     dy = dy / dt;
521     dz = dz / dt;
522    
523 tim 725 atoms[a]->getVel(velA);
524 mmeineke 558
525 tim 725 velA[0] += rma * dx;
526     velA[1] += rma * dy;
527     velA[2] += rma * dz;
528 mmeineke 558
529 tim 725 atoms[a]->setVel(velA);
530 gezelter 600
531 tim 725 atoms[b]->getVel(velB);
532 gezelter 600
533 tim 725 velB[0] -= rmb * dx;
534     velB[1] -= rmb * dy;
535     velB[2] -= rmb * dz;
536 gezelter 600
537 tim 725 atoms[b]->setVel(velB);
538 gezelter 600
539 tim 725 moving[a] = 1;
540     moving[b] = 1;
541     done = 0;
542     }
543 mmeineke 558 }
544     }
545 tim 725
546     for (i = 0; i < nAtoms; i++){
547 mmeineke 558 moved[i] = moving[i];
548     moving[i] = 0;
549     }
550    
551     iteration++;
552     }
553    
554 tim 725 if (!done){
555     sprintf(painCave.errMsg,
556     "Constraint failure in constrainA, too many iterations: %d\n",
557     iteration);
558 mmeineke 558 painCave.isFatal = 1;
559     simError();
560     }
561     }
562    
563 tim 725 template<typename T> void Integrator<T>::constrainB(void){
564     int i, j, k;
565 mmeineke 558 int done;
566 gezelter 600 double posA[3], posB[3];
567     double velA[3], velB[3];
568 mmeineke 558 double vxab, vyab, vzab;
569 mmeineke 572 double rab[3];
570 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
571 mmeineke 558 double rma, rmb;
572     double dx, dy, dz;
573     double rabsq, pabsq, rvab;
574     double diffsq;
575     double gab;
576     int iteration;
577    
578 tim 725 for (i = 0; i < nAtoms; i++){
579 mmeineke 558 moving[i] = 0;
580     moved[i] = 1;
581     }
582    
583     done = 0;
584 mmeineke 561 iteration = 0;
585 tim 725 while (!done && (iteration < maxIteration)){
586 mmeineke 567 done = 1;
587    
588 tim 725 for (i = 0; i < nConstrained; i++){
589 mmeineke 558 a = constrainedA[i];
590     b = constrainedB[i];
591    
592 tim 725 ax = (a * 3) + 0;
593     ay = (a * 3) + 1;
594     az = (a * 3) + 2;
595 mmeineke 563
596 tim 725 bx = (b * 3) + 0;
597     by = (b * 3) + 1;
598     bz = (b * 3) + 2;
599 mmeineke 563
600 tim 725 if (moved[a] || moved[b]){
601     atoms[a]->getVel(velA);
602     atoms[b]->getVel(velB);
603 mmeineke 558
604 tim 725 vxab = velA[0] - velB[0];
605     vyab = velA[1] - velB[1];
606     vzab = velA[2] - velB[2];
607 gezelter 600
608 tim 725 atoms[a]->getPos(posA);
609     atoms[b]->getPos(posB);
610 gezelter 600
611 tim 725 for (j = 0; j < 3; j++)
612 gezelter 600 rab[j] = posA[j] - posB[j];
613 mmeineke 558
614 tim 725 info->wrapVector(rab);
615 mmeineke 558
616 tim 725 rma = 1.0 / atoms[a]->getMass();
617     rmb = 1.0 / atoms[b]->getMass();
618 mmeineke 558
619 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
620 gezelter 600
621 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
622 gezelter 600
623 tim 725 if (fabs(gab) > tol){
624     dx = rab[0] * gab;
625     dy = rab[1] * gab;
626     dz = rab[2] * gab;
627    
628     velA[0] += rma * dx;
629     velA[1] += rma * dy;
630     velA[2] += rma * dz;
631    
632     atoms[a]->setVel(velA);
633    
634     velB[0] -= rmb * dx;
635     velB[1] -= rmb * dy;
636     velB[2] -= rmb * dz;
637    
638     atoms[b]->setVel(velB);
639    
640     moving[a] = 1;
641     moving[b] = 1;
642     done = 0;
643     }
644 mmeineke 558 }
645     }
646    
647 tim 725 for (i = 0; i < nAtoms; i++){
648 mmeineke 558 moved[i] = moving[i];
649     moving[i] = 0;
650     }
651 tim 725
652 mmeineke 558 iteration++;
653     }
654    
655 tim 725 if (!done){
656     sprintf(painCave.errMsg,
657     "Constraint failure in constrainB, too many iterations: %d\n",
658     iteration);
659 mmeineke 558 painCave.isFatal = 1;
660     simError();
661 tim 725 }
662 mmeineke 558 }
663    
664 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
665     double angle, double ji[3],
666     double A[3][3]){
667     int i, j, k;
668 mmeineke 558 double sinAngle;
669     double cosAngle;
670     double angleSqr;
671     double angleSqrOver4;
672     double top, bottom;
673     double rot[3][3];
674     double tempA[3][3];
675     double tempJ[3];
676    
677     // initialize the tempA
678    
679 tim 725 for (i = 0; i < 3; i++){
680     for (j = 0; j < 3; j++){
681 gezelter 600 tempA[j][i] = A[i][j];
682 mmeineke 558 }
683     }
684    
685     // initialize the tempJ
686    
687 tim 725 for (i = 0; i < 3; i++)
688     tempJ[i] = ji[i];
689    
690 mmeineke 558 // initalize rot as a unit matrix
691    
692     rot[0][0] = 1.0;
693     rot[0][1] = 0.0;
694     rot[0][2] = 0.0;
695    
696     rot[1][0] = 0.0;
697     rot[1][1] = 1.0;
698     rot[1][2] = 0.0;
699 tim 725
700 mmeineke 558 rot[2][0] = 0.0;
701     rot[2][1] = 0.0;
702     rot[2][2] = 1.0;
703 tim 725
704 mmeineke 558 // use a small angle aproximation for sin and cosine
705    
706 tim 725 angleSqr = angle * angle;
707 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
708     top = 1.0 - angleSqrOver4;
709     bottom = 1.0 + angleSqrOver4;
710    
711     cosAngle = top / bottom;
712     sinAngle = angle / bottom;
713    
714     rot[axes1][axes1] = cosAngle;
715     rot[axes2][axes2] = cosAngle;
716    
717     rot[axes1][axes2] = sinAngle;
718     rot[axes2][axes1] = -sinAngle;
719 tim 725
720 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
721 tim 725
722     for (i = 0; i < 3; i++){
723 mmeineke 558 ji[i] = 0.0;
724 tim 725 for (k = 0; k < 3; k++){
725 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
726     }
727     }
728    
729     // rotate the Rotation matrix acording to:
730     // A[][] = A[][] * transpose(rot[][])
731    
732    
733 mmeineke 561 // NOte for as yet unknown reason, we are performing the
734 mmeineke 558 // calculation as:
735     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
736    
737 tim 725 for (i = 0; i < 3; i++){
738     for (j = 0; j < 3; j++){
739 gezelter 600 A[j][i] = 0.0;
740 tim 725 for (k = 0; k < 3; k++){
741     A[j][i] += tempA[i][k] * rot[j][k];
742 mmeineke 558 }
743     }
744     }
745     }
746 tim 677
747 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
748     myFF->doForces(calcPot, calcStress);
749 tim 677 }
750    
751     template<typename T> void Integrator<T>::thermalize(){
752 tim 725 tStats->velocitize();
753 tim 677 }