ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 746
Committed: Thu Sep 4 21:48:35 2003 UTC (20 years, 10 months ago) by mmeineke
File size: 16373 byte(s)
Log Message:
added resetTime to the Global namespace.

added ability to reset the integrators in the NVT and NPT family.

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2     #include <cstdlib>
3 mmeineke 561 #include <cmath>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
15     ForceFields* the_ff){
16 mmeineke 558 info = theInfo;
17     myFF = the_ff;
18     isFirst = 1;
19    
20     molecules = info->molecules;
21     nMols = info->n_mol;
22    
23     // give a little love back to the SimInfo object
24 tim 725
25     if (info->the_integrator != NULL){
26     delete info->the_integrator;
27     }
28 mmeineke 558 info->the_integrator = this;
29    
30     nAtoms = info->n_atoms;
31    
32     // check for constraints
33 tim 725
34     constrainedA = NULL;
35     constrainedB = NULL;
36 mmeineke 558 constrainedDsqr = NULL;
37 tim 725 moving = NULL;
38     moved = NULL;
39     oldPos = NULL;
40    
41 mmeineke 558 nConstrained = 0;
42    
43     checkConstraints();
44     }
45    
46 tim 725 template<typename T> Integrator<T>::~Integrator(){
47     if (nConstrained){
48 mmeineke 558 delete[] constrainedA;
49     delete[] constrainedB;
50     delete[] constrainedDsqr;
51     delete[] moving;
52     delete[] moved;
53 mmeineke 561 delete[] oldPos;
54 mmeineke 558 }
55     }
56    
57 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
58 mmeineke 558 isConstrained = 0;
59    
60 tim 725 Constraint* temp_con;
61     Constraint* dummy_plug;
62 mmeineke 558 temp_con = new Constraint[info->n_SRI];
63     nConstrained = 0;
64     int constrained = 0;
65 tim 725
66 mmeineke 558 SRI** theArray;
67 tim 725 for (int i = 0; i < nMols; i++){
68     theArray = (SRI * *) molecules[i].getMyBonds();
69     for (int j = 0; j < molecules[i].getNBonds(); j++){
70 mmeineke 558 constrained = theArray[j]->is_constrained();
71 mmeineke 594
72 tim 725 if (constrained){
73     dummy_plug = theArray[j]->get_constraint();
74     temp_con[nConstrained].set_a(dummy_plug->get_a());
75     temp_con[nConstrained].set_b(dummy_plug->get_b());
76     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
77 mmeineke 594
78 tim 725 nConstrained++;
79     constrained = 0;
80     }
81 mmeineke 558 }
82    
83 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
84     for (int j = 0; j < molecules[i].getNBends(); j++){
85 mmeineke 558 constrained = theArray[j]->is_constrained();
86 tim 725
87     if (constrained){
88     dummy_plug = theArray[j]->get_constraint();
89     temp_con[nConstrained].set_a(dummy_plug->get_a());
90     temp_con[nConstrained].set_b(dummy_plug->get_b());
91     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
92    
93     nConstrained++;
94     constrained = 0;
95 mmeineke 558 }
96     }
97    
98 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
99     for (int j = 0; j < molecules[i].getNTorsions(); j++){
100 mmeineke 558 constrained = theArray[j]->is_constrained();
101 tim 725
102     if (constrained){
103     dummy_plug = theArray[j]->get_constraint();
104     temp_con[nConstrained].set_a(dummy_plug->get_a());
105     temp_con[nConstrained].set_b(dummy_plug->get_b());
106     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
107    
108     nConstrained++;
109     constrained = 0;
110 mmeineke 558 }
111     }
112     }
113    
114 tim 725 if (nConstrained > 0){
115 mmeineke 558 isConstrained = 1;
116    
117 tim 725 if (constrainedA != NULL)
118     delete[] constrainedA;
119     if (constrainedB != NULL)
120     delete[] constrainedB;
121     if (constrainedDsqr != NULL)
122     delete[] constrainedDsqr;
123 mmeineke 558
124 tim 725 constrainedA = new int[nConstrained];
125     constrainedB = new int[nConstrained];
126 mmeineke 558 constrainedDsqr = new double[nConstrained];
127 tim 725
128     for (int i = 0; i < nConstrained; i++){
129 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
130     constrainedB[i] = temp_con[i].get_b();
131     constrainedDsqr[i] = temp_con[i].get_dsqr();
132     }
133    
134 tim 725
135 mmeineke 558 // save oldAtoms to check for lode balanceing later on.
136 tim 725
137 mmeineke 558 oldAtoms = nAtoms;
138 tim 725
139 mmeineke 558 moving = new int[nAtoms];
140 tim 725 moved = new int[nAtoms];
141 mmeineke 558
142 tim 725 oldPos = new double[nAtoms * 3];
143 mmeineke 558 }
144 tim 725
145 mmeineke 558 delete[] temp_con;
146     }
147    
148    
149 tim 725 template<typename T> void Integrator<T>::integrate(void){
150 mmeineke 558 int i, j; // loop counters
151    
152 tim 725 double runTime = info->run_time;
153     double sampleTime = info->sampleTime;
154     double statusTime = info->statusTime;
155 mmeineke 558 double thermalTime = info->thermalTime;
156 mmeineke 746 double resetTime = info->resetTime;
157 mmeineke 558
158 mmeineke 746
159 mmeineke 558 double currSample;
160     double currThermal;
161     double currStatus;
162 mmeineke 746 double currReset;
163    
164 mmeineke 558 int calcPot, calcStress;
165     int isError;
166    
167 tim 725 tStats = new Thermo(info);
168     statOut = new StatWriter(info);
169     dumpOut = new DumpWriter(info);
170 mmeineke 558
171 mmeineke 561 atoms = info->atoms;
172 mmeineke 558 DirectionalAtom* dAtom;
173 mmeineke 561
174     dt = info->dt;
175 mmeineke 558 dt2 = 0.5 * dt;
176    
177     // initialize the forces before the first step
178    
179 tim 677 calcForce(1, 1);
180 tim 733
181 tim 725 if (info->setTemp){
182 tim 677 thermalize();
183 mmeineke 558 }
184 tim 725
185 mmeineke 558 calcPot = 0;
186     calcStress = 0;
187 mmeineke 711 currSample = sampleTime + info->getTime();
188     currThermal = thermalTime+ info->getTime();
189     currStatus = statusTime + info->getTime();
190 mmeineke 746 currReset = resetTime + info->getTime();
191 mmeineke 558
192 tim 725 dumpOut->writeDump(info->getTime());
193     statOut->writeStat(info->getTime());
194 mmeineke 559
195     readyCheck();
196    
197     #ifdef IS_MPI
198 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
199 mmeineke 559 MPIcheckPoint();
200     #endif // is_mpi
201    
202 tim 725 while (info->getTime() < runTime){
203     if ((info->getTime() + dt) >= currStatus){
204 mmeineke 558 calcPot = 1;
205     calcStress = 1;
206     }
207 mmeineke 561
208 tim 725 integrateStep(calcPot, calcStress);
209    
210 mmeineke 643 info->incrTime(dt);
211 mmeineke 558
212 tim 725 if (info->setTemp){
213     if (info->getTime() >= currThermal){
214     thermalize();
215     currThermal += thermalTime;
216 mmeineke 558 }
217     }
218    
219 tim 725 if (info->getTime() >= currSample){
220     dumpOut->writeDump(info->getTime());
221 mmeineke 558 currSample += sampleTime;
222     }
223    
224 tim 725 if (info->getTime() >= currStatus){
225     statOut->writeStat(info->getTime());
226 mmeineke 558 calcPot = 0;
227     calcStress = 0;
228     currStatus += statusTime;
229     }
230 mmeineke 559
231 mmeineke 746 if (info->resetIntegrator){
232     if (info->getTime() >= currReset){
233     this->resetIntegrator();
234     currReset += resetTime;
235     }
236     }
237    
238 mmeineke 559 #ifdef IS_MPI
239 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
240 mmeineke 559 MPIcheckPoint();
241     #endif // is_mpi
242 mmeineke 558 }
243    
244 mmeineke 643 dumpOut->writeFinal(info->getTime());
245 mmeineke 558
246 mmeineke 561 delete dumpOut;
247     delete statOut;
248 mmeineke 558 }
249    
250 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
251     int calcStress){
252 mmeineke 558 // Position full step, and velocity half step
253 tim 725 preMove();
254 mmeineke 558
255     moveA();
256    
257 tim 725 if (nConstrained){
258     constrainA();
259     }
260    
261    
262 mmeineke 614 #ifdef IS_MPI
263 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
264 mmeineke 614 MPIcheckPoint();
265     #endif // is_mpi
266    
267 tim 725
268 mmeineke 558 // calc forces
269    
270 tim 725 calcForce(calcPot, calcStress);
271 mmeineke 558
272 mmeineke 614 #ifdef IS_MPI
273 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
274 mmeineke 614 MPIcheckPoint();
275     #endif // is_mpi
276    
277 tim 725
278 mmeineke 558 // finish the velocity half step
279 tim 725
280 mmeineke 558 moveB();
281 tim 725
282     if (nConstrained){
283     constrainB();
284     }
285    
286 mmeineke 614 #ifdef IS_MPI
287 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
288 mmeineke 614 MPIcheckPoint();
289     #endif // is_mpi
290 mmeineke 558 }
291    
292    
293 tim 725 template<typename T> void Integrator<T>::moveA(void){
294 gezelter 600 int i, j;
295 mmeineke 558 DirectionalAtom* dAtom;
296 gezelter 600 double Tb[3], ji[3];
297     double A[3][3], I[3][3];
298 mmeineke 561 double angle;
299 gezelter 600 double vel[3], pos[3], frc[3];
300     double mass;
301 mmeineke 558
302 tim 725 for (i = 0; i < nAtoms; i++){
303     atoms[i]->getVel(vel);
304     atoms[i]->getPos(pos);
305     atoms[i]->getFrc(frc);
306 mmeineke 567
307 gezelter 600 mass = atoms[i]->getMass();
308 mmeineke 594
309 tim 725 for (j = 0; j < 3; j++){
310 gezelter 600 // velocity half step
311 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
312 gezelter 600 // position whole step
313     pos[j] += dt * vel[j];
314     }
315 mmeineke 594
316 tim 725 atoms[i]->setVel(vel);
317     atoms[i]->setPos(pos);
318 gezelter 600
319 tim 725 if (atoms[i]->isDirectional()){
320     dAtom = (DirectionalAtom *) atoms[i];
321 mmeineke 558
322     // get and convert the torque to body frame
323 mmeineke 597
324 tim 725 dAtom->getTrq(Tb);
325     dAtom->lab2Body(Tb);
326    
327 mmeineke 558 // get the angular momentum, and propagate a half step
328 gezelter 600
329 tim 725 dAtom->getJ(ji);
330 gezelter 600
331 tim 725 for (j = 0; j < 3; j++)
332 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
333 tim 725
334 mmeineke 558 // use the angular velocities to propagate the rotation matrix a
335     // full time step
336 gezelter 600
337     dAtom->getA(A);
338     dAtom->getI(I);
339 tim 725
340 mmeineke 558 // rotate about the x-axis
341 gezelter 600 angle = dt2 * ji[0] / I[0][0];
342 tim 725 this->rotate(1, 2, angle, ji, A);
343 mmeineke 597
344 mmeineke 558 // rotate about the y-axis
345 gezelter 600 angle = dt2 * ji[1] / I[1][1];
346 tim 725 this->rotate(2, 0, angle, ji, A);
347    
348 mmeineke 558 // rotate about the z-axis
349 gezelter 600 angle = dt * ji[2] / I[2][2];
350 tim 725 this->rotate(0, 1, angle, ji, A);
351    
352 mmeineke 558 // rotate about the y-axis
353 gezelter 600 angle = dt2 * ji[1] / I[1][1];
354 tim 725 this->rotate(2, 0, angle, ji, A);
355    
356     // rotate about the x-axis
357 gezelter 600 angle = dt2 * ji[0] / I[0][0];
358 tim 725 this->rotate(1, 2, angle, ji, A);
359 mmeineke 597
360 tim 725
361     dAtom->setJ(ji);
362     dAtom->setA(A);
363     }
364 mmeineke 558 }
365     }
366    
367    
368 tim 725 template<typename T> void Integrator<T>::moveB(void){
369 gezelter 600 int i, j;
370 mmeineke 558 DirectionalAtom* dAtom;
371 gezelter 600 double Tb[3], ji[3];
372     double vel[3], frc[3];
373     double mass;
374 mmeineke 558
375 tim 725 for (i = 0; i < nAtoms; i++){
376     atoms[i]->getVel(vel);
377     atoms[i]->getFrc(frc);
378 mmeineke 558
379 gezelter 600 mass = atoms[i]->getMass();
380    
381 mmeineke 558 // velocity half step
382 tim 725 for (j = 0; j < 3; j++)
383     vel[j] += (dt2 * frc[j] / mass) * eConvert;
384 gezelter 600
385 tim 725 atoms[i]->setVel(vel);
386 mmeineke 597
387 tim 725 if (atoms[i]->isDirectional()){
388     dAtom = (DirectionalAtom *) atoms[i];
389    
390 gezelter 600 // get and convert the torque to body frame
391    
392 tim 725 dAtom->getTrq(Tb);
393     dAtom->lab2Body(Tb);
394 gezelter 600
395     // get the angular momentum, and propagate a half step
396    
397 tim 725 dAtom->getJ(ji);
398 gezelter 600
399 tim 725 for (j = 0; j < 3; j++)
400 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
401 mmeineke 597
402 tim 725
403     dAtom->setJ(ji);
404 mmeineke 558 }
405     }
406     }
407    
408 tim 725 template<typename T> void Integrator<T>::preMove(void){
409 gezelter 600 int i, j;
410     double pos[3];
411 mmeineke 558
412 tim 725 if (nConstrained){
413     for (i = 0; i < nAtoms; i++){
414     atoms[i]->getPos(pos);
415 mmeineke 561
416 tim 725 for (j = 0; j < 3; j++){
417     oldPos[3 * i + j] = pos[j];
418 gezelter 600 }
419     }
420 tim 725 }
421 gezelter 600 }
422    
423 tim 645 template<typename T> void Integrator<T>::constrainA(){
424 tim 725 int i, j, k;
425 mmeineke 558 int done;
426 gezelter 600 double posA[3], posB[3];
427     double velA[3], velB[3];
428 mmeineke 572 double pab[3];
429     double rab[3];
430 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
431 mmeineke 558 double rma, rmb;
432     double dx, dy, dz;
433 mmeineke 561 double rpab;
434 mmeineke 558 double rabsq, pabsq, rpabsq;
435     double diffsq;
436     double gab;
437     int iteration;
438    
439 tim 725 for (i = 0; i < nAtoms; i++){
440 mmeineke 558 moving[i] = 0;
441 tim 725 moved[i] = 1;
442 mmeineke 558 }
443 mmeineke 567
444 mmeineke 558 iteration = 0;
445     done = 0;
446 tim 725 while (!done && (iteration < maxIteration)){
447 mmeineke 558 done = 1;
448 tim 725 for (i = 0; i < nConstrained; i++){
449 mmeineke 558 a = constrainedA[i];
450     b = constrainedB[i];
451 mmeineke 563
452 tim 725 ax = (a * 3) + 0;
453     ay = (a * 3) + 1;
454     az = (a * 3) + 2;
455 mmeineke 563
456 tim 725 bx = (b * 3) + 0;
457     by = (b * 3) + 1;
458     bz = (b * 3) + 2;
459    
460     if (moved[a] || moved[b]){
461     atoms[a]->getPos(posA);
462     atoms[b]->getPos(posB);
463    
464     for (j = 0; j < 3; j++)
465 gezelter 600 pab[j] = posA[j] - posB[j];
466 mmeineke 567
467 tim 725 //periodic boundary condition
468 mmeineke 567
469 tim 725 info->wrapVector(pab);
470 mmeineke 572
471 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
472 mmeineke 558
473 tim 725 rabsq = constrainedDsqr[i];
474     diffsq = rabsq - pabsq;
475 mmeineke 567
476 tim 725 // the original rattle code from alan tidesley
477     if (fabs(diffsq) > (tol * rabsq * 2)){
478     rab[0] = oldPos[ax] - oldPos[bx];
479     rab[1] = oldPos[ay] - oldPos[by];
480     rab[2] = oldPos[az] - oldPos[bz];
481 mmeineke 558
482 tim 725 info->wrapVector(rab);
483 mmeineke 567
484 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
485 mmeineke 558
486 tim 725 rpabsq = rpab * rpab;
487 mmeineke 558
488 mmeineke 563
489 tim 725 if (rpabsq < (rabsq * -diffsq)){
490 mmeineke 558 #ifdef IS_MPI
491 tim 725 a = atoms[a]->getGlobalIndex();
492     b = atoms[b]->getGlobalIndex();
493 mmeineke 558 #endif //is_mpi
494 tim 725 sprintf(painCave.errMsg,
495     "Constraint failure in constrainA at atom %d and %d.\n", a,
496     b);
497     painCave.isFatal = 1;
498     simError();
499     }
500 mmeineke 558
501 tim 725 rma = 1.0 / atoms[a]->getMass();
502     rmb = 1.0 / atoms[b]->getMass();
503 mmeineke 567
504 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
505 mmeineke 567
506 mmeineke 572 dx = rab[0] * gab;
507     dy = rab[1] * gab;
508     dz = rab[2] * gab;
509 mmeineke 558
510 tim 725 posA[0] += rma * dx;
511     posA[1] += rma * dy;
512     posA[2] += rma * dz;
513 mmeineke 558
514 tim 725 atoms[a]->setPos(posA);
515 mmeineke 558
516 tim 725 posB[0] -= rmb * dx;
517     posB[1] -= rmb * dy;
518     posB[2] -= rmb * dz;
519 gezelter 600
520 tim 725 atoms[b]->setPos(posB);
521 gezelter 600
522 mmeineke 558 dx = dx / dt;
523     dy = dy / dt;
524     dz = dz / dt;
525    
526 tim 725 atoms[a]->getVel(velA);
527 mmeineke 558
528 tim 725 velA[0] += rma * dx;
529     velA[1] += rma * dy;
530     velA[2] += rma * dz;
531 mmeineke 558
532 tim 725 atoms[a]->setVel(velA);
533 gezelter 600
534 tim 725 atoms[b]->getVel(velB);
535 gezelter 600
536 tim 725 velB[0] -= rmb * dx;
537     velB[1] -= rmb * dy;
538     velB[2] -= rmb * dz;
539 gezelter 600
540 tim 725 atoms[b]->setVel(velB);
541 gezelter 600
542 tim 725 moving[a] = 1;
543     moving[b] = 1;
544     done = 0;
545     }
546 mmeineke 558 }
547     }
548 tim 725
549     for (i = 0; i < nAtoms; i++){
550 mmeineke 558 moved[i] = moving[i];
551     moving[i] = 0;
552     }
553    
554     iteration++;
555     }
556    
557 tim 725 if (!done){
558     sprintf(painCave.errMsg,
559     "Constraint failure in constrainA, too many iterations: %d\n",
560     iteration);
561 mmeineke 558 painCave.isFatal = 1;
562     simError();
563     }
564     }
565    
566 tim 725 template<typename T> void Integrator<T>::constrainB(void){
567     int i, j, k;
568 mmeineke 558 int done;
569 gezelter 600 double posA[3], posB[3];
570     double velA[3], velB[3];
571 mmeineke 558 double vxab, vyab, vzab;
572 mmeineke 572 double rab[3];
573 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
574 mmeineke 558 double rma, rmb;
575     double dx, dy, dz;
576     double rabsq, pabsq, rvab;
577     double diffsq;
578     double gab;
579     int iteration;
580    
581 tim 725 for (i = 0; i < nAtoms; i++){
582 mmeineke 558 moving[i] = 0;
583     moved[i] = 1;
584     }
585    
586     done = 0;
587 mmeineke 561 iteration = 0;
588 tim 725 while (!done && (iteration < maxIteration)){
589 mmeineke 567 done = 1;
590    
591 tim 725 for (i = 0; i < nConstrained; i++){
592 mmeineke 558 a = constrainedA[i];
593     b = constrainedB[i];
594    
595 tim 725 ax = (a * 3) + 0;
596     ay = (a * 3) + 1;
597     az = (a * 3) + 2;
598 mmeineke 563
599 tim 725 bx = (b * 3) + 0;
600     by = (b * 3) + 1;
601     bz = (b * 3) + 2;
602 mmeineke 563
603 tim 725 if (moved[a] || moved[b]){
604     atoms[a]->getVel(velA);
605     atoms[b]->getVel(velB);
606 mmeineke 558
607 tim 725 vxab = velA[0] - velB[0];
608     vyab = velA[1] - velB[1];
609     vzab = velA[2] - velB[2];
610 gezelter 600
611 tim 725 atoms[a]->getPos(posA);
612     atoms[b]->getPos(posB);
613 gezelter 600
614 tim 725 for (j = 0; j < 3; j++)
615 gezelter 600 rab[j] = posA[j] - posB[j];
616 mmeineke 558
617 tim 725 info->wrapVector(rab);
618 mmeineke 558
619 tim 725 rma = 1.0 / atoms[a]->getMass();
620     rmb = 1.0 / atoms[b]->getMass();
621 mmeineke 558
622 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
623 gezelter 600
624 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
625 gezelter 600
626 tim 725 if (fabs(gab) > tol){
627     dx = rab[0] * gab;
628     dy = rab[1] * gab;
629     dz = rab[2] * gab;
630    
631     velA[0] += rma * dx;
632     velA[1] += rma * dy;
633     velA[2] += rma * dz;
634    
635     atoms[a]->setVel(velA);
636    
637     velB[0] -= rmb * dx;
638     velB[1] -= rmb * dy;
639     velB[2] -= rmb * dz;
640    
641     atoms[b]->setVel(velB);
642    
643     moving[a] = 1;
644     moving[b] = 1;
645     done = 0;
646     }
647 mmeineke 558 }
648     }
649    
650 tim 725 for (i = 0; i < nAtoms; i++){
651 mmeineke 558 moved[i] = moving[i];
652     moving[i] = 0;
653     }
654 tim 725
655 mmeineke 558 iteration++;
656     }
657    
658 tim 725 if (!done){
659     sprintf(painCave.errMsg,
660     "Constraint failure in constrainB, too many iterations: %d\n",
661     iteration);
662 mmeineke 558 painCave.isFatal = 1;
663     simError();
664 tim 725 }
665 mmeineke 558 }
666    
667 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
668     double angle, double ji[3],
669     double A[3][3]){
670     int i, j, k;
671 mmeineke 558 double sinAngle;
672     double cosAngle;
673     double angleSqr;
674     double angleSqrOver4;
675     double top, bottom;
676     double rot[3][3];
677     double tempA[3][3];
678     double tempJ[3];
679    
680     // initialize the tempA
681    
682 tim 725 for (i = 0; i < 3; i++){
683     for (j = 0; j < 3; j++){
684 gezelter 600 tempA[j][i] = A[i][j];
685 mmeineke 558 }
686     }
687    
688     // initialize the tempJ
689    
690 tim 725 for (i = 0; i < 3; i++)
691     tempJ[i] = ji[i];
692    
693 mmeineke 558 // initalize rot as a unit matrix
694    
695     rot[0][0] = 1.0;
696     rot[0][1] = 0.0;
697     rot[0][2] = 0.0;
698    
699     rot[1][0] = 0.0;
700     rot[1][1] = 1.0;
701     rot[1][2] = 0.0;
702 tim 725
703 mmeineke 558 rot[2][0] = 0.0;
704     rot[2][1] = 0.0;
705     rot[2][2] = 1.0;
706 tim 725
707 mmeineke 558 // use a small angle aproximation for sin and cosine
708    
709 tim 725 angleSqr = angle * angle;
710 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
711     top = 1.0 - angleSqrOver4;
712     bottom = 1.0 + angleSqrOver4;
713    
714     cosAngle = top / bottom;
715     sinAngle = angle / bottom;
716    
717     rot[axes1][axes1] = cosAngle;
718     rot[axes2][axes2] = cosAngle;
719    
720     rot[axes1][axes2] = sinAngle;
721     rot[axes2][axes1] = -sinAngle;
722 tim 725
723 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
724 tim 725
725     for (i = 0; i < 3; i++){
726 mmeineke 558 ji[i] = 0.0;
727 tim 725 for (k = 0; k < 3; k++){
728 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
729     }
730     }
731    
732     // rotate the Rotation matrix acording to:
733     // A[][] = A[][] * transpose(rot[][])
734    
735    
736 mmeineke 561 // NOte for as yet unknown reason, we are performing the
737 mmeineke 558 // calculation as:
738     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
739    
740 tim 725 for (i = 0; i < 3; i++){
741     for (j = 0; j < 3; j++){
742 gezelter 600 A[j][i] = 0.0;
743 tim 725 for (k = 0; k < 3; k++){
744     A[j][i] += tempA[i][k] * rot[j][k];
745 mmeineke 558 }
746     }
747     }
748     }
749 tim 677
750 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
751     myFF->doForces(calcPot, calcStress);
752 tim 677 }
753    
754     template<typename T> void Integrator<T>::thermalize(){
755 tim 725 tStats->velocitize();
756 tim 677 }