ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 768
Committed: Wed Sep 17 14:22:15 2003 UTC (20 years, 9 months ago) by mmeineke
File size: 16481 byte(s)
Log Message:
fixed NPTi to now work with constraints.

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2     #include <cstdlib>
3 mmeineke 561 #include <cmath>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
15     ForceFields* the_ff){
16 mmeineke 558 info = theInfo;
17     myFF = the_ff;
18     isFirst = 1;
19    
20     molecules = info->molecules;
21     nMols = info->n_mol;
22    
23     // give a little love back to the SimInfo object
24 tim 725
25     if (info->the_integrator != NULL){
26     delete info->the_integrator;
27     }
28 mmeineke 558 info->the_integrator = this;
29    
30     nAtoms = info->n_atoms;
31    
32     // check for constraints
33 tim 725
34     constrainedA = NULL;
35     constrainedB = NULL;
36 mmeineke 558 constrainedDsqr = NULL;
37 tim 725 moving = NULL;
38     moved = NULL;
39     oldPos = NULL;
40    
41 mmeineke 558 nConstrained = 0;
42    
43     checkConstraints();
44     }
45    
46 tim 725 template<typename T> Integrator<T>::~Integrator(){
47     if (nConstrained){
48 mmeineke 558 delete[] constrainedA;
49     delete[] constrainedB;
50     delete[] constrainedDsqr;
51     delete[] moving;
52     delete[] moved;
53 mmeineke 561 delete[] oldPos;
54 mmeineke 558 }
55     }
56    
57 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
58 mmeineke 558 isConstrained = 0;
59    
60 tim 725 Constraint* temp_con;
61     Constraint* dummy_plug;
62 mmeineke 558 temp_con = new Constraint[info->n_SRI];
63     nConstrained = 0;
64     int constrained = 0;
65 tim 725
66 mmeineke 558 SRI** theArray;
67 tim 725 for (int i = 0; i < nMols; i++){
68     theArray = (SRI * *) molecules[i].getMyBonds();
69     for (int j = 0; j < molecules[i].getNBonds(); j++){
70 mmeineke 558 constrained = theArray[j]->is_constrained();
71 mmeineke 594
72 tim 725 if (constrained){
73     dummy_plug = theArray[j]->get_constraint();
74     temp_con[nConstrained].set_a(dummy_plug->get_a());
75     temp_con[nConstrained].set_b(dummy_plug->get_b());
76     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
77 mmeineke 594
78 tim 725 nConstrained++;
79     constrained = 0;
80     }
81 mmeineke 558 }
82    
83 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
84     for (int j = 0; j < molecules[i].getNBends(); j++){
85 mmeineke 558 constrained = theArray[j]->is_constrained();
86 tim 725
87     if (constrained){
88     dummy_plug = theArray[j]->get_constraint();
89     temp_con[nConstrained].set_a(dummy_plug->get_a());
90     temp_con[nConstrained].set_b(dummy_plug->get_b());
91     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
92    
93     nConstrained++;
94     constrained = 0;
95 mmeineke 558 }
96     }
97    
98 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
99     for (int j = 0; j < molecules[i].getNTorsions(); j++){
100 mmeineke 558 constrained = theArray[j]->is_constrained();
101 tim 725
102     if (constrained){
103     dummy_plug = theArray[j]->get_constraint();
104     temp_con[nConstrained].set_a(dummy_plug->get_a());
105     temp_con[nConstrained].set_b(dummy_plug->get_b());
106     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
107    
108     nConstrained++;
109     constrained = 0;
110 mmeineke 558 }
111     }
112     }
113    
114 tim 725 if (nConstrained > 0){
115 mmeineke 558 isConstrained = 1;
116    
117 tim 725 if (constrainedA != NULL)
118     delete[] constrainedA;
119     if (constrainedB != NULL)
120     delete[] constrainedB;
121     if (constrainedDsqr != NULL)
122     delete[] constrainedDsqr;
123 mmeineke 558
124 tim 725 constrainedA = new int[nConstrained];
125     constrainedB = new int[nConstrained];
126 mmeineke 558 constrainedDsqr = new double[nConstrained];
127 tim 725
128     for (int i = 0; i < nConstrained; i++){
129 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
130     constrainedB[i] = temp_con[i].get_b();
131     constrainedDsqr[i] = temp_con[i].get_dsqr();
132     }
133    
134 tim 725
135 mmeineke 558 // save oldAtoms to check for lode balanceing later on.
136 tim 725
137 mmeineke 558 oldAtoms = nAtoms;
138 tim 725
139 mmeineke 558 moving = new int[nAtoms];
140 tim 725 moved = new int[nAtoms];
141 mmeineke 558
142 tim 725 oldPos = new double[nAtoms * 3];
143 mmeineke 558 }
144 tim 725
145 mmeineke 558 delete[] temp_con;
146     }
147    
148    
149 tim 725 template<typename T> void Integrator<T>::integrate(void){
150 mmeineke 558 int i, j; // loop counters
151    
152 tim 725 double runTime = info->run_time;
153     double sampleTime = info->sampleTime;
154     double statusTime = info->statusTime;
155 mmeineke 558 double thermalTime = info->thermalTime;
156 mmeineke 746 double resetTime = info->resetTime;
157 mmeineke 558
158 mmeineke 746
159 mmeineke 558 double currSample;
160     double currThermal;
161     double currStatus;
162 mmeineke 746 double currReset;
163    
164 mmeineke 558 int calcPot, calcStress;
165     int isError;
166    
167 tim 725 tStats = new Thermo(info);
168     statOut = new StatWriter(info);
169     dumpOut = new DumpWriter(info);
170 mmeineke 558
171 mmeineke 561 atoms = info->atoms;
172 mmeineke 558 DirectionalAtom* dAtom;
173 mmeineke 561
174     dt = info->dt;
175 mmeineke 558 dt2 = 0.5 * dt;
176    
177     // initialize the forces before the first step
178    
179 tim 677 calcForce(1, 1);
180 tim 733
181 tim 725 if (info->setTemp){
182 tim 677 thermalize();
183 mmeineke 558 }
184 tim 725
185 mmeineke 558 calcPot = 0;
186     calcStress = 0;
187 mmeineke 711 currSample = sampleTime + info->getTime();
188     currThermal = thermalTime+ info->getTime();
189     currStatus = statusTime + info->getTime();
190 mmeineke 746 currReset = resetTime + info->getTime();
191 mmeineke 558
192 tim 725 dumpOut->writeDump(info->getTime());
193     statOut->writeStat(info->getTime());
194 mmeineke 559
195     readyCheck();
196    
197     #ifdef IS_MPI
198 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
199 mmeineke 559 MPIcheckPoint();
200     #endif // is_mpi
201    
202 tim 725 while (info->getTime() < runTime){
203     if ((info->getTime() + dt) >= currStatus){
204 mmeineke 558 calcPot = 1;
205     calcStress = 1;
206     }
207 mmeineke 561
208 tim 725 integrateStep(calcPot, calcStress);
209    
210 mmeineke 643 info->incrTime(dt);
211 mmeineke 558
212 tim 725 if (info->setTemp){
213     if (info->getTime() >= currThermal){
214     thermalize();
215     currThermal += thermalTime;
216 mmeineke 558 }
217     }
218    
219 tim 725 if (info->getTime() >= currSample){
220     dumpOut->writeDump(info->getTime());
221 mmeineke 558 currSample += sampleTime;
222     }
223    
224 tim 725 if (info->getTime() >= currStatus){
225     statOut->writeStat(info->getTime());
226 mmeineke 558 calcPot = 0;
227     calcStress = 0;
228     currStatus += statusTime;
229     }
230 mmeineke 559
231 mmeineke 746 if (info->resetIntegrator){
232     if (info->getTime() >= currReset){
233     this->resetIntegrator();
234     currReset += resetTime;
235     }
236     }
237    
238 mmeineke 559 #ifdef IS_MPI
239 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
240 mmeineke 559 MPIcheckPoint();
241     #endif // is_mpi
242 mmeineke 558 }
243    
244 mmeineke 643 dumpOut->writeFinal(info->getTime());
245 mmeineke 558
246 mmeineke 561 delete dumpOut;
247     delete statOut;
248 mmeineke 558 }
249    
250 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
251     int calcStress){
252 mmeineke 558 // Position full step, and velocity half step
253 tim 725 preMove();
254 mmeineke 558
255     moveA();
256    
257 tim 725
258    
259 mmeineke 768
260 mmeineke 614 #ifdef IS_MPI
261 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
262 mmeineke 614 MPIcheckPoint();
263     #endif // is_mpi
264    
265 tim 725
266 mmeineke 558 // calc forces
267    
268 tim 725 calcForce(calcPot, calcStress);
269 mmeineke 558
270 mmeineke 614 #ifdef IS_MPI
271 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
272 mmeineke 614 MPIcheckPoint();
273     #endif // is_mpi
274    
275 tim 725
276 mmeineke 558 // finish the velocity half step
277 tim 725
278 mmeineke 558 moveB();
279 tim 725
280    
281 mmeineke 768
282 mmeineke 614 #ifdef IS_MPI
283 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
284 mmeineke 614 MPIcheckPoint();
285     #endif // is_mpi
286 mmeineke 558 }
287    
288    
289 tim 725 template<typename T> void Integrator<T>::moveA(void){
290 gezelter 600 int i, j;
291 mmeineke 558 DirectionalAtom* dAtom;
292 gezelter 600 double Tb[3], ji[3];
293     double A[3][3], I[3][3];
294 mmeineke 561 double angle;
295 gezelter 600 double vel[3], pos[3], frc[3];
296     double mass;
297 mmeineke 558
298 tim 725 for (i = 0; i < nAtoms; i++){
299     atoms[i]->getVel(vel);
300     atoms[i]->getPos(pos);
301     atoms[i]->getFrc(frc);
302 mmeineke 567
303 gezelter 600 mass = atoms[i]->getMass();
304 mmeineke 594
305 tim 725 for (j = 0; j < 3; j++){
306 gezelter 600 // velocity half step
307 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
308 gezelter 600 // position whole step
309     pos[j] += dt * vel[j];
310     }
311 mmeineke 594
312 tim 725 atoms[i]->setVel(vel);
313     atoms[i]->setPos(pos);
314 gezelter 600
315 tim 725 if (atoms[i]->isDirectional()){
316     dAtom = (DirectionalAtom *) atoms[i];
317 mmeineke 558
318     // get and convert the torque to body frame
319 mmeineke 597
320 tim 725 dAtom->getTrq(Tb);
321     dAtom->lab2Body(Tb);
322    
323 mmeineke 558 // get the angular momentum, and propagate a half step
324 gezelter 600
325 tim 725 dAtom->getJ(ji);
326 gezelter 600
327 tim 725 for (j = 0; j < 3; j++)
328 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
329 tim 725
330 mmeineke 558 // use the angular velocities to propagate the rotation matrix a
331     // full time step
332 gezelter 600
333     dAtom->getA(A);
334     dAtom->getI(I);
335 tim 725
336 mmeineke 558 // rotate about the x-axis
337 gezelter 600 angle = dt2 * ji[0] / I[0][0];
338 tim 725 this->rotate(1, 2, angle, ji, A);
339 mmeineke 597
340 mmeineke 558 // rotate about the y-axis
341 gezelter 600 angle = dt2 * ji[1] / I[1][1];
342 tim 725 this->rotate(2, 0, angle, ji, A);
343    
344 mmeineke 558 // rotate about the z-axis
345 gezelter 600 angle = dt * ji[2] / I[2][2];
346 tim 725 this->rotate(0, 1, angle, ji, A);
347    
348 mmeineke 558 // rotate about the y-axis
349 gezelter 600 angle = dt2 * ji[1] / I[1][1];
350 tim 725 this->rotate(2, 0, angle, ji, A);
351    
352     // rotate about the x-axis
353 gezelter 600 angle = dt2 * ji[0] / I[0][0];
354 tim 725 this->rotate(1, 2, angle, ji, A);
355 mmeineke 597
356 tim 725 dAtom->setJ(ji);
357     dAtom->setA(A);
358     }
359 mmeineke 558 }
360 mmeineke 768
361     if (nConstrained){
362     constrainA();
363     }
364 mmeineke 558 }
365    
366    
367 tim 725 template<typename T> void Integrator<T>::moveB(void){
368 gezelter 600 int i, j;
369 mmeineke 558 DirectionalAtom* dAtom;
370 gezelter 600 double Tb[3], ji[3];
371     double vel[3], frc[3];
372     double mass;
373 mmeineke 558
374 tim 725 for (i = 0; i < nAtoms; i++){
375     atoms[i]->getVel(vel);
376     atoms[i]->getFrc(frc);
377 mmeineke 558
378 gezelter 600 mass = atoms[i]->getMass();
379    
380 mmeineke 558 // velocity half step
381 tim 725 for (j = 0; j < 3; j++)
382     vel[j] += (dt2 * frc[j] / mass) * eConvert;
383 gezelter 600
384 tim 725 atoms[i]->setVel(vel);
385 mmeineke 597
386 tim 725 if (atoms[i]->isDirectional()){
387     dAtom = (DirectionalAtom *) atoms[i];
388    
389 gezelter 600 // get and convert the torque to body frame
390    
391 tim 725 dAtom->getTrq(Tb);
392     dAtom->lab2Body(Tb);
393 gezelter 600
394     // get the angular momentum, and propagate a half step
395    
396 tim 725 dAtom->getJ(ji);
397 gezelter 600
398 tim 725 for (j = 0; j < 3; j++)
399 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
400 mmeineke 597
401 tim 725
402     dAtom->setJ(ji);
403 mmeineke 558 }
404     }
405 mmeineke 768
406     if (nConstrained){
407     constrainB();
408     }
409 mmeineke 558 }
410    
411 tim 725 template<typename T> void Integrator<T>::preMove(void){
412 gezelter 600 int i, j;
413     double pos[3];
414 mmeineke 558
415 tim 725 if (nConstrained){
416     for (i = 0; i < nAtoms; i++){
417     atoms[i]->getPos(pos);
418 mmeineke 561
419 tim 725 for (j = 0; j < 3; j++){
420     oldPos[3 * i + j] = pos[j];
421 gezelter 600 }
422     }
423 tim 725 }
424 gezelter 600 }
425    
426 tim 645 template<typename T> void Integrator<T>::constrainA(){
427 tim 725 int i, j, k;
428 mmeineke 558 int done;
429 gezelter 600 double posA[3], posB[3];
430     double velA[3], velB[3];
431 mmeineke 572 double pab[3];
432     double rab[3];
433 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
434 mmeineke 558 double rma, rmb;
435     double dx, dy, dz;
436 mmeineke 561 double rpab;
437 mmeineke 558 double rabsq, pabsq, rpabsq;
438     double diffsq;
439     double gab;
440     int iteration;
441    
442 tim 725 for (i = 0; i < nAtoms; i++){
443 mmeineke 558 moving[i] = 0;
444 tim 725 moved[i] = 1;
445 mmeineke 558 }
446 mmeineke 567
447 mmeineke 558 iteration = 0;
448     done = 0;
449 tim 725 while (!done && (iteration < maxIteration)){
450 mmeineke 558 done = 1;
451 tim 725 for (i = 0; i < nConstrained; i++){
452 mmeineke 558 a = constrainedA[i];
453     b = constrainedB[i];
454 mmeineke 563
455 tim 725 ax = (a * 3) + 0;
456     ay = (a * 3) + 1;
457     az = (a * 3) + 2;
458 mmeineke 563
459 tim 725 bx = (b * 3) + 0;
460     by = (b * 3) + 1;
461     bz = (b * 3) + 2;
462    
463     if (moved[a] || moved[b]){
464     atoms[a]->getPos(posA);
465     atoms[b]->getPos(posB);
466    
467     for (j = 0; j < 3; j++)
468 gezelter 600 pab[j] = posA[j] - posB[j];
469 mmeineke 567
470 tim 725 //periodic boundary condition
471 mmeineke 567
472 tim 725 info->wrapVector(pab);
473 mmeineke 572
474 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
475 mmeineke 558
476 tim 725 rabsq = constrainedDsqr[i];
477     diffsq = rabsq - pabsq;
478 mmeineke 567
479 tim 725 // the original rattle code from alan tidesley
480     if (fabs(diffsq) > (tol * rabsq * 2)){
481     rab[0] = oldPos[ax] - oldPos[bx];
482     rab[1] = oldPos[ay] - oldPos[by];
483     rab[2] = oldPos[az] - oldPos[bz];
484 mmeineke 558
485 tim 725 info->wrapVector(rab);
486 mmeineke 567
487 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
488 mmeineke 558
489 tim 725 rpabsq = rpab * rpab;
490 mmeineke 558
491 mmeineke 563
492 tim 725 if (rpabsq < (rabsq * -diffsq)){
493 mmeineke 558 #ifdef IS_MPI
494 tim 725 a = atoms[a]->getGlobalIndex();
495     b = atoms[b]->getGlobalIndex();
496 mmeineke 558 #endif //is_mpi
497 tim 725 sprintf(painCave.errMsg,
498     "Constraint failure in constrainA at atom %d and %d.\n", a,
499     b);
500     painCave.isFatal = 1;
501     simError();
502     }
503 mmeineke 558
504 tim 725 rma = 1.0 / atoms[a]->getMass();
505     rmb = 1.0 / atoms[b]->getMass();
506 mmeineke 567
507 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
508 mmeineke 567
509 mmeineke 572 dx = rab[0] * gab;
510     dy = rab[1] * gab;
511     dz = rab[2] * gab;
512 mmeineke 558
513 tim 725 posA[0] += rma * dx;
514     posA[1] += rma * dy;
515     posA[2] += rma * dz;
516 mmeineke 558
517 tim 725 atoms[a]->setPos(posA);
518 mmeineke 558
519 tim 725 posB[0] -= rmb * dx;
520     posB[1] -= rmb * dy;
521     posB[2] -= rmb * dz;
522 gezelter 600
523 tim 725 atoms[b]->setPos(posB);
524 gezelter 600
525 mmeineke 558 dx = dx / dt;
526     dy = dy / dt;
527     dz = dz / dt;
528    
529 tim 725 atoms[a]->getVel(velA);
530 mmeineke 558
531 tim 725 velA[0] += rma * dx;
532     velA[1] += rma * dy;
533     velA[2] += rma * dz;
534 mmeineke 558
535 tim 725 atoms[a]->setVel(velA);
536 gezelter 600
537 tim 725 atoms[b]->getVel(velB);
538 gezelter 600
539 tim 725 velB[0] -= rmb * dx;
540     velB[1] -= rmb * dy;
541     velB[2] -= rmb * dz;
542 gezelter 600
543 tim 725 atoms[b]->setVel(velB);
544 gezelter 600
545 tim 725 moving[a] = 1;
546     moving[b] = 1;
547     done = 0;
548     }
549 mmeineke 558 }
550     }
551 tim 725
552     for (i = 0; i < nAtoms; i++){
553 mmeineke 558 moved[i] = moving[i];
554     moving[i] = 0;
555     }
556    
557     iteration++;
558     }
559    
560 tim 725 if (!done){
561     sprintf(painCave.errMsg,
562     "Constraint failure in constrainA, too many iterations: %d\n",
563     iteration);
564 mmeineke 558 painCave.isFatal = 1;
565     simError();
566     }
567 mmeineke 768
568 mmeineke 558 }
569    
570 tim 725 template<typename T> void Integrator<T>::constrainB(void){
571     int i, j, k;
572 mmeineke 558 int done;
573 gezelter 600 double posA[3], posB[3];
574     double velA[3], velB[3];
575 mmeineke 558 double vxab, vyab, vzab;
576 mmeineke 572 double rab[3];
577 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
578 mmeineke 558 double rma, rmb;
579     double dx, dy, dz;
580     double rabsq, pabsq, rvab;
581     double diffsq;
582     double gab;
583     int iteration;
584    
585 tim 725 for (i = 0; i < nAtoms; i++){
586 mmeineke 558 moving[i] = 0;
587     moved[i] = 1;
588     }
589    
590     done = 0;
591 mmeineke 561 iteration = 0;
592 tim 725 while (!done && (iteration < maxIteration)){
593 mmeineke 567 done = 1;
594    
595 tim 725 for (i = 0; i < nConstrained; i++){
596 mmeineke 558 a = constrainedA[i];
597     b = constrainedB[i];
598    
599 tim 725 ax = (a * 3) + 0;
600     ay = (a * 3) + 1;
601     az = (a * 3) + 2;
602 mmeineke 563
603 tim 725 bx = (b * 3) + 0;
604     by = (b * 3) + 1;
605     bz = (b * 3) + 2;
606 mmeineke 563
607 tim 725 if (moved[a] || moved[b]){
608     atoms[a]->getVel(velA);
609     atoms[b]->getVel(velB);
610 mmeineke 558
611 tim 725 vxab = velA[0] - velB[0];
612     vyab = velA[1] - velB[1];
613     vzab = velA[2] - velB[2];
614 gezelter 600
615 tim 725 atoms[a]->getPos(posA);
616     atoms[b]->getPos(posB);
617 gezelter 600
618 tim 725 for (j = 0; j < 3; j++)
619 gezelter 600 rab[j] = posA[j] - posB[j];
620 mmeineke 558
621 tim 725 info->wrapVector(rab);
622 mmeineke 558
623 tim 725 rma = 1.0 / atoms[a]->getMass();
624     rmb = 1.0 / atoms[b]->getMass();
625 mmeineke 558
626 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
627 gezelter 600
628 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
629 gezelter 600
630 tim 725 if (fabs(gab) > tol){
631     dx = rab[0] * gab;
632     dy = rab[1] * gab;
633     dz = rab[2] * gab;
634    
635     velA[0] += rma * dx;
636     velA[1] += rma * dy;
637     velA[2] += rma * dz;
638    
639     atoms[a]->setVel(velA);
640    
641     velB[0] -= rmb * dx;
642     velB[1] -= rmb * dy;
643     velB[2] -= rmb * dz;
644    
645     atoms[b]->setVel(velB);
646    
647     moving[a] = 1;
648     moving[b] = 1;
649     done = 0;
650     }
651 mmeineke 558 }
652     }
653    
654 tim 725 for (i = 0; i < nAtoms; i++){
655 mmeineke 558 moved[i] = moving[i];
656     moving[i] = 0;
657     }
658 tim 725
659 mmeineke 558 iteration++;
660     }
661    
662 tim 725 if (!done){
663     sprintf(painCave.errMsg,
664     "Constraint failure in constrainB, too many iterations: %d\n",
665     iteration);
666 mmeineke 558 painCave.isFatal = 1;
667     simError();
668 tim 725 }
669 mmeineke 558 }
670    
671 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
672     double angle, double ji[3],
673     double A[3][3]){
674     int i, j, k;
675 mmeineke 558 double sinAngle;
676     double cosAngle;
677     double angleSqr;
678     double angleSqrOver4;
679     double top, bottom;
680     double rot[3][3];
681     double tempA[3][3];
682     double tempJ[3];
683    
684     // initialize the tempA
685    
686 tim 725 for (i = 0; i < 3; i++){
687     for (j = 0; j < 3; j++){
688 gezelter 600 tempA[j][i] = A[i][j];
689 mmeineke 558 }
690     }
691    
692     // initialize the tempJ
693    
694 tim 725 for (i = 0; i < 3; i++)
695     tempJ[i] = ji[i];
696    
697 mmeineke 558 // initalize rot as a unit matrix
698    
699     rot[0][0] = 1.0;
700     rot[0][1] = 0.0;
701     rot[0][2] = 0.0;
702    
703     rot[1][0] = 0.0;
704     rot[1][1] = 1.0;
705     rot[1][2] = 0.0;
706 tim 725
707 mmeineke 558 rot[2][0] = 0.0;
708     rot[2][1] = 0.0;
709     rot[2][2] = 1.0;
710 tim 725
711 mmeineke 558 // use a small angle aproximation for sin and cosine
712    
713 tim 725 angleSqr = angle * angle;
714 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
715     top = 1.0 - angleSqrOver4;
716     bottom = 1.0 + angleSqrOver4;
717    
718     cosAngle = top / bottom;
719     sinAngle = angle / bottom;
720    
721     rot[axes1][axes1] = cosAngle;
722     rot[axes2][axes2] = cosAngle;
723    
724     rot[axes1][axes2] = sinAngle;
725     rot[axes2][axes1] = -sinAngle;
726 tim 725
727 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
728 tim 725
729     for (i = 0; i < 3; i++){
730 mmeineke 558 ji[i] = 0.0;
731 tim 725 for (k = 0; k < 3; k++){
732 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
733     }
734     }
735    
736     // rotate the Rotation matrix acording to:
737     // A[][] = A[][] * transpose(rot[][])
738    
739    
740 mmeineke 561 // NOte for as yet unknown reason, we are performing the
741 mmeineke 558 // calculation as:
742     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
743    
744 tim 725 for (i = 0; i < 3; i++){
745     for (j = 0; j < 3; j++){
746 gezelter 600 A[j][i] = 0.0;
747 tim 725 for (k = 0; k < 3; k++){
748     A[j][i] += tempA[i][k] * rot[j][k];
749 mmeineke 558 }
750     }
751     }
752     }
753 tim 677
754 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
755     myFF->doForces(calcPot, calcStress);
756 tim 677 }
757    
758     template<typename T> void Integrator<T>::thermalize(){
759 tim 725 tStats->velocitize();
760 tim 677 }
761 tim 763
762     template<typename T> double Integrator<T>::getConservedQuantity(void){
763     return tStats->getTotalE();
764 mmeineke 768 }