ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 778
Committed: Fri Sep 19 20:00:27 2003 UTC (20 years, 9 months ago) by mmeineke
File size: 16584 byte(s)
Log Message:
added NPT base class. NPTi is up to date. NPTf is not.

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2     #include <cstdlib>
3 mmeineke 561 #include <cmath>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
15     ForceFields* the_ff){
16 mmeineke 558 info = theInfo;
17     myFF = the_ff;
18     isFirst = 1;
19    
20     molecules = info->molecules;
21     nMols = info->n_mol;
22    
23     // give a little love back to the SimInfo object
24 tim 725
25     if (info->the_integrator != NULL){
26     delete info->the_integrator;
27     }
28 mmeineke 558 info->the_integrator = this;
29    
30     nAtoms = info->n_atoms;
31    
32     // check for constraints
33 tim 725
34     constrainedA = NULL;
35     constrainedB = NULL;
36 mmeineke 558 constrainedDsqr = NULL;
37 tim 725 moving = NULL;
38     moved = NULL;
39     oldPos = NULL;
40    
41 mmeineke 558 nConstrained = 0;
42    
43     checkConstraints();
44     }
45    
46 tim 725 template<typename T> Integrator<T>::~Integrator(){
47     if (nConstrained){
48 mmeineke 558 delete[] constrainedA;
49     delete[] constrainedB;
50     delete[] constrainedDsqr;
51     delete[] moving;
52     delete[] moved;
53 mmeineke 561 delete[] oldPos;
54 mmeineke 558 }
55     }
56    
57 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
58 mmeineke 558 isConstrained = 0;
59    
60 tim 725 Constraint* temp_con;
61     Constraint* dummy_plug;
62 mmeineke 558 temp_con = new Constraint[info->n_SRI];
63     nConstrained = 0;
64     int constrained = 0;
65 tim 725
66 mmeineke 558 SRI** theArray;
67 tim 725 for (int i = 0; i < nMols; i++){
68     theArray = (SRI * *) molecules[i].getMyBonds();
69     for (int j = 0; j < molecules[i].getNBonds(); j++){
70 mmeineke 558 constrained = theArray[j]->is_constrained();
71 mmeineke 594
72 tim 725 if (constrained){
73     dummy_plug = theArray[j]->get_constraint();
74     temp_con[nConstrained].set_a(dummy_plug->get_a());
75     temp_con[nConstrained].set_b(dummy_plug->get_b());
76     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
77 mmeineke 594
78 tim 725 nConstrained++;
79     constrained = 0;
80     }
81 mmeineke 558 }
82    
83 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
84     for (int j = 0; j < molecules[i].getNBends(); j++){
85 mmeineke 558 constrained = theArray[j]->is_constrained();
86 tim 725
87     if (constrained){
88     dummy_plug = theArray[j]->get_constraint();
89     temp_con[nConstrained].set_a(dummy_plug->get_a());
90     temp_con[nConstrained].set_b(dummy_plug->get_b());
91     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
92    
93     nConstrained++;
94     constrained = 0;
95 mmeineke 558 }
96     }
97    
98 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
99     for (int j = 0; j < molecules[i].getNTorsions(); j++){
100 mmeineke 558 constrained = theArray[j]->is_constrained();
101 tim 725
102     if (constrained){
103     dummy_plug = theArray[j]->get_constraint();
104     temp_con[nConstrained].set_a(dummy_plug->get_a());
105     temp_con[nConstrained].set_b(dummy_plug->get_b());
106     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
107    
108     nConstrained++;
109     constrained = 0;
110 mmeineke 558 }
111     }
112     }
113    
114 tim 725 if (nConstrained > 0){
115 mmeineke 558 isConstrained = 1;
116    
117 tim 725 if (constrainedA != NULL)
118     delete[] constrainedA;
119     if (constrainedB != NULL)
120     delete[] constrainedB;
121     if (constrainedDsqr != NULL)
122     delete[] constrainedDsqr;
123 mmeineke 558
124 tim 725 constrainedA = new int[nConstrained];
125     constrainedB = new int[nConstrained];
126 mmeineke 558 constrainedDsqr = new double[nConstrained];
127 tim 725
128     for (int i = 0; i < nConstrained; i++){
129 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
130     constrainedB[i] = temp_con[i].get_b();
131     constrainedDsqr[i] = temp_con[i].get_dsqr();
132     }
133    
134 tim 725
135 mmeineke 558 // save oldAtoms to check for lode balanceing later on.
136 tim 725
137 mmeineke 558 oldAtoms = nAtoms;
138 tim 725
139 mmeineke 558 moving = new int[nAtoms];
140 tim 725 moved = new int[nAtoms];
141 mmeineke 558
142 tim 725 oldPos = new double[nAtoms * 3];
143 mmeineke 558 }
144 tim 725
145 mmeineke 558 delete[] temp_con;
146     }
147    
148    
149 tim 725 template<typename T> void Integrator<T>::integrate(void){
150 mmeineke 558 int i, j; // loop counters
151    
152 tim 725 double runTime = info->run_time;
153     double sampleTime = info->sampleTime;
154     double statusTime = info->statusTime;
155 mmeineke 558 double thermalTime = info->thermalTime;
156 mmeineke 746 double resetTime = info->resetTime;
157 mmeineke 558
158 mmeineke 746
159 mmeineke 558 double currSample;
160     double currThermal;
161     double currStatus;
162 mmeineke 746 double currReset;
163    
164 mmeineke 558 int calcPot, calcStress;
165     int isError;
166    
167 tim 725 tStats = new Thermo(info);
168     statOut = new StatWriter(info);
169     dumpOut = new DumpWriter(info);
170 mmeineke 558
171 mmeineke 561 atoms = info->atoms;
172 mmeineke 558 DirectionalAtom* dAtom;
173 mmeineke 561
174     dt = info->dt;
175 mmeineke 558 dt2 = 0.5 * dt;
176    
177     // initialize the forces before the first step
178    
179 tim 677 calcForce(1, 1);
180 tim 733
181 tim 725 if (info->setTemp){
182 tim 677 thermalize();
183 mmeineke 558 }
184 tim 725
185 mmeineke 558 calcPot = 0;
186     calcStress = 0;
187 mmeineke 711 currSample = sampleTime + info->getTime();
188     currThermal = thermalTime+ info->getTime();
189     currStatus = statusTime + info->getTime();
190 mmeineke 746 currReset = resetTime + info->getTime();
191 mmeineke 558
192 tim 725 dumpOut->writeDump(info->getTime());
193     statOut->writeStat(info->getTime());
194 mmeineke 559
195     readyCheck();
196    
197     #ifdef IS_MPI
198 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
199 mmeineke 559 MPIcheckPoint();
200     #endif // is_mpi
201    
202 tim 725 while (info->getTime() < runTime){
203     if ((info->getTime() + dt) >= currStatus){
204 mmeineke 558 calcPot = 1;
205     calcStress = 1;
206     }
207 mmeineke 561
208 tim 725 integrateStep(calcPot, calcStress);
209    
210 mmeineke 643 info->incrTime(dt);
211 mmeineke 558
212 tim 725 if (info->setTemp){
213     if (info->getTime() >= currThermal){
214     thermalize();
215     currThermal += thermalTime;
216 mmeineke 558 }
217     }
218    
219 tim 725 if (info->getTime() >= currSample){
220     dumpOut->writeDump(info->getTime());
221 mmeineke 558 currSample += sampleTime;
222     }
223    
224 tim 725 if (info->getTime() >= currStatus){
225     statOut->writeStat(info->getTime());
226 mmeineke 558 calcPot = 0;
227     calcStress = 0;
228     currStatus += statusTime;
229     }
230 mmeineke 559
231 mmeineke 746 if (info->resetIntegrator){
232     if (info->getTime() >= currReset){
233     this->resetIntegrator();
234     currReset += resetTime;
235     }
236     }
237    
238 mmeineke 559 #ifdef IS_MPI
239 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
240 mmeineke 559 MPIcheckPoint();
241     #endif // is_mpi
242 mmeineke 558 }
243    
244 mmeineke 643 dumpOut->writeFinal(info->getTime());
245 mmeineke 558
246 mmeineke 561 delete dumpOut;
247     delete statOut;
248 mmeineke 558 }
249    
250 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
251     int calcStress){
252 mmeineke 558 // Position full step, and velocity half step
253 tim 725 preMove();
254 mmeineke 558
255     moveA();
256    
257 tim 725
258    
259 mmeineke 768
260 mmeineke 614 #ifdef IS_MPI
261 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
262 mmeineke 614 MPIcheckPoint();
263     #endif // is_mpi
264    
265 tim 725
266 mmeineke 558 // calc forces
267    
268 tim 725 calcForce(calcPot, calcStress);
269 mmeineke 558
270 mmeineke 614 #ifdef IS_MPI
271 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
272 mmeineke 614 MPIcheckPoint();
273     #endif // is_mpi
274    
275 tim 725
276 mmeineke 558 // finish the velocity half step
277 tim 725
278 mmeineke 558 moveB();
279 tim 725
280    
281 mmeineke 768
282 mmeineke 614 #ifdef IS_MPI
283 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
284 mmeineke 614 MPIcheckPoint();
285     #endif // is_mpi
286 mmeineke 558 }
287    
288    
289 tim 725 template<typename T> void Integrator<T>::moveA(void){
290 gezelter 600 int i, j;
291 mmeineke 558 DirectionalAtom* dAtom;
292 gezelter 600 double Tb[3], ji[3];
293     double vel[3], pos[3], frc[3];
294     double mass;
295 mmeineke 558
296 tim 725 for (i = 0; i < nAtoms; i++){
297     atoms[i]->getVel(vel);
298     atoms[i]->getPos(pos);
299     atoms[i]->getFrc(frc);
300 mmeineke 567
301 gezelter 600 mass = atoms[i]->getMass();
302 mmeineke 594
303 tim 725 for (j = 0; j < 3; j++){
304 gezelter 600 // velocity half step
305 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
306 gezelter 600 // position whole step
307     pos[j] += dt * vel[j];
308     }
309 mmeineke 594
310 tim 725 atoms[i]->setVel(vel);
311     atoms[i]->setPos(pos);
312 gezelter 600
313 tim 725 if (atoms[i]->isDirectional()){
314     dAtom = (DirectionalAtom *) atoms[i];
315 mmeineke 558
316     // get and convert the torque to body frame
317 mmeineke 597
318 tim 725 dAtom->getTrq(Tb);
319     dAtom->lab2Body(Tb);
320    
321 mmeineke 558 // get the angular momentum, and propagate a half step
322 gezelter 600
323 tim 725 dAtom->getJ(ji);
324 gezelter 600
325 tim 725 for (j = 0; j < 3; j++)
326 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
327 tim 725
328 mmeineke 778 this->rotationPropagation( dAtom, ji );
329 gezelter 600
330 tim 725 dAtom->setJ(ji);
331     }
332 mmeineke 558 }
333 mmeineke 768
334     if (nConstrained){
335     constrainA();
336     }
337 mmeineke 558 }
338    
339    
340 tim 725 template<typename T> void Integrator<T>::moveB(void){
341 gezelter 600 int i, j;
342 mmeineke 558 DirectionalAtom* dAtom;
343 gezelter 600 double Tb[3], ji[3];
344     double vel[3], frc[3];
345     double mass;
346 mmeineke 558
347 tim 725 for (i = 0; i < nAtoms; i++){
348     atoms[i]->getVel(vel);
349     atoms[i]->getFrc(frc);
350 mmeineke 558
351 gezelter 600 mass = atoms[i]->getMass();
352    
353 mmeineke 558 // velocity half step
354 tim 725 for (j = 0; j < 3; j++)
355     vel[j] += (dt2 * frc[j] / mass) * eConvert;
356 gezelter 600
357 tim 725 atoms[i]->setVel(vel);
358 mmeineke 597
359 tim 725 if (atoms[i]->isDirectional()){
360     dAtom = (DirectionalAtom *) atoms[i];
361    
362 gezelter 600 // get and convert the torque to body frame
363    
364 tim 725 dAtom->getTrq(Tb);
365     dAtom->lab2Body(Tb);
366 gezelter 600
367     // get the angular momentum, and propagate a half step
368    
369 tim 725 dAtom->getJ(ji);
370 gezelter 600
371 tim 725 for (j = 0; j < 3; j++)
372 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
373 mmeineke 597
374 tim 725
375     dAtom->setJ(ji);
376 mmeineke 558 }
377     }
378 mmeineke 768
379     if (nConstrained){
380     constrainB();
381     }
382 mmeineke 558 }
383    
384 tim 725 template<typename T> void Integrator<T>::preMove(void){
385 gezelter 600 int i, j;
386     double pos[3];
387 mmeineke 558
388 tim 725 if (nConstrained){
389     for (i = 0; i < nAtoms; i++){
390     atoms[i]->getPos(pos);
391 mmeineke 561
392 tim 725 for (j = 0; j < 3; j++){
393     oldPos[3 * i + j] = pos[j];
394 gezelter 600 }
395     }
396 tim 725 }
397 gezelter 600 }
398    
399 tim 645 template<typename T> void Integrator<T>::constrainA(){
400 tim 725 int i, j, k;
401 mmeineke 558 int done;
402 gezelter 600 double posA[3], posB[3];
403     double velA[3], velB[3];
404 mmeineke 572 double pab[3];
405     double rab[3];
406 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
407 mmeineke 558 double rma, rmb;
408     double dx, dy, dz;
409 mmeineke 561 double rpab;
410 mmeineke 558 double rabsq, pabsq, rpabsq;
411     double diffsq;
412     double gab;
413     int iteration;
414    
415 tim 725 for (i = 0; i < nAtoms; i++){
416 mmeineke 558 moving[i] = 0;
417 tim 725 moved[i] = 1;
418 mmeineke 558 }
419 mmeineke 567
420 mmeineke 558 iteration = 0;
421     done = 0;
422 tim 725 while (!done && (iteration < maxIteration)){
423 mmeineke 558 done = 1;
424 tim 725 for (i = 0; i < nConstrained; i++){
425 mmeineke 558 a = constrainedA[i];
426     b = constrainedB[i];
427 mmeineke 563
428 tim 725 ax = (a * 3) + 0;
429     ay = (a * 3) + 1;
430     az = (a * 3) + 2;
431 mmeineke 563
432 tim 725 bx = (b * 3) + 0;
433     by = (b * 3) + 1;
434     bz = (b * 3) + 2;
435    
436     if (moved[a] || moved[b]){
437     atoms[a]->getPos(posA);
438     atoms[b]->getPos(posB);
439    
440     for (j = 0; j < 3; j++)
441 gezelter 600 pab[j] = posA[j] - posB[j];
442 mmeineke 567
443 tim 725 //periodic boundary condition
444 mmeineke 567
445 tim 725 info->wrapVector(pab);
446 mmeineke 572
447 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
448 mmeineke 558
449 tim 725 rabsq = constrainedDsqr[i];
450     diffsq = rabsq - pabsq;
451 mmeineke 567
452 tim 725 // the original rattle code from alan tidesley
453     if (fabs(diffsq) > (tol * rabsq * 2)){
454     rab[0] = oldPos[ax] - oldPos[bx];
455     rab[1] = oldPos[ay] - oldPos[by];
456     rab[2] = oldPos[az] - oldPos[bz];
457 mmeineke 558
458 tim 725 info->wrapVector(rab);
459 mmeineke 567
460 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
461 mmeineke 558
462 tim 725 rpabsq = rpab * rpab;
463 mmeineke 558
464 mmeineke 563
465 tim 725 if (rpabsq < (rabsq * -diffsq)){
466 mmeineke 558 #ifdef IS_MPI
467 tim 725 a = atoms[a]->getGlobalIndex();
468     b = atoms[b]->getGlobalIndex();
469 mmeineke 558 #endif //is_mpi
470 tim 725 sprintf(painCave.errMsg,
471     "Constraint failure in constrainA at atom %d and %d.\n", a,
472     b);
473     painCave.isFatal = 1;
474     simError();
475     }
476 mmeineke 558
477 tim 725 rma = 1.0 / atoms[a]->getMass();
478     rmb = 1.0 / atoms[b]->getMass();
479 mmeineke 567
480 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
481 mmeineke 567
482 mmeineke 572 dx = rab[0] * gab;
483     dy = rab[1] * gab;
484     dz = rab[2] * gab;
485 mmeineke 558
486 tim 725 posA[0] += rma * dx;
487     posA[1] += rma * dy;
488     posA[2] += rma * dz;
489 mmeineke 558
490 tim 725 atoms[a]->setPos(posA);
491 mmeineke 558
492 tim 725 posB[0] -= rmb * dx;
493     posB[1] -= rmb * dy;
494     posB[2] -= rmb * dz;
495 gezelter 600
496 tim 725 atoms[b]->setPos(posB);
497 gezelter 600
498 mmeineke 558 dx = dx / dt;
499     dy = dy / dt;
500     dz = dz / dt;
501    
502 tim 725 atoms[a]->getVel(velA);
503 mmeineke 558
504 tim 725 velA[0] += rma * dx;
505     velA[1] += rma * dy;
506     velA[2] += rma * dz;
507 mmeineke 558
508 tim 725 atoms[a]->setVel(velA);
509 gezelter 600
510 tim 725 atoms[b]->getVel(velB);
511 gezelter 600
512 tim 725 velB[0] -= rmb * dx;
513     velB[1] -= rmb * dy;
514     velB[2] -= rmb * dz;
515 gezelter 600
516 tim 725 atoms[b]->setVel(velB);
517 gezelter 600
518 tim 725 moving[a] = 1;
519     moving[b] = 1;
520     done = 0;
521     }
522 mmeineke 558 }
523     }
524 tim 725
525     for (i = 0; i < nAtoms; i++){
526 mmeineke 558 moved[i] = moving[i];
527     moving[i] = 0;
528     }
529    
530     iteration++;
531     }
532    
533 tim 725 if (!done){
534     sprintf(painCave.errMsg,
535     "Constraint failure in constrainA, too many iterations: %d\n",
536     iteration);
537 mmeineke 558 painCave.isFatal = 1;
538     simError();
539     }
540 mmeineke 768
541 mmeineke 558 }
542    
543 tim 725 template<typename T> void Integrator<T>::constrainB(void){
544     int i, j, k;
545 mmeineke 558 int done;
546 gezelter 600 double posA[3], posB[3];
547     double velA[3], velB[3];
548 mmeineke 558 double vxab, vyab, vzab;
549 mmeineke 572 double rab[3];
550 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
551 mmeineke 558 double rma, rmb;
552     double dx, dy, dz;
553     double rabsq, pabsq, rvab;
554     double diffsq;
555     double gab;
556     int iteration;
557    
558 tim 725 for (i = 0; i < nAtoms; i++){
559 mmeineke 558 moving[i] = 0;
560     moved[i] = 1;
561     }
562    
563     done = 0;
564 mmeineke 561 iteration = 0;
565 tim 725 while (!done && (iteration < maxIteration)){
566 mmeineke 567 done = 1;
567    
568 tim 725 for (i = 0; i < nConstrained; i++){
569 mmeineke 558 a = constrainedA[i];
570     b = constrainedB[i];
571    
572 tim 725 ax = (a * 3) + 0;
573     ay = (a * 3) + 1;
574     az = (a * 3) + 2;
575 mmeineke 563
576 tim 725 bx = (b * 3) + 0;
577     by = (b * 3) + 1;
578     bz = (b * 3) + 2;
579 mmeineke 563
580 tim 725 if (moved[a] || moved[b]){
581     atoms[a]->getVel(velA);
582     atoms[b]->getVel(velB);
583 mmeineke 558
584 tim 725 vxab = velA[0] - velB[0];
585     vyab = velA[1] - velB[1];
586     vzab = velA[2] - velB[2];
587 gezelter 600
588 tim 725 atoms[a]->getPos(posA);
589     atoms[b]->getPos(posB);
590 gezelter 600
591 tim 725 for (j = 0; j < 3; j++)
592 gezelter 600 rab[j] = posA[j] - posB[j];
593 mmeineke 558
594 tim 725 info->wrapVector(rab);
595 mmeineke 558
596 tim 725 rma = 1.0 / atoms[a]->getMass();
597     rmb = 1.0 / atoms[b]->getMass();
598 mmeineke 558
599 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
600 gezelter 600
601 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
602 gezelter 600
603 tim 725 if (fabs(gab) > tol){
604     dx = rab[0] * gab;
605     dy = rab[1] * gab;
606     dz = rab[2] * gab;
607    
608     velA[0] += rma * dx;
609     velA[1] += rma * dy;
610     velA[2] += rma * dz;
611    
612     atoms[a]->setVel(velA);
613    
614     velB[0] -= rmb * dx;
615     velB[1] -= rmb * dy;
616     velB[2] -= rmb * dz;
617    
618     atoms[b]->setVel(velB);
619    
620     moving[a] = 1;
621     moving[b] = 1;
622     done = 0;
623     }
624 mmeineke 558 }
625     }
626    
627 tim 725 for (i = 0; i < nAtoms; i++){
628 mmeineke 558 moved[i] = moving[i];
629     moving[i] = 0;
630     }
631 tim 725
632 mmeineke 558 iteration++;
633     }
634    
635 tim 725 if (!done){
636     sprintf(painCave.errMsg,
637     "Constraint failure in constrainB, too many iterations: %d\n",
638     iteration);
639 mmeineke 558 painCave.isFatal = 1;
640     simError();
641 tim 725 }
642 mmeineke 558 }
643    
644 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
645     ( DirectionalAtom* dAtom, double ji[3] ){
646    
647     double angle;
648     double A[3][3], I[3][3];
649    
650     // use the angular velocities to propagate the rotation matrix a
651     // full time step
652    
653     dAtom->getA(A);
654     dAtom->getI(I);
655    
656     // rotate about the x-axis
657     angle = dt2 * ji[0] / I[0][0];
658     this->rotate( 1, 2, angle, ji, A );
659    
660     // rotate about the y-axis
661     angle = dt2 * ji[1] / I[1][1];
662     this->rotate( 2, 0, angle, ji, A );
663    
664     // rotate about the z-axis
665     angle = dt * ji[2] / I[2][2];
666     this->rotate( 0, 1, angle, ji, A);
667    
668     // rotate about the y-axis
669     angle = dt2 * ji[1] / I[1][1];
670     this->rotate( 2, 0, angle, ji, A );
671    
672     // rotate about the x-axis
673     angle = dt2 * ji[0] / I[0][0];
674     this->rotate( 1, 2, angle, ji, A );
675    
676     dAtom->setA( A );
677     }
678    
679 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
680     double angle, double ji[3],
681     double A[3][3]){
682     int i, j, k;
683 mmeineke 558 double sinAngle;
684     double cosAngle;
685     double angleSqr;
686     double angleSqrOver4;
687     double top, bottom;
688     double rot[3][3];
689     double tempA[3][3];
690     double tempJ[3];
691    
692     // initialize the tempA
693    
694 tim 725 for (i = 0; i < 3; i++){
695     for (j = 0; j < 3; j++){
696 gezelter 600 tempA[j][i] = A[i][j];
697 mmeineke 558 }
698     }
699    
700     // initialize the tempJ
701    
702 tim 725 for (i = 0; i < 3; i++)
703     tempJ[i] = ji[i];
704    
705 mmeineke 558 // initalize rot as a unit matrix
706    
707     rot[0][0] = 1.0;
708     rot[0][1] = 0.0;
709     rot[0][2] = 0.0;
710    
711     rot[1][0] = 0.0;
712     rot[1][1] = 1.0;
713     rot[1][2] = 0.0;
714 tim 725
715 mmeineke 558 rot[2][0] = 0.0;
716     rot[2][1] = 0.0;
717     rot[2][2] = 1.0;
718 tim 725
719 mmeineke 558 // use a small angle aproximation for sin and cosine
720    
721 tim 725 angleSqr = angle * angle;
722 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
723     top = 1.0 - angleSqrOver4;
724     bottom = 1.0 + angleSqrOver4;
725    
726     cosAngle = top / bottom;
727     sinAngle = angle / bottom;
728    
729     rot[axes1][axes1] = cosAngle;
730     rot[axes2][axes2] = cosAngle;
731    
732     rot[axes1][axes2] = sinAngle;
733     rot[axes2][axes1] = -sinAngle;
734 tim 725
735 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
736 tim 725
737     for (i = 0; i < 3; i++){
738 mmeineke 558 ji[i] = 0.0;
739 tim 725 for (k = 0; k < 3; k++){
740 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
741     }
742     }
743    
744     // rotate the Rotation matrix acording to:
745     // A[][] = A[][] * transpose(rot[][])
746    
747    
748 mmeineke 561 // NOte for as yet unknown reason, we are performing the
749 mmeineke 558 // calculation as:
750     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
751    
752 tim 725 for (i = 0; i < 3; i++){
753     for (j = 0; j < 3; j++){
754 gezelter 600 A[j][i] = 0.0;
755 tim 725 for (k = 0; k < 3; k++){
756     A[j][i] += tempA[i][k] * rot[j][k];
757 mmeineke 558 }
758     }
759     }
760     }
761 tim 677
762 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
763     myFF->doForces(calcPot, calcStress);
764 tim 677 }
765    
766     template<typename T> void Integrator<T>::thermalize(){
767 tim 725 tStats->velocitize();
768 tim 677 }
769 tim 763
770     template<typename T> double Integrator<T>::getConservedQuantity(void){
771     return tStats->getTotalE();
772 mmeineke 768 }