ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 781
Committed: Mon Sep 22 23:07:57 2003 UTC (20 years, 9 months ago) by tim
File size: 16686 byte(s)
Log Message:
fix bug in calculating maxCutoff

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2     #include <cstdlib>
3 mmeineke 561 #include <cmath>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
15     ForceFields* the_ff){
16 mmeineke 558 info = theInfo;
17     myFF = the_ff;
18     isFirst = 1;
19    
20     molecules = info->molecules;
21     nMols = info->n_mol;
22    
23     // give a little love back to the SimInfo object
24 tim 725
25     if (info->the_integrator != NULL){
26     delete info->the_integrator;
27     }
28 mmeineke 558 info->the_integrator = this;
29    
30     nAtoms = info->n_atoms;
31    
32     // check for constraints
33 tim 725
34     constrainedA = NULL;
35     constrainedB = NULL;
36 mmeineke 558 constrainedDsqr = NULL;
37 tim 725 moving = NULL;
38     moved = NULL;
39     oldPos = NULL;
40    
41 mmeineke 558 nConstrained = 0;
42    
43     checkConstraints();
44     }
45    
46 tim 725 template<typename T> Integrator<T>::~Integrator(){
47     if (nConstrained){
48 mmeineke 558 delete[] constrainedA;
49     delete[] constrainedB;
50     delete[] constrainedDsqr;
51     delete[] moving;
52     delete[] moved;
53 mmeineke 561 delete[] oldPos;
54 mmeineke 558 }
55     }
56    
57 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
58 mmeineke 558 isConstrained = 0;
59    
60 tim 725 Constraint* temp_con;
61     Constraint* dummy_plug;
62 mmeineke 558 temp_con = new Constraint[info->n_SRI];
63     nConstrained = 0;
64     int constrained = 0;
65 tim 725
66 mmeineke 558 SRI** theArray;
67 tim 725 for (int i = 0; i < nMols; i++){
68     theArray = (SRI * *) molecules[i].getMyBonds();
69     for (int j = 0; j < molecules[i].getNBonds(); j++){
70 mmeineke 558 constrained = theArray[j]->is_constrained();
71 mmeineke 594
72 tim 725 if (constrained){
73     dummy_plug = theArray[j]->get_constraint();
74     temp_con[nConstrained].set_a(dummy_plug->get_a());
75     temp_con[nConstrained].set_b(dummy_plug->get_b());
76     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
77 mmeineke 594
78 tim 725 nConstrained++;
79     constrained = 0;
80     }
81 mmeineke 558 }
82    
83 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
84     for (int j = 0; j < molecules[i].getNBends(); j++){
85 mmeineke 558 constrained = theArray[j]->is_constrained();
86 tim 725
87     if (constrained){
88     dummy_plug = theArray[j]->get_constraint();
89     temp_con[nConstrained].set_a(dummy_plug->get_a());
90     temp_con[nConstrained].set_b(dummy_plug->get_b());
91     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
92    
93     nConstrained++;
94     constrained = 0;
95 mmeineke 558 }
96     }
97    
98 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
99     for (int j = 0; j < molecules[i].getNTorsions(); j++){
100 mmeineke 558 constrained = theArray[j]->is_constrained();
101 tim 725
102     if (constrained){
103     dummy_plug = theArray[j]->get_constraint();
104     temp_con[nConstrained].set_a(dummy_plug->get_a());
105     temp_con[nConstrained].set_b(dummy_plug->get_b());
106     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
107    
108     nConstrained++;
109     constrained = 0;
110 mmeineke 558 }
111     }
112     }
113    
114 tim 725 if (nConstrained > 0){
115 mmeineke 558 isConstrained = 1;
116    
117 tim 725 if (constrainedA != NULL)
118     delete[] constrainedA;
119     if (constrainedB != NULL)
120     delete[] constrainedB;
121     if (constrainedDsqr != NULL)
122     delete[] constrainedDsqr;
123 mmeineke 558
124 tim 725 constrainedA = new int[nConstrained];
125     constrainedB = new int[nConstrained];
126 mmeineke 558 constrainedDsqr = new double[nConstrained];
127 tim 725
128     for (int i = 0; i < nConstrained; i++){
129 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
130     constrainedB[i] = temp_con[i].get_b();
131     constrainedDsqr[i] = temp_con[i].get_dsqr();
132     }
133    
134 tim 725
135 mmeineke 558 // save oldAtoms to check for lode balanceing later on.
136 tim 725
137 mmeineke 558 oldAtoms = nAtoms;
138 tim 725
139 mmeineke 558 moving = new int[nAtoms];
140 tim 725 moved = new int[nAtoms];
141 mmeineke 558
142 tim 725 oldPos = new double[nAtoms * 3];
143 mmeineke 558 }
144 tim 725
145 mmeineke 558 delete[] temp_con;
146     }
147    
148    
149 tim 725 template<typename T> void Integrator<T>::integrate(void){
150 mmeineke 558 int i, j; // loop counters
151    
152 tim 725 double runTime = info->run_time;
153     double sampleTime = info->sampleTime;
154     double statusTime = info->statusTime;
155 mmeineke 558 double thermalTime = info->thermalTime;
156 mmeineke 746 double resetTime = info->resetTime;
157 mmeineke 558
158 mmeineke 746
159 mmeineke 558 double currSample;
160     double currThermal;
161     double currStatus;
162 mmeineke 746 double currReset;
163    
164 mmeineke 558 int calcPot, calcStress;
165     int isError;
166    
167 tim 725 tStats = new Thermo(info);
168     statOut = new StatWriter(info);
169     dumpOut = new DumpWriter(info);
170 mmeineke 558
171 mmeineke 561 atoms = info->atoms;
172 mmeineke 558 DirectionalAtom* dAtom;
173 mmeineke 561
174     dt = info->dt;
175 mmeineke 558 dt2 = 0.5 * dt;
176    
177     // initialize the forces before the first step
178    
179 tim 677 calcForce(1, 1);
180 tim 781
181     if (nConstrained){
182     preMove();
183     constrainA();
184     calcForce(1, 1);
185     constrainB();
186     }
187 tim 733
188 tim 725 if (info->setTemp){
189 tim 677 thermalize();
190 mmeineke 558 }
191 tim 725
192 mmeineke 558 calcPot = 0;
193     calcStress = 0;
194 mmeineke 711 currSample = sampleTime + info->getTime();
195     currThermal = thermalTime+ info->getTime();
196     currStatus = statusTime + info->getTime();
197 mmeineke 746 currReset = resetTime + info->getTime();
198 mmeineke 558
199 tim 725 dumpOut->writeDump(info->getTime());
200     statOut->writeStat(info->getTime());
201 mmeineke 559
202     readyCheck();
203    
204     #ifdef IS_MPI
205 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
206 mmeineke 559 MPIcheckPoint();
207     #endif // is_mpi
208    
209 tim 725 while (info->getTime() < runTime){
210     if ((info->getTime() + dt) >= currStatus){
211 mmeineke 558 calcPot = 1;
212     calcStress = 1;
213     }
214 mmeineke 561
215 tim 725 integrateStep(calcPot, calcStress);
216    
217 mmeineke 643 info->incrTime(dt);
218 mmeineke 558
219 tim 725 if (info->setTemp){
220     if (info->getTime() >= currThermal){
221     thermalize();
222     currThermal += thermalTime;
223 mmeineke 558 }
224     }
225    
226 tim 725 if (info->getTime() >= currSample){
227     dumpOut->writeDump(info->getTime());
228 mmeineke 558 currSample += sampleTime;
229     }
230    
231 tim 725 if (info->getTime() >= currStatus){
232     statOut->writeStat(info->getTime());
233 mmeineke 558 calcPot = 0;
234     calcStress = 0;
235     currStatus += statusTime;
236     }
237 mmeineke 559
238 mmeineke 746 if (info->resetIntegrator){
239     if (info->getTime() >= currReset){
240     this->resetIntegrator();
241     currReset += resetTime;
242     }
243     }
244    
245 mmeineke 559 #ifdef IS_MPI
246 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
247 mmeineke 559 MPIcheckPoint();
248     #endif // is_mpi
249 mmeineke 558 }
250    
251 mmeineke 643 dumpOut->writeFinal(info->getTime());
252 mmeineke 558
253 mmeineke 561 delete dumpOut;
254     delete statOut;
255 mmeineke 558 }
256    
257 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
258     int calcStress){
259 mmeineke 558 // Position full step, and velocity half step
260 tim 725 preMove();
261 mmeineke 558
262     moveA();
263    
264 tim 725
265    
266 mmeineke 768
267 mmeineke 614 #ifdef IS_MPI
268 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
269 mmeineke 614 MPIcheckPoint();
270     #endif // is_mpi
271    
272 tim 725
273 mmeineke 558 // calc forces
274    
275 tim 725 calcForce(calcPot, calcStress);
276 mmeineke 558
277 mmeineke 614 #ifdef IS_MPI
278 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
279 mmeineke 614 MPIcheckPoint();
280     #endif // is_mpi
281    
282 tim 725
283 mmeineke 558 // finish the velocity half step
284 tim 725
285 mmeineke 558 moveB();
286 tim 725
287    
288 mmeineke 768
289 mmeineke 614 #ifdef IS_MPI
290 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
291 mmeineke 614 MPIcheckPoint();
292     #endif // is_mpi
293 mmeineke 558 }
294    
295    
296 tim 725 template<typename T> void Integrator<T>::moveA(void){
297 gezelter 600 int i, j;
298 mmeineke 558 DirectionalAtom* dAtom;
299 gezelter 600 double Tb[3], ji[3];
300     double vel[3], pos[3], frc[3];
301     double mass;
302 mmeineke 558
303 tim 725 for (i = 0; i < nAtoms; i++){
304     atoms[i]->getVel(vel);
305     atoms[i]->getPos(pos);
306     atoms[i]->getFrc(frc);
307 mmeineke 567
308 gezelter 600 mass = atoms[i]->getMass();
309 mmeineke 594
310 tim 725 for (j = 0; j < 3; j++){
311 gezelter 600 // velocity half step
312 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
313 gezelter 600 // position whole step
314     pos[j] += dt * vel[j];
315     }
316 mmeineke 594
317 tim 725 atoms[i]->setVel(vel);
318     atoms[i]->setPos(pos);
319 gezelter 600
320 tim 725 if (atoms[i]->isDirectional()){
321     dAtom = (DirectionalAtom *) atoms[i];
322 mmeineke 558
323     // get and convert the torque to body frame
324 mmeineke 597
325 tim 725 dAtom->getTrq(Tb);
326     dAtom->lab2Body(Tb);
327    
328 mmeineke 558 // get the angular momentum, and propagate a half step
329 gezelter 600
330 tim 725 dAtom->getJ(ji);
331 gezelter 600
332 tim 725 for (j = 0; j < 3; j++)
333 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
334 tim 725
335 mmeineke 778 this->rotationPropagation( dAtom, ji );
336 gezelter 600
337 tim 725 dAtom->setJ(ji);
338     }
339 mmeineke 558 }
340 mmeineke 768
341     if (nConstrained){
342     constrainA();
343     }
344 mmeineke 558 }
345    
346    
347 tim 725 template<typename T> void Integrator<T>::moveB(void){
348 gezelter 600 int i, j;
349 mmeineke 558 DirectionalAtom* dAtom;
350 gezelter 600 double Tb[3], ji[3];
351     double vel[3], frc[3];
352     double mass;
353 mmeineke 558
354 tim 725 for (i = 0; i < nAtoms; i++){
355     atoms[i]->getVel(vel);
356     atoms[i]->getFrc(frc);
357 mmeineke 558
358 gezelter 600 mass = atoms[i]->getMass();
359    
360 mmeineke 558 // velocity half step
361 tim 725 for (j = 0; j < 3; j++)
362     vel[j] += (dt2 * frc[j] / mass) * eConvert;
363 gezelter 600
364 tim 725 atoms[i]->setVel(vel);
365 mmeineke 597
366 tim 725 if (atoms[i]->isDirectional()){
367     dAtom = (DirectionalAtom *) atoms[i];
368    
369 gezelter 600 // get and convert the torque to body frame
370    
371 tim 725 dAtom->getTrq(Tb);
372     dAtom->lab2Body(Tb);
373 gezelter 600
374     // get the angular momentum, and propagate a half step
375    
376 tim 725 dAtom->getJ(ji);
377 gezelter 600
378 tim 725 for (j = 0; j < 3; j++)
379 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
380 mmeineke 597
381 tim 725
382     dAtom->setJ(ji);
383 mmeineke 558 }
384     }
385 mmeineke 768
386     if (nConstrained){
387     constrainB();
388     }
389 mmeineke 558 }
390    
391 tim 725 template<typename T> void Integrator<T>::preMove(void){
392 gezelter 600 int i, j;
393     double pos[3];
394 mmeineke 558
395 tim 725 if (nConstrained){
396     for (i = 0; i < nAtoms; i++){
397     atoms[i]->getPos(pos);
398 mmeineke 561
399 tim 725 for (j = 0; j < 3; j++){
400     oldPos[3 * i + j] = pos[j];
401 gezelter 600 }
402     }
403 tim 725 }
404 gezelter 600 }
405    
406 tim 645 template<typename T> void Integrator<T>::constrainA(){
407 tim 725 int i, j, k;
408 mmeineke 558 int done;
409 gezelter 600 double posA[3], posB[3];
410     double velA[3], velB[3];
411 mmeineke 572 double pab[3];
412     double rab[3];
413 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
414 mmeineke 558 double rma, rmb;
415     double dx, dy, dz;
416 mmeineke 561 double rpab;
417 mmeineke 558 double rabsq, pabsq, rpabsq;
418     double diffsq;
419     double gab;
420     int iteration;
421    
422 tim 725 for (i = 0; i < nAtoms; i++){
423 mmeineke 558 moving[i] = 0;
424 tim 725 moved[i] = 1;
425 mmeineke 558 }
426 mmeineke 567
427 mmeineke 558 iteration = 0;
428     done = 0;
429 tim 725 while (!done && (iteration < maxIteration)){
430 mmeineke 558 done = 1;
431 tim 725 for (i = 0; i < nConstrained; i++){
432 mmeineke 558 a = constrainedA[i];
433     b = constrainedB[i];
434 mmeineke 563
435 tim 725 ax = (a * 3) + 0;
436     ay = (a * 3) + 1;
437     az = (a * 3) + 2;
438 mmeineke 563
439 tim 725 bx = (b * 3) + 0;
440     by = (b * 3) + 1;
441     bz = (b * 3) + 2;
442    
443     if (moved[a] || moved[b]){
444     atoms[a]->getPos(posA);
445     atoms[b]->getPos(posB);
446    
447     for (j = 0; j < 3; j++)
448 gezelter 600 pab[j] = posA[j] - posB[j];
449 mmeineke 567
450 tim 725 //periodic boundary condition
451 mmeineke 567
452 tim 725 info->wrapVector(pab);
453 mmeineke 572
454 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
455 mmeineke 558
456 tim 725 rabsq = constrainedDsqr[i];
457     diffsq = rabsq - pabsq;
458 mmeineke 567
459 tim 725 // the original rattle code from alan tidesley
460     if (fabs(diffsq) > (tol * rabsq * 2)){
461     rab[0] = oldPos[ax] - oldPos[bx];
462     rab[1] = oldPos[ay] - oldPos[by];
463     rab[2] = oldPos[az] - oldPos[bz];
464 mmeineke 558
465 tim 725 info->wrapVector(rab);
466 mmeineke 567
467 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
468 mmeineke 558
469 tim 725 rpabsq = rpab * rpab;
470 mmeineke 558
471 mmeineke 563
472 tim 725 if (rpabsq < (rabsq * -diffsq)){
473 mmeineke 558 #ifdef IS_MPI
474 tim 725 a = atoms[a]->getGlobalIndex();
475     b = atoms[b]->getGlobalIndex();
476 mmeineke 558 #endif //is_mpi
477 tim 725 sprintf(painCave.errMsg,
478     "Constraint failure in constrainA at atom %d and %d.\n", a,
479     b);
480     painCave.isFatal = 1;
481     simError();
482     }
483 mmeineke 558
484 tim 725 rma = 1.0 / atoms[a]->getMass();
485     rmb = 1.0 / atoms[b]->getMass();
486 mmeineke 567
487 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
488 mmeineke 567
489 mmeineke 572 dx = rab[0] * gab;
490     dy = rab[1] * gab;
491     dz = rab[2] * gab;
492 mmeineke 558
493 tim 725 posA[0] += rma * dx;
494     posA[1] += rma * dy;
495     posA[2] += rma * dz;
496 mmeineke 558
497 tim 725 atoms[a]->setPos(posA);
498 mmeineke 558
499 tim 725 posB[0] -= rmb * dx;
500     posB[1] -= rmb * dy;
501     posB[2] -= rmb * dz;
502 gezelter 600
503 tim 725 atoms[b]->setPos(posB);
504 gezelter 600
505 mmeineke 558 dx = dx / dt;
506     dy = dy / dt;
507     dz = dz / dt;
508    
509 tim 725 atoms[a]->getVel(velA);
510 mmeineke 558
511 tim 725 velA[0] += rma * dx;
512     velA[1] += rma * dy;
513     velA[2] += rma * dz;
514 mmeineke 558
515 tim 725 atoms[a]->setVel(velA);
516 gezelter 600
517 tim 725 atoms[b]->getVel(velB);
518 gezelter 600
519 tim 725 velB[0] -= rmb * dx;
520     velB[1] -= rmb * dy;
521     velB[2] -= rmb * dz;
522 gezelter 600
523 tim 725 atoms[b]->setVel(velB);
524 gezelter 600
525 tim 725 moving[a] = 1;
526     moving[b] = 1;
527     done = 0;
528     }
529 mmeineke 558 }
530     }
531 tim 725
532     for (i = 0; i < nAtoms; i++){
533 mmeineke 558 moved[i] = moving[i];
534     moving[i] = 0;
535     }
536    
537     iteration++;
538     }
539    
540 tim 725 if (!done){
541     sprintf(painCave.errMsg,
542     "Constraint failure in constrainA, too many iterations: %d\n",
543     iteration);
544 mmeineke 558 painCave.isFatal = 1;
545     simError();
546     }
547 mmeineke 768
548 mmeineke 558 }
549    
550 tim 725 template<typename T> void Integrator<T>::constrainB(void){
551     int i, j, k;
552 mmeineke 558 int done;
553 gezelter 600 double posA[3], posB[3];
554     double velA[3], velB[3];
555 mmeineke 558 double vxab, vyab, vzab;
556 mmeineke 572 double rab[3];
557 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
558 mmeineke 558 double rma, rmb;
559     double dx, dy, dz;
560     double rabsq, pabsq, rvab;
561     double diffsq;
562     double gab;
563     int iteration;
564    
565 tim 725 for (i = 0; i < nAtoms; i++){
566 mmeineke 558 moving[i] = 0;
567     moved[i] = 1;
568     }
569    
570     done = 0;
571 mmeineke 561 iteration = 0;
572 tim 725 while (!done && (iteration < maxIteration)){
573 mmeineke 567 done = 1;
574    
575 tim 725 for (i = 0; i < nConstrained; i++){
576 mmeineke 558 a = constrainedA[i];
577     b = constrainedB[i];
578    
579 tim 725 ax = (a * 3) + 0;
580     ay = (a * 3) + 1;
581     az = (a * 3) + 2;
582 mmeineke 563
583 tim 725 bx = (b * 3) + 0;
584     by = (b * 3) + 1;
585     bz = (b * 3) + 2;
586 mmeineke 563
587 tim 725 if (moved[a] || moved[b]){
588     atoms[a]->getVel(velA);
589     atoms[b]->getVel(velB);
590 mmeineke 558
591 tim 725 vxab = velA[0] - velB[0];
592     vyab = velA[1] - velB[1];
593     vzab = velA[2] - velB[2];
594 gezelter 600
595 tim 725 atoms[a]->getPos(posA);
596     atoms[b]->getPos(posB);
597 gezelter 600
598 tim 725 for (j = 0; j < 3; j++)
599 gezelter 600 rab[j] = posA[j] - posB[j];
600 mmeineke 558
601 tim 725 info->wrapVector(rab);
602 mmeineke 558
603 tim 725 rma = 1.0 / atoms[a]->getMass();
604     rmb = 1.0 / atoms[b]->getMass();
605 mmeineke 558
606 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
607 gezelter 600
608 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
609 gezelter 600
610 tim 725 if (fabs(gab) > tol){
611     dx = rab[0] * gab;
612     dy = rab[1] * gab;
613     dz = rab[2] * gab;
614    
615     velA[0] += rma * dx;
616     velA[1] += rma * dy;
617     velA[2] += rma * dz;
618    
619     atoms[a]->setVel(velA);
620    
621     velB[0] -= rmb * dx;
622     velB[1] -= rmb * dy;
623     velB[2] -= rmb * dz;
624    
625     atoms[b]->setVel(velB);
626    
627     moving[a] = 1;
628     moving[b] = 1;
629     done = 0;
630     }
631 mmeineke 558 }
632     }
633    
634 tim 725 for (i = 0; i < nAtoms; i++){
635 mmeineke 558 moved[i] = moving[i];
636     moving[i] = 0;
637     }
638 tim 725
639 mmeineke 558 iteration++;
640     }
641    
642 tim 725 if (!done){
643     sprintf(painCave.errMsg,
644     "Constraint failure in constrainB, too many iterations: %d\n",
645     iteration);
646 mmeineke 558 painCave.isFatal = 1;
647     simError();
648 tim 725 }
649 mmeineke 558 }
650    
651 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
652     ( DirectionalAtom* dAtom, double ji[3] ){
653    
654     double angle;
655     double A[3][3], I[3][3];
656    
657     // use the angular velocities to propagate the rotation matrix a
658     // full time step
659    
660     dAtom->getA(A);
661     dAtom->getI(I);
662    
663     // rotate about the x-axis
664     angle = dt2 * ji[0] / I[0][0];
665     this->rotate( 1, 2, angle, ji, A );
666    
667     // rotate about the y-axis
668     angle = dt2 * ji[1] / I[1][1];
669     this->rotate( 2, 0, angle, ji, A );
670    
671     // rotate about the z-axis
672     angle = dt * ji[2] / I[2][2];
673     this->rotate( 0, 1, angle, ji, A);
674    
675     // rotate about the y-axis
676     angle = dt2 * ji[1] / I[1][1];
677     this->rotate( 2, 0, angle, ji, A );
678    
679     // rotate about the x-axis
680     angle = dt2 * ji[0] / I[0][0];
681     this->rotate( 1, 2, angle, ji, A );
682    
683     dAtom->setA( A );
684     }
685    
686 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
687     double angle, double ji[3],
688     double A[3][3]){
689     int i, j, k;
690 mmeineke 558 double sinAngle;
691     double cosAngle;
692     double angleSqr;
693     double angleSqrOver4;
694     double top, bottom;
695     double rot[3][3];
696     double tempA[3][3];
697     double tempJ[3];
698    
699     // initialize the tempA
700    
701 tim 725 for (i = 0; i < 3; i++){
702     for (j = 0; j < 3; j++){
703 gezelter 600 tempA[j][i] = A[i][j];
704 mmeineke 558 }
705     }
706    
707     // initialize the tempJ
708    
709 tim 725 for (i = 0; i < 3; i++)
710     tempJ[i] = ji[i];
711    
712 mmeineke 558 // initalize rot as a unit matrix
713    
714     rot[0][0] = 1.0;
715     rot[0][1] = 0.0;
716     rot[0][2] = 0.0;
717    
718     rot[1][0] = 0.0;
719     rot[1][1] = 1.0;
720     rot[1][2] = 0.0;
721 tim 725
722 mmeineke 558 rot[2][0] = 0.0;
723     rot[2][1] = 0.0;
724     rot[2][2] = 1.0;
725 tim 725
726 mmeineke 558 // use a small angle aproximation for sin and cosine
727    
728 tim 725 angleSqr = angle * angle;
729 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
730     top = 1.0 - angleSqrOver4;
731     bottom = 1.0 + angleSqrOver4;
732    
733     cosAngle = top / bottom;
734     sinAngle = angle / bottom;
735    
736     rot[axes1][axes1] = cosAngle;
737     rot[axes2][axes2] = cosAngle;
738    
739     rot[axes1][axes2] = sinAngle;
740     rot[axes2][axes1] = -sinAngle;
741 tim 725
742 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
743 tim 725
744     for (i = 0; i < 3; i++){
745 mmeineke 558 ji[i] = 0.0;
746 tim 725 for (k = 0; k < 3; k++){
747 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
748     }
749     }
750    
751     // rotate the Rotation matrix acording to:
752     // A[][] = A[][] * transpose(rot[][])
753    
754    
755 mmeineke 561 // NOte for as yet unknown reason, we are performing the
756 mmeineke 558 // calculation as:
757     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
758    
759 tim 725 for (i = 0; i < 3; i++){
760     for (j = 0; j < 3; j++){
761 gezelter 600 A[j][i] = 0.0;
762 tim 725 for (k = 0; k < 3; k++){
763     A[j][i] += tempA[i][k] * rot[j][k];
764 mmeineke 558 }
765     }
766     }
767     }
768 tim 677
769 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
770     myFF->doForces(calcPot, calcStress);
771 tim 677 }
772    
773     template<typename T> void Integrator<T>::thermalize(){
774 tim 725 tStats->velocitize();
775 tim 677 }
776 tim 763
777     template<typename T> double Integrator<T>::getConservedQuantity(void){
778     return tStats->getTotalE();
779 mmeineke 768 }