ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 784
Committed: Wed Sep 24 19:34:39 2003 UTC (20 years, 9 months ago) by mmeineke
File size: 16659 byte(s)
Log Message:
moved readyCheck in the integrator so that it is called before the first Statistics are written.

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2     #include <cstdlib>
3 mmeineke 561 #include <cmath>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
15     ForceFields* the_ff){
16 mmeineke 558 info = theInfo;
17     myFF = the_ff;
18     isFirst = 1;
19    
20     molecules = info->molecules;
21     nMols = info->n_mol;
22    
23     // give a little love back to the SimInfo object
24 tim 725
25     if (info->the_integrator != NULL){
26     delete info->the_integrator;
27     }
28 mmeineke 782
29 mmeineke 558 nAtoms = info->n_atoms;
30    
31     // check for constraints
32 tim 725
33     constrainedA = NULL;
34     constrainedB = NULL;
35 mmeineke 558 constrainedDsqr = NULL;
36 tim 725 moving = NULL;
37     moved = NULL;
38     oldPos = NULL;
39    
40 mmeineke 558 nConstrained = 0;
41    
42     checkConstraints();
43     }
44    
45 tim 725 template<typename T> Integrator<T>::~Integrator(){
46     if (nConstrained){
47 mmeineke 558 delete[] constrainedA;
48     delete[] constrainedB;
49     delete[] constrainedDsqr;
50     delete[] moving;
51     delete[] moved;
52 mmeineke 561 delete[] oldPos;
53 mmeineke 558 }
54     }
55    
56 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
57 mmeineke 558 isConstrained = 0;
58    
59 tim 725 Constraint* temp_con;
60     Constraint* dummy_plug;
61 mmeineke 558 temp_con = new Constraint[info->n_SRI];
62     nConstrained = 0;
63     int constrained = 0;
64 tim 725
65 mmeineke 558 SRI** theArray;
66 tim 725 for (int i = 0; i < nMols; i++){
67     theArray = (SRI * *) molecules[i].getMyBonds();
68     for (int j = 0; j < molecules[i].getNBonds(); j++){
69 mmeineke 558 constrained = theArray[j]->is_constrained();
70 mmeineke 594
71 tim 725 if (constrained){
72     dummy_plug = theArray[j]->get_constraint();
73     temp_con[nConstrained].set_a(dummy_plug->get_a());
74     temp_con[nConstrained].set_b(dummy_plug->get_b());
75     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
76 mmeineke 594
77 tim 725 nConstrained++;
78     constrained = 0;
79     }
80 mmeineke 558 }
81    
82 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
83     for (int j = 0; j < molecules[i].getNBends(); j++){
84 mmeineke 558 constrained = theArray[j]->is_constrained();
85 tim 725
86     if (constrained){
87     dummy_plug = theArray[j]->get_constraint();
88     temp_con[nConstrained].set_a(dummy_plug->get_a());
89     temp_con[nConstrained].set_b(dummy_plug->get_b());
90     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
91    
92     nConstrained++;
93     constrained = 0;
94 mmeineke 558 }
95     }
96    
97 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
98     for (int j = 0; j < molecules[i].getNTorsions(); j++){
99 mmeineke 558 constrained = theArray[j]->is_constrained();
100 tim 725
101     if (constrained){
102     dummy_plug = theArray[j]->get_constraint();
103     temp_con[nConstrained].set_a(dummy_plug->get_a());
104     temp_con[nConstrained].set_b(dummy_plug->get_b());
105     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
106    
107     nConstrained++;
108     constrained = 0;
109 mmeineke 558 }
110     }
111     }
112    
113 tim 725 if (nConstrained > 0){
114 mmeineke 558 isConstrained = 1;
115    
116 tim 725 if (constrainedA != NULL)
117     delete[] constrainedA;
118     if (constrainedB != NULL)
119     delete[] constrainedB;
120     if (constrainedDsqr != NULL)
121     delete[] constrainedDsqr;
122 mmeineke 558
123 tim 725 constrainedA = new int[nConstrained];
124     constrainedB = new int[nConstrained];
125 mmeineke 558 constrainedDsqr = new double[nConstrained];
126 tim 725
127     for (int i = 0; i < nConstrained; i++){
128 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
129     constrainedB[i] = temp_con[i].get_b();
130     constrainedDsqr[i] = temp_con[i].get_dsqr();
131     }
132    
133 tim 725
134 mmeineke 558 // save oldAtoms to check for lode balanceing later on.
135 tim 725
136 mmeineke 558 oldAtoms = nAtoms;
137 tim 725
138 mmeineke 558 moving = new int[nAtoms];
139 tim 725 moved = new int[nAtoms];
140 mmeineke 558
141 tim 725 oldPos = new double[nAtoms * 3];
142 mmeineke 558 }
143 tim 725
144 mmeineke 558 delete[] temp_con;
145     }
146    
147    
148 tim 725 template<typename T> void Integrator<T>::integrate(void){
149 mmeineke 558 int i, j; // loop counters
150    
151 tim 725 double runTime = info->run_time;
152     double sampleTime = info->sampleTime;
153     double statusTime = info->statusTime;
154 mmeineke 558 double thermalTime = info->thermalTime;
155 mmeineke 746 double resetTime = info->resetTime;
156 mmeineke 558
157 mmeineke 746
158 mmeineke 558 double currSample;
159     double currThermal;
160     double currStatus;
161 mmeineke 746 double currReset;
162    
163 mmeineke 558 int calcPot, calcStress;
164     int isError;
165    
166 tim 725 tStats = new Thermo(info);
167     statOut = new StatWriter(info);
168     dumpOut = new DumpWriter(info);
169 mmeineke 558
170 mmeineke 561 atoms = info->atoms;
171 mmeineke 558 DirectionalAtom* dAtom;
172 mmeineke 561
173     dt = info->dt;
174 mmeineke 558 dt2 = 0.5 * dt;
175    
176 mmeineke 784 readyCheck();
177    
178 mmeineke 558 // initialize the forces before the first step
179    
180 tim 677 calcForce(1, 1);
181 tim 781
182     if (nConstrained){
183     preMove();
184     constrainA();
185     calcForce(1, 1);
186     constrainB();
187     }
188 tim 733
189 tim 725 if (info->setTemp){
190 tim 677 thermalize();
191 mmeineke 558 }
192 tim 725
193 mmeineke 558 calcPot = 0;
194     calcStress = 0;
195 mmeineke 711 currSample = sampleTime + info->getTime();
196     currThermal = thermalTime+ info->getTime();
197     currStatus = statusTime + info->getTime();
198 mmeineke 746 currReset = resetTime + info->getTime();
199 mmeineke 558
200 tim 725 dumpOut->writeDump(info->getTime());
201     statOut->writeStat(info->getTime());
202 mmeineke 559
203    
204 mmeineke 784
205 mmeineke 559 #ifdef IS_MPI
206 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
207 mmeineke 559 MPIcheckPoint();
208     #endif // is_mpi
209    
210 tim 725 while (info->getTime() < runTime){
211     if ((info->getTime() + dt) >= currStatus){
212 mmeineke 558 calcPot = 1;
213     calcStress = 1;
214     }
215 mmeineke 561
216 tim 725 integrateStep(calcPot, calcStress);
217    
218 mmeineke 643 info->incrTime(dt);
219 mmeineke 558
220 tim 725 if (info->setTemp){
221     if (info->getTime() >= currThermal){
222     thermalize();
223     currThermal += thermalTime;
224 mmeineke 558 }
225     }
226    
227 tim 725 if (info->getTime() >= currSample){
228     dumpOut->writeDump(info->getTime());
229 mmeineke 558 currSample += sampleTime;
230     }
231    
232 tim 725 if (info->getTime() >= currStatus){
233     statOut->writeStat(info->getTime());
234 mmeineke 558 calcPot = 0;
235     calcStress = 0;
236     currStatus += statusTime;
237     }
238 mmeineke 559
239 mmeineke 746 if (info->resetIntegrator){
240     if (info->getTime() >= currReset){
241     this->resetIntegrator();
242     currReset += resetTime;
243     }
244     }
245    
246 mmeineke 559 #ifdef IS_MPI
247 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
248 mmeineke 559 MPIcheckPoint();
249     #endif // is_mpi
250 mmeineke 558 }
251    
252 mmeineke 643 dumpOut->writeFinal(info->getTime());
253 mmeineke 558
254 mmeineke 561 delete dumpOut;
255     delete statOut;
256 mmeineke 558 }
257    
258 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
259     int calcStress){
260 mmeineke 558 // Position full step, and velocity half step
261 tim 725 preMove();
262 mmeineke 558
263     moveA();
264    
265 tim 725
266    
267 mmeineke 768
268 mmeineke 614 #ifdef IS_MPI
269 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
270 mmeineke 614 MPIcheckPoint();
271     #endif // is_mpi
272    
273 tim 725
274 mmeineke 558 // calc forces
275    
276 tim 725 calcForce(calcPot, calcStress);
277 mmeineke 558
278 mmeineke 614 #ifdef IS_MPI
279 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
280 mmeineke 614 MPIcheckPoint();
281     #endif // is_mpi
282    
283 tim 725
284 mmeineke 558 // finish the velocity half step
285 tim 725
286 mmeineke 558 moveB();
287 tim 725
288    
289 mmeineke 768
290 mmeineke 614 #ifdef IS_MPI
291 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
292 mmeineke 614 MPIcheckPoint();
293     #endif // is_mpi
294 mmeineke 558 }
295    
296    
297 tim 725 template<typename T> void Integrator<T>::moveA(void){
298 gezelter 600 int i, j;
299 mmeineke 558 DirectionalAtom* dAtom;
300 gezelter 600 double Tb[3], ji[3];
301     double vel[3], pos[3], frc[3];
302     double mass;
303 mmeineke 558
304 tim 725 for (i = 0; i < nAtoms; i++){
305     atoms[i]->getVel(vel);
306     atoms[i]->getPos(pos);
307     atoms[i]->getFrc(frc);
308 mmeineke 567
309 gezelter 600 mass = atoms[i]->getMass();
310 mmeineke 594
311 tim 725 for (j = 0; j < 3; j++){
312 gezelter 600 // velocity half step
313 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
314 gezelter 600 // position whole step
315     pos[j] += dt * vel[j];
316     }
317 mmeineke 594
318 tim 725 atoms[i]->setVel(vel);
319     atoms[i]->setPos(pos);
320 gezelter 600
321 tim 725 if (atoms[i]->isDirectional()){
322     dAtom = (DirectionalAtom *) atoms[i];
323 mmeineke 558
324     // get and convert the torque to body frame
325 mmeineke 597
326 tim 725 dAtom->getTrq(Tb);
327     dAtom->lab2Body(Tb);
328    
329 mmeineke 558 // get the angular momentum, and propagate a half step
330 gezelter 600
331 tim 725 dAtom->getJ(ji);
332 gezelter 600
333 tim 725 for (j = 0; j < 3; j++)
334 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
335 tim 725
336 mmeineke 778 this->rotationPropagation( dAtom, ji );
337 gezelter 600
338 tim 725 dAtom->setJ(ji);
339     }
340 mmeineke 558 }
341 mmeineke 768
342     if (nConstrained){
343     constrainA();
344     }
345 mmeineke 558 }
346    
347    
348 tim 725 template<typename T> void Integrator<T>::moveB(void){
349 gezelter 600 int i, j;
350 mmeineke 558 DirectionalAtom* dAtom;
351 gezelter 600 double Tb[3], ji[3];
352     double vel[3], frc[3];
353     double mass;
354 mmeineke 558
355 tim 725 for (i = 0; i < nAtoms; i++){
356     atoms[i]->getVel(vel);
357     atoms[i]->getFrc(frc);
358 mmeineke 558
359 gezelter 600 mass = atoms[i]->getMass();
360    
361 mmeineke 558 // velocity half step
362 tim 725 for (j = 0; j < 3; j++)
363     vel[j] += (dt2 * frc[j] / mass) * eConvert;
364 gezelter 600
365 tim 725 atoms[i]->setVel(vel);
366 mmeineke 597
367 tim 725 if (atoms[i]->isDirectional()){
368     dAtom = (DirectionalAtom *) atoms[i];
369    
370 gezelter 600 // get and convert the torque to body frame
371    
372 tim 725 dAtom->getTrq(Tb);
373     dAtom->lab2Body(Tb);
374 gezelter 600
375     // get the angular momentum, and propagate a half step
376    
377 tim 725 dAtom->getJ(ji);
378 gezelter 600
379 tim 725 for (j = 0; j < 3; j++)
380 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
381 mmeineke 597
382 tim 725
383     dAtom->setJ(ji);
384 mmeineke 558 }
385     }
386 mmeineke 768
387     if (nConstrained){
388     constrainB();
389     }
390 mmeineke 558 }
391    
392 tim 725 template<typename T> void Integrator<T>::preMove(void){
393 gezelter 600 int i, j;
394     double pos[3];
395 mmeineke 558
396 tim 725 if (nConstrained){
397     for (i = 0; i < nAtoms; i++){
398     atoms[i]->getPos(pos);
399 mmeineke 561
400 tim 725 for (j = 0; j < 3; j++){
401     oldPos[3 * i + j] = pos[j];
402 gezelter 600 }
403     }
404 tim 725 }
405 gezelter 600 }
406    
407 tim 645 template<typename T> void Integrator<T>::constrainA(){
408 tim 725 int i, j, k;
409 mmeineke 558 int done;
410 gezelter 600 double posA[3], posB[3];
411     double velA[3], velB[3];
412 mmeineke 572 double pab[3];
413     double rab[3];
414 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
415 mmeineke 558 double rma, rmb;
416     double dx, dy, dz;
417 mmeineke 561 double rpab;
418 mmeineke 558 double rabsq, pabsq, rpabsq;
419     double diffsq;
420     double gab;
421     int iteration;
422    
423 tim 725 for (i = 0; i < nAtoms; i++){
424 mmeineke 558 moving[i] = 0;
425 tim 725 moved[i] = 1;
426 mmeineke 558 }
427 mmeineke 567
428 mmeineke 558 iteration = 0;
429     done = 0;
430 tim 725 while (!done && (iteration < maxIteration)){
431 mmeineke 558 done = 1;
432 tim 725 for (i = 0; i < nConstrained; i++){
433 mmeineke 558 a = constrainedA[i];
434     b = constrainedB[i];
435 mmeineke 563
436 tim 725 ax = (a * 3) + 0;
437     ay = (a * 3) + 1;
438     az = (a * 3) + 2;
439 mmeineke 563
440 tim 725 bx = (b * 3) + 0;
441     by = (b * 3) + 1;
442     bz = (b * 3) + 2;
443    
444     if (moved[a] || moved[b]){
445     atoms[a]->getPos(posA);
446     atoms[b]->getPos(posB);
447    
448     for (j = 0; j < 3; j++)
449 gezelter 600 pab[j] = posA[j] - posB[j];
450 mmeineke 567
451 tim 725 //periodic boundary condition
452 mmeineke 567
453 tim 725 info->wrapVector(pab);
454 mmeineke 572
455 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
456 mmeineke 558
457 tim 725 rabsq = constrainedDsqr[i];
458     diffsq = rabsq - pabsq;
459 mmeineke 567
460 tim 725 // the original rattle code from alan tidesley
461     if (fabs(diffsq) > (tol * rabsq * 2)){
462     rab[0] = oldPos[ax] - oldPos[bx];
463     rab[1] = oldPos[ay] - oldPos[by];
464     rab[2] = oldPos[az] - oldPos[bz];
465 mmeineke 558
466 tim 725 info->wrapVector(rab);
467 mmeineke 567
468 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
469 mmeineke 558
470 tim 725 rpabsq = rpab * rpab;
471 mmeineke 558
472 mmeineke 563
473 tim 725 if (rpabsq < (rabsq * -diffsq)){
474 mmeineke 558 #ifdef IS_MPI
475 tim 725 a = atoms[a]->getGlobalIndex();
476     b = atoms[b]->getGlobalIndex();
477 mmeineke 558 #endif //is_mpi
478 tim 725 sprintf(painCave.errMsg,
479     "Constraint failure in constrainA at atom %d and %d.\n", a,
480     b);
481     painCave.isFatal = 1;
482     simError();
483     }
484 mmeineke 558
485 tim 725 rma = 1.0 / atoms[a]->getMass();
486     rmb = 1.0 / atoms[b]->getMass();
487 mmeineke 567
488 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
489 mmeineke 567
490 mmeineke 572 dx = rab[0] * gab;
491     dy = rab[1] * gab;
492     dz = rab[2] * gab;
493 mmeineke 558
494 tim 725 posA[0] += rma * dx;
495     posA[1] += rma * dy;
496     posA[2] += rma * dz;
497 mmeineke 558
498 tim 725 atoms[a]->setPos(posA);
499 mmeineke 558
500 tim 725 posB[0] -= rmb * dx;
501     posB[1] -= rmb * dy;
502     posB[2] -= rmb * dz;
503 gezelter 600
504 tim 725 atoms[b]->setPos(posB);
505 gezelter 600
506 mmeineke 558 dx = dx / dt;
507     dy = dy / dt;
508     dz = dz / dt;
509    
510 tim 725 atoms[a]->getVel(velA);
511 mmeineke 558
512 tim 725 velA[0] += rma * dx;
513     velA[1] += rma * dy;
514     velA[2] += rma * dz;
515 mmeineke 558
516 tim 725 atoms[a]->setVel(velA);
517 gezelter 600
518 tim 725 atoms[b]->getVel(velB);
519 gezelter 600
520 tim 725 velB[0] -= rmb * dx;
521     velB[1] -= rmb * dy;
522     velB[2] -= rmb * dz;
523 gezelter 600
524 tim 725 atoms[b]->setVel(velB);
525 gezelter 600
526 tim 725 moving[a] = 1;
527     moving[b] = 1;
528     done = 0;
529     }
530 mmeineke 558 }
531     }
532 tim 725
533     for (i = 0; i < nAtoms; i++){
534 mmeineke 558 moved[i] = moving[i];
535     moving[i] = 0;
536     }
537    
538     iteration++;
539     }
540    
541 tim 725 if (!done){
542     sprintf(painCave.errMsg,
543     "Constraint failure in constrainA, too many iterations: %d\n",
544     iteration);
545 mmeineke 558 painCave.isFatal = 1;
546     simError();
547     }
548 mmeineke 768
549 mmeineke 558 }
550    
551 tim 725 template<typename T> void Integrator<T>::constrainB(void){
552     int i, j, k;
553 mmeineke 558 int done;
554 gezelter 600 double posA[3], posB[3];
555     double velA[3], velB[3];
556 mmeineke 558 double vxab, vyab, vzab;
557 mmeineke 572 double rab[3];
558 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
559 mmeineke 558 double rma, rmb;
560     double dx, dy, dz;
561     double rabsq, pabsq, rvab;
562     double diffsq;
563     double gab;
564     int iteration;
565    
566 tim 725 for (i = 0; i < nAtoms; i++){
567 mmeineke 558 moving[i] = 0;
568     moved[i] = 1;
569     }
570    
571     done = 0;
572 mmeineke 561 iteration = 0;
573 tim 725 while (!done && (iteration < maxIteration)){
574 mmeineke 567 done = 1;
575    
576 tim 725 for (i = 0; i < nConstrained; i++){
577 mmeineke 558 a = constrainedA[i];
578     b = constrainedB[i];
579    
580 tim 725 ax = (a * 3) + 0;
581     ay = (a * 3) + 1;
582     az = (a * 3) + 2;
583 mmeineke 563
584 tim 725 bx = (b * 3) + 0;
585     by = (b * 3) + 1;
586     bz = (b * 3) + 2;
587 mmeineke 563
588 tim 725 if (moved[a] || moved[b]){
589     atoms[a]->getVel(velA);
590     atoms[b]->getVel(velB);
591 mmeineke 558
592 tim 725 vxab = velA[0] - velB[0];
593     vyab = velA[1] - velB[1];
594     vzab = velA[2] - velB[2];
595 gezelter 600
596 tim 725 atoms[a]->getPos(posA);
597     atoms[b]->getPos(posB);
598 gezelter 600
599 tim 725 for (j = 0; j < 3; j++)
600 gezelter 600 rab[j] = posA[j] - posB[j];
601 mmeineke 558
602 tim 725 info->wrapVector(rab);
603 mmeineke 558
604 tim 725 rma = 1.0 / atoms[a]->getMass();
605     rmb = 1.0 / atoms[b]->getMass();
606 mmeineke 558
607 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
608 gezelter 600
609 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
610 gezelter 600
611 tim 725 if (fabs(gab) > tol){
612     dx = rab[0] * gab;
613     dy = rab[1] * gab;
614     dz = rab[2] * gab;
615    
616     velA[0] += rma * dx;
617     velA[1] += rma * dy;
618     velA[2] += rma * dz;
619    
620     atoms[a]->setVel(velA);
621    
622     velB[0] -= rmb * dx;
623     velB[1] -= rmb * dy;
624     velB[2] -= rmb * dz;
625    
626     atoms[b]->setVel(velB);
627    
628     moving[a] = 1;
629     moving[b] = 1;
630     done = 0;
631     }
632 mmeineke 558 }
633     }
634    
635 tim 725 for (i = 0; i < nAtoms; i++){
636 mmeineke 558 moved[i] = moving[i];
637     moving[i] = 0;
638     }
639 tim 725
640 mmeineke 558 iteration++;
641     }
642    
643 tim 725 if (!done){
644     sprintf(painCave.errMsg,
645     "Constraint failure in constrainB, too many iterations: %d\n",
646     iteration);
647 mmeineke 558 painCave.isFatal = 1;
648     simError();
649 tim 725 }
650 mmeineke 558 }
651    
652 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
653     ( DirectionalAtom* dAtom, double ji[3] ){
654    
655     double angle;
656     double A[3][3], I[3][3];
657    
658     // use the angular velocities to propagate the rotation matrix a
659     // full time step
660    
661     dAtom->getA(A);
662     dAtom->getI(I);
663    
664     // rotate about the x-axis
665     angle = dt2 * ji[0] / I[0][0];
666     this->rotate( 1, 2, angle, ji, A );
667    
668     // rotate about the y-axis
669     angle = dt2 * ji[1] / I[1][1];
670     this->rotate( 2, 0, angle, ji, A );
671    
672     // rotate about the z-axis
673     angle = dt * ji[2] / I[2][2];
674     this->rotate( 0, 1, angle, ji, A);
675    
676     // rotate about the y-axis
677     angle = dt2 * ji[1] / I[1][1];
678     this->rotate( 2, 0, angle, ji, A );
679    
680     // rotate about the x-axis
681     angle = dt2 * ji[0] / I[0][0];
682     this->rotate( 1, 2, angle, ji, A );
683    
684     dAtom->setA( A );
685     }
686    
687 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
688     double angle, double ji[3],
689     double A[3][3]){
690     int i, j, k;
691 mmeineke 558 double sinAngle;
692     double cosAngle;
693     double angleSqr;
694     double angleSqrOver4;
695     double top, bottom;
696     double rot[3][3];
697     double tempA[3][3];
698     double tempJ[3];
699    
700     // initialize the tempA
701    
702 tim 725 for (i = 0; i < 3; i++){
703     for (j = 0; j < 3; j++){
704 gezelter 600 tempA[j][i] = A[i][j];
705 mmeineke 558 }
706     }
707    
708     // initialize the tempJ
709    
710 tim 725 for (i = 0; i < 3; i++)
711     tempJ[i] = ji[i];
712    
713 mmeineke 558 // initalize rot as a unit matrix
714    
715     rot[0][0] = 1.0;
716     rot[0][1] = 0.0;
717     rot[0][2] = 0.0;
718    
719     rot[1][0] = 0.0;
720     rot[1][1] = 1.0;
721     rot[1][2] = 0.0;
722 tim 725
723 mmeineke 558 rot[2][0] = 0.0;
724     rot[2][1] = 0.0;
725     rot[2][2] = 1.0;
726 tim 725
727 mmeineke 558 // use a small angle aproximation for sin and cosine
728    
729 tim 725 angleSqr = angle * angle;
730 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
731     top = 1.0 - angleSqrOver4;
732     bottom = 1.0 + angleSqrOver4;
733    
734     cosAngle = top / bottom;
735     sinAngle = angle / bottom;
736    
737     rot[axes1][axes1] = cosAngle;
738     rot[axes2][axes2] = cosAngle;
739    
740     rot[axes1][axes2] = sinAngle;
741     rot[axes2][axes1] = -sinAngle;
742 tim 725
743 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
744 tim 725
745     for (i = 0; i < 3; i++){
746 mmeineke 558 ji[i] = 0.0;
747 tim 725 for (k = 0; k < 3; k++){
748 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
749     }
750     }
751    
752     // rotate the Rotation matrix acording to:
753     // A[][] = A[][] * transpose(rot[][])
754    
755    
756 mmeineke 561 // NOte for as yet unknown reason, we are performing the
757 mmeineke 558 // calculation as:
758     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
759    
760 tim 725 for (i = 0; i < 3; i++){
761     for (j = 0; j < 3; j++){
762 gezelter 600 A[j][i] = 0.0;
763 tim 725 for (k = 0; k < 3; k++){
764     A[j][i] += tempA[i][k] * rot[j][k];
765 mmeineke 558 }
766     }
767     }
768     }
769 tim 677
770 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
771     myFF->doForces(calcPot, calcStress);
772 tim 677 }
773    
774     template<typename T> void Integrator<T>::thermalize(){
775 tim 725 tStats->velocitize();
776 tim 677 }
777 tim 763
778     template<typename T> double Integrator<T>::getConservedQuantity(void){
779     return tStats->getTotalE();
780 mmeineke 768 }