ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 787
Committed: Thu Sep 25 19:27:15 2003 UTC (20 years, 9 months ago) by mmeineke
File size: 16528 byte(s)
Log Message:
cleaned things with gcc -Wall and g++ -Wall

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2     #include <cstdlib>
3 mmeineke 561 #include <cmath>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
15     ForceFields* the_ff){
16 mmeineke 558 info = theInfo;
17     myFF = the_ff;
18     isFirst = 1;
19    
20     molecules = info->molecules;
21     nMols = info->n_mol;
22    
23     // give a little love back to the SimInfo object
24 tim 725
25     if (info->the_integrator != NULL){
26     delete info->the_integrator;
27     }
28 mmeineke 782
29 mmeineke 558 nAtoms = info->n_atoms;
30    
31     // check for constraints
32 tim 725
33     constrainedA = NULL;
34     constrainedB = NULL;
35 mmeineke 558 constrainedDsqr = NULL;
36 tim 725 moving = NULL;
37     moved = NULL;
38     oldPos = NULL;
39    
40 mmeineke 558 nConstrained = 0;
41    
42     checkConstraints();
43     }
44    
45 tim 725 template<typename T> Integrator<T>::~Integrator(){
46     if (nConstrained){
47 mmeineke 558 delete[] constrainedA;
48     delete[] constrainedB;
49     delete[] constrainedDsqr;
50     delete[] moving;
51     delete[] moved;
52 mmeineke 561 delete[] oldPos;
53 mmeineke 558 }
54     }
55    
56 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
57 mmeineke 558 isConstrained = 0;
58    
59 tim 725 Constraint* temp_con;
60     Constraint* dummy_plug;
61 mmeineke 558 temp_con = new Constraint[info->n_SRI];
62     nConstrained = 0;
63     int constrained = 0;
64 tim 725
65 mmeineke 558 SRI** theArray;
66 tim 725 for (int i = 0; i < nMols; i++){
67     theArray = (SRI * *) molecules[i].getMyBonds();
68     for (int j = 0; j < molecules[i].getNBonds(); j++){
69 mmeineke 558 constrained = theArray[j]->is_constrained();
70 mmeineke 594
71 tim 725 if (constrained){
72     dummy_plug = theArray[j]->get_constraint();
73     temp_con[nConstrained].set_a(dummy_plug->get_a());
74     temp_con[nConstrained].set_b(dummy_plug->get_b());
75     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
76 mmeineke 594
77 tim 725 nConstrained++;
78     constrained = 0;
79     }
80 mmeineke 558 }
81    
82 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
83     for (int j = 0; j < molecules[i].getNBends(); j++){
84 mmeineke 558 constrained = theArray[j]->is_constrained();
85 tim 725
86     if (constrained){
87     dummy_plug = theArray[j]->get_constraint();
88     temp_con[nConstrained].set_a(dummy_plug->get_a());
89     temp_con[nConstrained].set_b(dummy_plug->get_b());
90     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
91    
92     nConstrained++;
93     constrained = 0;
94 mmeineke 558 }
95     }
96    
97 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
98     for (int j = 0; j < molecules[i].getNTorsions(); j++){
99 mmeineke 558 constrained = theArray[j]->is_constrained();
100 tim 725
101     if (constrained){
102     dummy_plug = theArray[j]->get_constraint();
103     temp_con[nConstrained].set_a(dummy_plug->get_a());
104     temp_con[nConstrained].set_b(dummy_plug->get_b());
105     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
106    
107     nConstrained++;
108     constrained = 0;
109 mmeineke 558 }
110     }
111     }
112    
113 tim 725 if (nConstrained > 0){
114 mmeineke 558 isConstrained = 1;
115    
116 tim 725 if (constrainedA != NULL)
117     delete[] constrainedA;
118     if (constrainedB != NULL)
119     delete[] constrainedB;
120     if (constrainedDsqr != NULL)
121     delete[] constrainedDsqr;
122 mmeineke 558
123 tim 725 constrainedA = new int[nConstrained];
124     constrainedB = new int[nConstrained];
125 mmeineke 558 constrainedDsqr = new double[nConstrained];
126 tim 725
127     for (int i = 0; i < nConstrained; i++){
128 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
129     constrainedB[i] = temp_con[i].get_b();
130     constrainedDsqr[i] = temp_con[i].get_dsqr();
131     }
132    
133 tim 725
134 mmeineke 558 // save oldAtoms to check for lode balanceing later on.
135 tim 725
136 mmeineke 558 oldAtoms = nAtoms;
137 tim 725
138 mmeineke 558 moving = new int[nAtoms];
139 tim 725 moved = new int[nAtoms];
140 mmeineke 558
141 tim 725 oldPos = new double[nAtoms * 3];
142 mmeineke 558 }
143 tim 725
144 mmeineke 558 delete[] temp_con;
145     }
146    
147    
148 tim 725 template<typename T> void Integrator<T>::integrate(void){
149 mmeineke 558
150 tim 725 double runTime = info->run_time;
151     double sampleTime = info->sampleTime;
152     double statusTime = info->statusTime;
153 mmeineke 558 double thermalTime = info->thermalTime;
154 mmeineke 746 double resetTime = info->resetTime;
155 mmeineke 558
156 mmeineke 746
157 mmeineke 558 double currSample;
158     double currThermal;
159     double currStatus;
160 mmeineke 746 double currReset;
161    
162 mmeineke 558 int calcPot, calcStress;
163    
164 tim 725 tStats = new Thermo(info);
165     statOut = new StatWriter(info);
166     dumpOut = new DumpWriter(info);
167 mmeineke 558
168 mmeineke 561 atoms = info->atoms;
169    
170     dt = info->dt;
171 mmeineke 558 dt2 = 0.5 * dt;
172    
173 mmeineke 784 readyCheck();
174    
175 mmeineke 558 // initialize the forces before the first step
176    
177 tim 677 calcForce(1, 1);
178 tim 781
179     if (nConstrained){
180     preMove();
181     constrainA();
182     calcForce(1, 1);
183     constrainB();
184     }
185 tim 733
186 tim 725 if (info->setTemp){
187 tim 677 thermalize();
188 mmeineke 558 }
189 tim 725
190 mmeineke 558 calcPot = 0;
191     calcStress = 0;
192 mmeineke 711 currSample = sampleTime + info->getTime();
193     currThermal = thermalTime+ info->getTime();
194     currStatus = statusTime + info->getTime();
195 mmeineke 746 currReset = resetTime + info->getTime();
196 mmeineke 558
197 tim 725 dumpOut->writeDump(info->getTime());
198     statOut->writeStat(info->getTime());
199 mmeineke 559
200    
201 mmeineke 784
202 mmeineke 559 #ifdef IS_MPI
203 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
204 mmeineke 559 MPIcheckPoint();
205     #endif // is_mpi
206    
207 tim 725 while (info->getTime() < runTime){
208     if ((info->getTime() + dt) >= currStatus){
209 mmeineke 558 calcPot = 1;
210     calcStress = 1;
211     }
212 mmeineke 561
213 tim 725 integrateStep(calcPot, calcStress);
214    
215 mmeineke 643 info->incrTime(dt);
216 mmeineke 558
217 tim 725 if (info->setTemp){
218     if (info->getTime() >= currThermal){
219     thermalize();
220     currThermal += thermalTime;
221 mmeineke 558 }
222     }
223    
224 tim 725 if (info->getTime() >= currSample){
225     dumpOut->writeDump(info->getTime());
226 mmeineke 558 currSample += sampleTime;
227     }
228    
229 tim 725 if (info->getTime() >= currStatus){
230     statOut->writeStat(info->getTime());
231 mmeineke 558 calcPot = 0;
232     calcStress = 0;
233     currStatus += statusTime;
234     }
235 mmeineke 559
236 mmeineke 746 if (info->resetIntegrator){
237     if (info->getTime() >= currReset){
238     this->resetIntegrator();
239     currReset += resetTime;
240     }
241     }
242    
243 mmeineke 559 #ifdef IS_MPI
244 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
245 mmeineke 559 MPIcheckPoint();
246     #endif // is_mpi
247 mmeineke 558 }
248    
249 mmeineke 643 dumpOut->writeFinal(info->getTime());
250 mmeineke 558
251 mmeineke 561 delete dumpOut;
252     delete statOut;
253 mmeineke 558 }
254    
255 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
256     int calcStress){
257 mmeineke 558 // Position full step, and velocity half step
258 tim 725 preMove();
259 mmeineke 558
260     moveA();
261    
262 tim 725
263    
264 mmeineke 768
265 mmeineke 614 #ifdef IS_MPI
266 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
267 mmeineke 614 MPIcheckPoint();
268     #endif // is_mpi
269    
270 tim 725
271 mmeineke 558 // calc forces
272    
273 tim 725 calcForce(calcPot, calcStress);
274 mmeineke 558
275 mmeineke 614 #ifdef IS_MPI
276 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
277 mmeineke 614 MPIcheckPoint();
278     #endif // is_mpi
279    
280 tim 725
281 mmeineke 558 // finish the velocity half step
282 tim 725
283 mmeineke 558 moveB();
284 tim 725
285    
286 mmeineke 768
287 mmeineke 614 #ifdef IS_MPI
288 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
289 mmeineke 614 MPIcheckPoint();
290     #endif // is_mpi
291 mmeineke 558 }
292    
293    
294 tim 725 template<typename T> void Integrator<T>::moveA(void){
295 gezelter 600 int i, j;
296 mmeineke 558 DirectionalAtom* dAtom;
297 gezelter 600 double Tb[3], ji[3];
298     double vel[3], pos[3], frc[3];
299     double mass;
300 mmeineke 558
301 tim 725 for (i = 0; i < nAtoms; i++){
302     atoms[i]->getVel(vel);
303     atoms[i]->getPos(pos);
304     atoms[i]->getFrc(frc);
305 mmeineke 567
306 gezelter 600 mass = atoms[i]->getMass();
307 mmeineke 594
308 tim 725 for (j = 0; j < 3; j++){
309 gezelter 600 // velocity half step
310 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
311 gezelter 600 // position whole step
312     pos[j] += dt * vel[j];
313     }
314 mmeineke 594
315 tim 725 atoms[i]->setVel(vel);
316     atoms[i]->setPos(pos);
317 gezelter 600
318 tim 725 if (atoms[i]->isDirectional()){
319     dAtom = (DirectionalAtom *) atoms[i];
320 mmeineke 558
321     // get and convert the torque to body frame
322 mmeineke 597
323 tim 725 dAtom->getTrq(Tb);
324     dAtom->lab2Body(Tb);
325    
326 mmeineke 558 // get the angular momentum, and propagate a half step
327 gezelter 600
328 tim 725 dAtom->getJ(ji);
329 gezelter 600
330 tim 725 for (j = 0; j < 3; j++)
331 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
332 tim 725
333 mmeineke 778 this->rotationPropagation( dAtom, ji );
334 gezelter 600
335 tim 725 dAtom->setJ(ji);
336     }
337 mmeineke 558 }
338 mmeineke 768
339     if (nConstrained){
340     constrainA();
341     }
342 mmeineke 558 }
343    
344    
345 tim 725 template<typename T> void Integrator<T>::moveB(void){
346 gezelter 600 int i, j;
347 mmeineke 558 DirectionalAtom* dAtom;
348 gezelter 600 double Tb[3], ji[3];
349     double vel[3], frc[3];
350     double mass;
351 mmeineke 558
352 tim 725 for (i = 0; i < nAtoms; i++){
353     atoms[i]->getVel(vel);
354     atoms[i]->getFrc(frc);
355 mmeineke 558
356 gezelter 600 mass = atoms[i]->getMass();
357    
358 mmeineke 558 // velocity half step
359 tim 725 for (j = 0; j < 3; j++)
360     vel[j] += (dt2 * frc[j] / mass) * eConvert;
361 gezelter 600
362 tim 725 atoms[i]->setVel(vel);
363 mmeineke 597
364 tim 725 if (atoms[i]->isDirectional()){
365     dAtom = (DirectionalAtom *) atoms[i];
366    
367 gezelter 600 // get and convert the torque to body frame
368    
369 tim 725 dAtom->getTrq(Tb);
370     dAtom->lab2Body(Tb);
371 gezelter 600
372     // get the angular momentum, and propagate a half step
373    
374 tim 725 dAtom->getJ(ji);
375 gezelter 600
376 tim 725 for (j = 0; j < 3; j++)
377 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
378 mmeineke 597
379 tim 725
380     dAtom->setJ(ji);
381 mmeineke 558 }
382     }
383 mmeineke 768
384     if (nConstrained){
385     constrainB();
386     }
387 mmeineke 558 }
388    
389 tim 725 template<typename T> void Integrator<T>::preMove(void){
390 gezelter 600 int i, j;
391     double pos[3];
392 mmeineke 558
393 tim 725 if (nConstrained){
394     for (i = 0; i < nAtoms; i++){
395     atoms[i]->getPos(pos);
396 mmeineke 561
397 tim 725 for (j = 0; j < 3; j++){
398     oldPos[3 * i + j] = pos[j];
399 gezelter 600 }
400     }
401 tim 725 }
402 gezelter 600 }
403    
404 tim 645 template<typename T> void Integrator<T>::constrainA(){
405 mmeineke 787 int i, j;
406 mmeineke 558 int done;
407 gezelter 600 double posA[3], posB[3];
408     double velA[3], velB[3];
409 mmeineke 572 double pab[3];
410     double rab[3];
411 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
412 mmeineke 558 double rma, rmb;
413     double dx, dy, dz;
414 mmeineke 561 double rpab;
415 mmeineke 558 double rabsq, pabsq, rpabsq;
416     double diffsq;
417     double gab;
418     int iteration;
419    
420 tim 725 for (i = 0; i < nAtoms; i++){
421 mmeineke 558 moving[i] = 0;
422 tim 725 moved[i] = 1;
423 mmeineke 558 }
424 mmeineke 567
425 mmeineke 558 iteration = 0;
426     done = 0;
427 tim 725 while (!done && (iteration < maxIteration)){
428 mmeineke 558 done = 1;
429 tim 725 for (i = 0; i < nConstrained; i++){
430 mmeineke 558 a = constrainedA[i];
431     b = constrainedB[i];
432 mmeineke 563
433 tim 725 ax = (a * 3) + 0;
434     ay = (a * 3) + 1;
435     az = (a * 3) + 2;
436 mmeineke 563
437 tim 725 bx = (b * 3) + 0;
438     by = (b * 3) + 1;
439     bz = (b * 3) + 2;
440    
441     if (moved[a] || moved[b]){
442     atoms[a]->getPos(posA);
443     atoms[b]->getPos(posB);
444    
445     for (j = 0; j < 3; j++)
446 gezelter 600 pab[j] = posA[j] - posB[j];
447 mmeineke 567
448 tim 725 //periodic boundary condition
449 mmeineke 567
450 tim 725 info->wrapVector(pab);
451 mmeineke 572
452 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
453 mmeineke 558
454 tim 725 rabsq = constrainedDsqr[i];
455     diffsq = rabsq - pabsq;
456 mmeineke 567
457 tim 725 // the original rattle code from alan tidesley
458     if (fabs(diffsq) > (tol * rabsq * 2)){
459     rab[0] = oldPos[ax] - oldPos[bx];
460     rab[1] = oldPos[ay] - oldPos[by];
461     rab[2] = oldPos[az] - oldPos[bz];
462 mmeineke 558
463 tim 725 info->wrapVector(rab);
464 mmeineke 567
465 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
466 mmeineke 558
467 tim 725 rpabsq = rpab * rpab;
468 mmeineke 558
469 mmeineke 563
470 tim 725 if (rpabsq < (rabsq * -diffsq)){
471 mmeineke 558 #ifdef IS_MPI
472 tim 725 a = atoms[a]->getGlobalIndex();
473     b = atoms[b]->getGlobalIndex();
474 mmeineke 558 #endif //is_mpi
475 tim 725 sprintf(painCave.errMsg,
476     "Constraint failure in constrainA at atom %d and %d.\n", a,
477     b);
478     painCave.isFatal = 1;
479     simError();
480     }
481 mmeineke 558
482 tim 725 rma = 1.0 / atoms[a]->getMass();
483     rmb = 1.0 / atoms[b]->getMass();
484 mmeineke 567
485 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
486 mmeineke 567
487 mmeineke 572 dx = rab[0] * gab;
488     dy = rab[1] * gab;
489     dz = rab[2] * gab;
490 mmeineke 558
491 tim 725 posA[0] += rma * dx;
492     posA[1] += rma * dy;
493     posA[2] += rma * dz;
494 mmeineke 558
495 tim 725 atoms[a]->setPos(posA);
496 mmeineke 558
497 tim 725 posB[0] -= rmb * dx;
498     posB[1] -= rmb * dy;
499     posB[2] -= rmb * dz;
500 gezelter 600
501 tim 725 atoms[b]->setPos(posB);
502 gezelter 600
503 mmeineke 558 dx = dx / dt;
504     dy = dy / dt;
505     dz = dz / dt;
506    
507 tim 725 atoms[a]->getVel(velA);
508 mmeineke 558
509 tim 725 velA[0] += rma * dx;
510     velA[1] += rma * dy;
511     velA[2] += rma * dz;
512 mmeineke 558
513 tim 725 atoms[a]->setVel(velA);
514 gezelter 600
515 tim 725 atoms[b]->getVel(velB);
516 gezelter 600
517 tim 725 velB[0] -= rmb * dx;
518     velB[1] -= rmb * dy;
519     velB[2] -= rmb * dz;
520 gezelter 600
521 tim 725 atoms[b]->setVel(velB);
522 gezelter 600
523 tim 725 moving[a] = 1;
524     moving[b] = 1;
525     done = 0;
526     }
527 mmeineke 558 }
528     }
529 tim 725
530     for (i = 0; i < nAtoms; i++){
531 mmeineke 558 moved[i] = moving[i];
532     moving[i] = 0;
533     }
534    
535     iteration++;
536     }
537    
538 tim 725 if (!done){
539     sprintf(painCave.errMsg,
540     "Constraint failure in constrainA, too many iterations: %d\n",
541     iteration);
542 mmeineke 558 painCave.isFatal = 1;
543     simError();
544     }
545 mmeineke 768
546 mmeineke 558 }
547    
548 tim 725 template<typename T> void Integrator<T>::constrainB(void){
549 mmeineke 787 int i, j;
550 mmeineke 558 int done;
551 gezelter 600 double posA[3], posB[3];
552     double velA[3], velB[3];
553 mmeineke 558 double vxab, vyab, vzab;
554 mmeineke 572 double rab[3];
555 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
556 mmeineke 558 double rma, rmb;
557     double dx, dy, dz;
558 mmeineke 787 double rvab;
559 mmeineke 558 double gab;
560     int iteration;
561    
562 tim 725 for (i = 0; i < nAtoms; i++){
563 mmeineke 558 moving[i] = 0;
564     moved[i] = 1;
565     }
566    
567     done = 0;
568 mmeineke 561 iteration = 0;
569 tim 725 while (!done && (iteration < maxIteration)){
570 mmeineke 567 done = 1;
571    
572 tim 725 for (i = 0; i < nConstrained; i++){
573 mmeineke 558 a = constrainedA[i];
574     b = constrainedB[i];
575    
576 tim 725 ax = (a * 3) + 0;
577     ay = (a * 3) + 1;
578     az = (a * 3) + 2;
579 mmeineke 563
580 tim 725 bx = (b * 3) + 0;
581     by = (b * 3) + 1;
582     bz = (b * 3) + 2;
583 mmeineke 563
584 tim 725 if (moved[a] || moved[b]){
585     atoms[a]->getVel(velA);
586     atoms[b]->getVel(velB);
587 mmeineke 558
588 tim 725 vxab = velA[0] - velB[0];
589     vyab = velA[1] - velB[1];
590     vzab = velA[2] - velB[2];
591 gezelter 600
592 tim 725 atoms[a]->getPos(posA);
593     atoms[b]->getPos(posB);
594 gezelter 600
595 tim 725 for (j = 0; j < 3; j++)
596 gezelter 600 rab[j] = posA[j] - posB[j];
597 mmeineke 558
598 tim 725 info->wrapVector(rab);
599 mmeineke 558
600 tim 725 rma = 1.0 / atoms[a]->getMass();
601     rmb = 1.0 / atoms[b]->getMass();
602 mmeineke 558
603 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
604 gezelter 600
605 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
606 gezelter 600
607 tim 725 if (fabs(gab) > tol){
608     dx = rab[0] * gab;
609     dy = rab[1] * gab;
610     dz = rab[2] * gab;
611    
612     velA[0] += rma * dx;
613     velA[1] += rma * dy;
614     velA[2] += rma * dz;
615    
616     atoms[a]->setVel(velA);
617    
618     velB[0] -= rmb * dx;
619     velB[1] -= rmb * dy;
620     velB[2] -= rmb * dz;
621    
622     atoms[b]->setVel(velB);
623    
624     moving[a] = 1;
625     moving[b] = 1;
626     done = 0;
627     }
628 mmeineke 558 }
629     }
630    
631 tim 725 for (i = 0; i < nAtoms; i++){
632 mmeineke 558 moved[i] = moving[i];
633     moving[i] = 0;
634     }
635 tim 725
636 mmeineke 558 iteration++;
637     }
638    
639 tim 725 if (!done){
640     sprintf(painCave.errMsg,
641     "Constraint failure in constrainB, too many iterations: %d\n",
642     iteration);
643 mmeineke 558 painCave.isFatal = 1;
644     simError();
645 tim 725 }
646 mmeineke 558 }
647    
648 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
649     ( DirectionalAtom* dAtom, double ji[3] ){
650    
651     double angle;
652     double A[3][3], I[3][3];
653    
654     // use the angular velocities to propagate the rotation matrix a
655     // full time step
656    
657     dAtom->getA(A);
658     dAtom->getI(I);
659    
660     // rotate about the x-axis
661     angle = dt2 * ji[0] / I[0][0];
662     this->rotate( 1, 2, angle, ji, A );
663    
664     // rotate about the y-axis
665     angle = dt2 * ji[1] / I[1][1];
666     this->rotate( 2, 0, angle, ji, A );
667    
668     // rotate about the z-axis
669     angle = dt * ji[2] / I[2][2];
670     this->rotate( 0, 1, angle, ji, A);
671    
672     // rotate about the y-axis
673     angle = dt2 * ji[1] / I[1][1];
674     this->rotate( 2, 0, angle, ji, A );
675    
676     // rotate about the x-axis
677     angle = dt2 * ji[0] / I[0][0];
678     this->rotate( 1, 2, angle, ji, A );
679    
680     dAtom->setA( A );
681     }
682    
683 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
684     double angle, double ji[3],
685     double A[3][3]){
686     int i, j, k;
687 mmeineke 558 double sinAngle;
688     double cosAngle;
689     double angleSqr;
690     double angleSqrOver4;
691     double top, bottom;
692     double rot[3][3];
693     double tempA[3][3];
694     double tempJ[3];
695    
696     // initialize the tempA
697    
698 tim 725 for (i = 0; i < 3; i++){
699     for (j = 0; j < 3; j++){
700 gezelter 600 tempA[j][i] = A[i][j];
701 mmeineke 558 }
702     }
703    
704     // initialize the tempJ
705    
706 tim 725 for (i = 0; i < 3; i++)
707     tempJ[i] = ji[i];
708    
709 mmeineke 558 // initalize rot as a unit matrix
710    
711     rot[0][0] = 1.0;
712     rot[0][1] = 0.0;
713     rot[0][2] = 0.0;
714    
715     rot[1][0] = 0.0;
716     rot[1][1] = 1.0;
717     rot[1][2] = 0.0;
718 tim 725
719 mmeineke 558 rot[2][0] = 0.0;
720     rot[2][1] = 0.0;
721     rot[2][2] = 1.0;
722 tim 725
723 mmeineke 558 // use a small angle aproximation for sin and cosine
724    
725 tim 725 angleSqr = angle * angle;
726 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
727     top = 1.0 - angleSqrOver4;
728     bottom = 1.0 + angleSqrOver4;
729    
730     cosAngle = top / bottom;
731     sinAngle = angle / bottom;
732    
733     rot[axes1][axes1] = cosAngle;
734     rot[axes2][axes2] = cosAngle;
735    
736     rot[axes1][axes2] = sinAngle;
737     rot[axes2][axes1] = -sinAngle;
738 tim 725
739 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
740 tim 725
741     for (i = 0; i < 3; i++){
742 mmeineke 558 ji[i] = 0.0;
743 tim 725 for (k = 0; k < 3; k++){
744 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
745     }
746     }
747    
748     // rotate the Rotation matrix acording to:
749     // A[][] = A[][] * transpose(rot[][])
750    
751    
752 mmeineke 561 // NOte for as yet unknown reason, we are performing the
753 mmeineke 558 // calculation as:
754     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
755    
756 tim 725 for (i = 0; i < 3; i++){
757     for (j = 0; j < 3; j++){
758 gezelter 600 A[j][i] = 0.0;
759 tim 725 for (k = 0; k < 3; k++){
760     A[j][i] += tempA[i][k] * rot[j][k];
761 mmeineke 558 }
762     }
763     }
764     }
765 tim 677
766 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
767     myFF->doForces(calcPot, calcStress);
768 tim 677 }
769    
770     template<typename T> void Integrator<T>::thermalize(){
771 tim 725 tStats->velocitize();
772 tim 677 }
773 tim 763
774     template<typename T> double Integrator<T>::getConservedQuantity(void){
775     return tStats->getTotalE();
776 mmeineke 768 }