ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 841
Committed: Wed Oct 29 17:55:28 2003 UTC (20 years, 8 months ago) by mmeineke
File size: 16945 byte(s)
Log Message:
som efixes to the way rcut is setup, as well as additional debugging comments.

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2 gezelter 829 #include <stdlib.h>
3     #include <math.h>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
15     ForceFields* the_ff){
16 mmeineke 558 info = theInfo;
17     myFF = the_ff;
18     isFirst = 1;
19    
20     molecules = info->molecules;
21     nMols = info->n_mol;
22    
23     // give a little love back to the SimInfo object
24 tim 725
25     if (info->the_integrator != NULL){
26     delete info->the_integrator;
27     }
28 tim 837
29 mmeineke 558 nAtoms = info->n_atoms;
30    
31     // check for constraints
32 tim 725
33     constrainedA = NULL;
34     constrainedB = NULL;
35 mmeineke 558 constrainedDsqr = NULL;
36 tim 725 moving = NULL;
37     moved = NULL;
38     oldPos = NULL;
39    
40 mmeineke 558 nConstrained = 0;
41    
42     checkConstraints();
43     }
44    
45 tim 725 template<typename T> Integrator<T>::~Integrator(){
46     if (nConstrained){
47 mmeineke 558 delete[] constrainedA;
48     delete[] constrainedB;
49     delete[] constrainedDsqr;
50     delete[] moving;
51     delete[] moved;
52 mmeineke 561 delete[] oldPos;
53 mmeineke 558 }
54     }
55    
56 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
57 mmeineke 558 isConstrained = 0;
58    
59 tim 725 Constraint* temp_con;
60     Constraint* dummy_plug;
61 mmeineke 558 temp_con = new Constraint[info->n_SRI];
62     nConstrained = 0;
63     int constrained = 0;
64 tim 725
65 mmeineke 558 SRI** theArray;
66 tim 725 for (int i = 0; i < nMols; i++){
67     theArray = (SRI * *) molecules[i].getMyBonds();
68     for (int j = 0; j < molecules[i].getNBonds(); j++){
69 mmeineke 558 constrained = theArray[j]->is_constrained();
70 mmeineke 594
71 tim 725 if (constrained){
72     dummy_plug = theArray[j]->get_constraint();
73     temp_con[nConstrained].set_a(dummy_plug->get_a());
74     temp_con[nConstrained].set_b(dummy_plug->get_b());
75     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
76 mmeineke 594
77 tim 725 nConstrained++;
78     constrained = 0;
79     }
80 mmeineke 558 }
81    
82 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
83     for (int j = 0; j < molecules[i].getNBends(); j++){
84 mmeineke 558 constrained = theArray[j]->is_constrained();
85 tim 725
86     if (constrained){
87     dummy_plug = theArray[j]->get_constraint();
88     temp_con[nConstrained].set_a(dummy_plug->get_a());
89     temp_con[nConstrained].set_b(dummy_plug->get_b());
90     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
91    
92     nConstrained++;
93     constrained = 0;
94 mmeineke 558 }
95     }
96    
97 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
98     for (int j = 0; j < molecules[i].getNTorsions(); j++){
99 mmeineke 558 constrained = theArray[j]->is_constrained();
100 tim 725
101     if (constrained){
102     dummy_plug = theArray[j]->get_constraint();
103     temp_con[nConstrained].set_a(dummy_plug->get_a());
104     temp_con[nConstrained].set_b(dummy_plug->get_b());
105     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
106    
107     nConstrained++;
108     constrained = 0;
109 mmeineke 558 }
110     }
111     }
112    
113 tim 725 if (nConstrained > 0){
114 mmeineke 558 isConstrained = 1;
115    
116 tim 725 if (constrainedA != NULL)
117     delete[] constrainedA;
118     if (constrainedB != NULL)
119     delete[] constrainedB;
120     if (constrainedDsqr != NULL)
121     delete[] constrainedDsqr;
122 mmeineke 558
123 tim 725 constrainedA = new int[nConstrained];
124     constrainedB = new int[nConstrained];
125 mmeineke 558 constrainedDsqr = new double[nConstrained];
126 tim 725
127     for (int i = 0; i < nConstrained; i++){
128 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
129     constrainedB[i] = temp_con[i].get_b();
130     constrainedDsqr[i] = temp_con[i].get_dsqr();
131     }
132    
133 tim 725
134 mmeineke 558 // save oldAtoms to check for lode balanceing later on.
135 tim 725
136 mmeineke 558 oldAtoms = nAtoms;
137 tim 725
138 mmeineke 558 moving = new int[nAtoms];
139 tim 725 moved = new int[nAtoms];
140 mmeineke 558
141 tim 725 oldPos = new double[nAtoms * 3];
142 mmeineke 558 }
143 tim 725
144 mmeineke 558 delete[] temp_con;
145     }
146    
147    
148 tim 725 template<typename T> void Integrator<T>::integrate(void){
149 mmeineke 558
150 tim 725 double runTime = info->run_time;
151     double sampleTime = info->sampleTime;
152     double statusTime = info->statusTime;
153 mmeineke 558 double thermalTime = info->thermalTime;
154 mmeineke 746 double resetTime = info->resetTime;
155 mmeineke 558
156 mmeineke 746
157 mmeineke 558 double currSample;
158     double currThermal;
159     double currStatus;
160 mmeineke 746 double currReset;
161 tim 837
162 mmeineke 558 int calcPot, calcStress;
163    
164 tim 725 tStats = new Thermo(info);
165     statOut = new StatWriter(info);
166     dumpOut = new DumpWriter(info);
167 mmeineke 558
168 mmeineke 561 atoms = info->atoms;
169    
170     dt = info->dt;
171 mmeineke 558 dt2 = 0.5 * dt;
172    
173 mmeineke 784 readyCheck();
174    
175 mmeineke 558 // initialize the forces before the first step
176    
177 mmeineke 841 std::cerr << "Before initial Force calc\n";
178    
179 tim 677 calcForce(1, 1);
180 tim 781
181     if (nConstrained){
182     preMove();
183     constrainA();
184 tim 837 calcForce(1, 1);
185 tim 781 constrainB();
186 mmeineke 841 std::cerr << "premove done\n";
187 tim 781 }
188 tim 837
189 mmeineke 841
190    
191 tim 725 if (info->setTemp){
192 tim 677 thermalize();
193 mmeineke 558 }
194 tim 725
195 mmeineke 558 calcPot = 0;
196     calcStress = 0;
197 mmeineke 711 currSample = sampleTime + info->getTime();
198     currThermal = thermalTime+ info->getTime();
199     currStatus = statusTime + info->getTime();
200 mmeineke 746 currReset = resetTime + info->getTime();
201 mmeineke 558
202 tim 725 dumpOut->writeDump(info->getTime());
203     statOut->writeStat(info->getTime());
204 mmeineke 559
205    
206 mmeineke 784
207 mmeineke 559 #ifdef IS_MPI
208 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
209 mmeineke 559 MPIcheckPoint();
210     #endif // is_mpi
211    
212 tim 725 while (info->getTime() < runTime){
213     if ((info->getTime() + dt) >= currStatus){
214 mmeineke 558 calcPot = 1;
215     calcStress = 1;
216     }
217 mmeineke 561
218 tim 725 integrateStep(calcPot, calcStress);
219    
220 mmeineke 643 info->incrTime(dt);
221 mmeineke 558
222 tim 725 if (info->setTemp){
223     if (info->getTime() >= currThermal){
224     thermalize();
225     currThermal += thermalTime;
226 mmeineke 558 }
227     }
228    
229 tim 725 if (info->getTime() >= currSample){
230     dumpOut->writeDump(info->getTime());
231 mmeineke 558 currSample += sampleTime;
232     }
233    
234 tim 725 if (info->getTime() >= currStatus){
235 tim 837 statOut->writeStat(info->getTime());
236     calcPot = 0;
237 mmeineke 558 calcStress = 0;
238     currStatus += statusTime;
239 tim 837 }
240 mmeineke 559
241 mmeineke 746 if (info->resetIntegrator){
242     if (info->getTime() >= currReset){
243     this->resetIntegrator();
244     currReset += resetTime;
245     }
246     }
247    
248 mmeineke 841 std::cerr << "done with time = " << info->getTime() << "\n";
249    
250 mmeineke 559 #ifdef IS_MPI
251 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
252 mmeineke 559 MPIcheckPoint();
253     #endif // is_mpi
254 mmeineke 558 }
255    
256    
257 mmeineke 804 // write the last frame
258     dumpOut->writeDump(info->getTime());
259    
260 mmeineke 561 delete dumpOut;
261     delete statOut;
262 mmeineke 558 }
263    
264 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
265     int calcStress){
266 mmeineke 558 // Position full step, and velocity half step
267 tim 725 preMove();
268 mmeineke 558
269     moveA();
270    
271 tim 725
272    
273 mmeineke 768
274 mmeineke 614 #ifdef IS_MPI
275 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
276 mmeineke 614 MPIcheckPoint();
277     #endif // is_mpi
278    
279 tim 725
280 mmeineke 558 // calc forces
281    
282 tim 725 calcForce(calcPot, calcStress);
283 mmeineke 558
284 mmeineke 614 #ifdef IS_MPI
285 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
286 mmeineke 614 MPIcheckPoint();
287     #endif // is_mpi
288    
289 tim 725
290 mmeineke 558 // finish the velocity half step
291 tim 725
292 mmeineke 558 moveB();
293 tim 725
294    
295 mmeineke 768
296 mmeineke 614 #ifdef IS_MPI
297 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
298 mmeineke 614 MPIcheckPoint();
299     #endif // is_mpi
300 mmeineke 558 }
301    
302    
303 tim 725 template<typename T> void Integrator<T>::moveA(void){
304 gezelter 600 int i, j;
305 mmeineke 558 DirectionalAtom* dAtom;
306 gezelter 600 double Tb[3], ji[3];
307     double vel[3], pos[3], frc[3];
308     double mass;
309 mmeineke 558
310 tim 725 for (i = 0; i < nAtoms; i++){
311     atoms[i]->getVel(vel);
312     atoms[i]->getPos(pos);
313     atoms[i]->getFrc(frc);
314 mmeineke 567
315 gezelter 600 mass = atoms[i]->getMass();
316 mmeineke 594
317 tim 725 for (j = 0; j < 3; j++){
318 gezelter 600 // velocity half step
319 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
320 gezelter 600 // position whole step
321     pos[j] += dt * vel[j];
322     }
323 mmeineke 594
324 tim 725 atoms[i]->setVel(vel);
325     atoms[i]->setPos(pos);
326 gezelter 600
327 tim 725 if (atoms[i]->isDirectional()){
328     dAtom = (DirectionalAtom *) atoms[i];
329 mmeineke 558
330     // get and convert the torque to body frame
331 mmeineke 597
332 tim 725 dAtom->getTrq(Tb);
333     dAtom->lab2Body(Tb);
334    
335 mmeineke 558 // get the angular momentum, and propagate a half step
336 gezelter 600
337 tim 725 dAtom->getJ(ji);
338 gezelter 600
339 tim 725 for (j = 0; j < 3; j++)
340 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
341 tim 725
342 mmeineke 778 this->rotationPropagation( dAtom, ji );
343 gezelter 600
344 tim 725 dAtom->setJ(ji);
345     }
346 mmeineke 558 }
347 mmeineke 768
348     if (nConstrained){
349     constrainA();
350     }
351 mmeineke 558 }
352    
353    
354 tim 725 template<typename T> void Integrator<T>::moveB(void){
355 gezelter 600 int i, j;
356 mmeineke 558 DirectionalAtom* dAtom;
357 gezelter 600 double Tb[3], ji[3];
358     double vel[3], frc[3];
359     double mass;
360 mmeineke 558
361 tim 725 for (i = 0; i < nAtoms; i++){
362     atoms[i]->getVel(vel);
363     atoms[i]->getFrc(frc);
364 mmeineke 558
365 gezelter 600 mass = atoms[i]->getMass();
366    
367 mmeineke 558 // velocity half step
368 tim 725 for (j = 0; j < 3; j++)
369     vel[j] += (dt2 * frc[j] / mass) * eConvert;
370 gezelter 600
371 tim 725 atoms[i]->setVel(vel);
372 mmeineke 597
373 tim 725 if (atoms[i]->isDirectional()){
374     dAtom = (DirectionalAtom *) atoms[i];
375    
376 tim 837 // get and convert the torque to body frame
377 gezelter 600
378 tim 725 dAtom->getTrq(Tb);
379     dAtom->lab2Body(Tb);
380 gezelter 600
381     // get the angular momentum, and propagate a half step
382    
383 tim 725 dAtom->getJ(ji);
384 gezelter 600
385 tim 725 for (j = 0; j < 3; j++)
386 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
387 mmeineke 597
388 tim 725
389     dAtom->setJ(ji);
390 mmeineke 558 }
391     }
392 mmeineke 768
393     if (nConstrained){
394     constrainB();
395     }
396 mmeineke 558 }
397    
398 tim 725 template<typename T> void Integrator<T>::preMove(void){
399 gezelter 600 int i, j;
400     double pos[3];
401 mmeineke 558
402 tim 725 if (nConstrained){
403     for (i = 0; i < nAtoms; i++){
404     atoms[i]->getPos(pos);
405 mmeineke 561
406 tim 725 for (j = 0; j < 3; j++){
407     oldPos[3 * i + j] = pos[j];
408 gezelter 600 }
409     }
410 tim 725 }
411 gezelter 600 }
412    
413 tim 645 template<typename T> void Integrator<T>::constrainA(){
414 mmeineke 787 int i, j;
415 mmeineke 558 int done;
416 gezelter 600 double posA[3], posB[3];
417     double velA[3], velB[3];
418 mmeineke 572 double pab[3];
419     double rab[3];
420 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
421 mmeineke 558 double rma, rmb;
422     double dx, dy, dz;
423 mmeineke 561 double rpab;
424 mmeineke 558 double rabsq, pabsq, rpabsq;
425     double diffsq;
426     double gab;
427     int iteration;
428    
429 tim 725 for (i = 0; i < nAtoms; i++){
430 mmeineke 558 moving[i] = 0;
431 tim 725 moved[i] = 1;
432 mmeineke 558 }
433 mmeineke 567
434 mmeineke 558 iteration = 0;
435     done = 0;
436 tim 725 while (!done && (iteration < maxIteration)){
437 mmeineke 558 done = 1;
438 tim 725 for (i = 0; i < nConstrained; i++){
439 mmeineke 558 a = constrainedA[i];
440     b = constrainedB[i];
441 mmeineke 563
442 tim 725 ax = (a * 3) + 0;
443     ay = (a * 3) + 1;
444     az = (a * 3) + 2;
445 mmeineke 563
446 tim 725 bx = (b * 3) + 0;
447     by = (b * 3) + 1;
448     bz = (b * 3) + 2;
449    
450     if (moved[a] || moved[b]){
451     atoms[a]->getPos(posA);
452     atoms[b]->getPos(posB);
453    
454     for (j = 0; j < 3; j++)
455 gezelter 600 pab[j] = posA[j] - posB[j];
456 mmeineke 567
457 tim 725 //periodic boundary condition
458 mmeineke 567
459 tim 725 info->wrapVector(pab);
460 mmeineke 572
461 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
462 mmeineke 558
463 tim 725 rabsq = constrainedDsqr[i];
464     diffsq = rabsq - pabsq;
465 mmeineke 567
466 tim 725 // the original rattle code from alan tidesley
467     if (fabs(diffsq) > (tol * rabsq * 2)){
468     rab[0] = oldPos[ax] - oldPos[bx];
469     rab[1] = oldPos[ay] - oldPos[by];
470     rab[2] = oldPos[az] - oldPos[bz];
471 mmeineke 558
472 tim 725 info->wrapVector(rab);
473 mmeineke 567
474 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
475 mmeineke 558
476 tim 725 rpabsq = rpab * rpab;
477 mmeineke 558
478 mmeineke 563
479 tim 725 if (rpabsq < (rabsq * -diffsq)){
480 mmeineke 558 #ifdef IS_MPI
481 tim 725 a = atoms[a]->getGlobalIndex();
482     b = atoms[b]->getGlobalIndex();
483 mmeineke 558 #endif //is_mpi
484 tim 725 sprintf(painCave.errMsg,
485     "Constraint failure in constrainA at atom %d and %d.\n", a,
486     b);
487     painCave.isFatal = 1;
488     simError();
489     }
490 mmeineke 558
491 tim 725 rma = 1.0 / atoms[a]->getMass();
492     rmb = 1.0 / atoms[b]->getMass();
493 mmeineke 567
494 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
495 mmeineke 567
496 mmeineke 572 dx = rab[0] * gab;
497     dy = rab[1] * gab;
498     dz = rab[2] * gab;
499 mmeineke 558
500 tim 725 posA[0] += rma * dx;
501     posA[1] += rma * dy;
502     posA[2] += rma * dz;
503 mmeineke 558
504 tim 725 atoms[a]->setPos(posA);
505 mmeineke 558
506 tim 725 posB[0] -= rmb * dx;
507     posB[1] -= rmb * dy;
508     posB[2] -= rmb * dz;
509 gezelter 600
510 tim 725 atoms[b]->setPos(posB);
511 gezelter 600
512 mmeineke 558 dx = dx / dt;
513     dy = dy / dt;
514     dz = dz / dt;
515    
516 tim 725 atoms[a]->getVel(velA);
517 mmeineke 558
518 tim 725 velA[0] += rma * dx;
519     velA[1] += rma * dy;
520     velA[2] += rma * dz;
521 mmeineke 558
522 tim 725 atoms[a]->setVel(velA);
523 gezelter 600
524 tim 725 atoms[b]->getVel(velB);
525 gezelter 600
526 tim 725 velB[0] -= rmb * dx;
527     velB[1] -= rmb * dy;
528     velB[2] -= rmb * dz;
529 gezelter 600
530 tim 725 atoms[b]->setVel(velB);
531 gezelter 600
532 tim 725 moving[a] = 1;
533     moving[b] = 1;
534     done = 0;
535     }
536 mmeineke 558 }
537     }
538 tim 725
539     for (i = 0; i < nAtoms; i++){
540 mmeineke 558 moved[i] = moving[i];
541     moving[i] = 0;
542     }
543    
544     iteration++;
545     }
546    
547 tim 725 if (!done){
548     sprintf(painCave.errMsg,
549     "Constraint failure in constrainA, too many iterations: %d\n",
550     iteration);
551 mmeineke 558 painCave.isFatal = 1;
552     simError();
553     }
554 mmeineke 768
555 mmeineke 558 }
556    
557 tim 725 template<typename T> void Integrator<T>::constrainB(void){
558 mmeineke 787 int i, j;
559 mmeineke 558 int done;
560 gezelter 600 double posA[3], posB[3];
561     double velA[3], velB[3];
562 mmeineke 558 double vxab, vyab, vzab;
563 mmeineke 572 double rab[3];
564 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
565 mmeineke 558 double rma, rmb;
566     double dx, dy, dz;
567 mmeineke 787 double rvab;
568 mmeineke 558 double gab;
569     int iteration;
570    
571 tim 725 for (i = 0; i < nAtoms; i++){
572 mmeineke 558 moving[i] = 0;
573     moved[i] = 1;
574     }
575    
576     done = 0;
577 mmeineke 561 iteration = 0;
578 tim 725 while (!done && (iteration < maxIteration)){
579 mmeineke 567 done = 1;
580    
581 tim 725 for (i = 0; i < nConstrained; i++){
582 mmeineke 558 a = constrainedA[i];
583     b = constrainedB[i];
584    
585 tim 725 ax = (a * 3) + 0;
586     ay = (a * 3) + 1;
587     az = (a * 3) + 2;
588 mmeineke 563
589 tim 725 bx = (b * 3) + 0;
590     by = (b * 3) + 1;
591     bz = (b * 3) + 2;
592 mmeineke 563
593 tim 725 if (moved[a] || moved[b]){
594     atoms[a]->getVel(velA);
595     atoms[b]->getVel(velB);
596 mmeineke 558
597 tim 725 vxab = velA[0] - velB[0];
598     vyab = velA[1] - velB[1];
599     vzab = velA[2] - velB[2];
600 gezelter 600
601 tim 725 atoms[a]->getPos(posA);
602     atoms[b]->getPos(posB);
603 gezelter 600
604 tim 725 for (j = 0; j < 3; j++)
605 gezelter 600 rab[j] = posA[j] - posB[j];
606 mmeineke 558
607 tim 725 info->wrapVector(rab);
608 mmeineke 558
609 tim 725 rma = 1.0 / atoms[a]->getMass();
610     rmb = 1.0 / atoms[b]->getMass();
611 mmeineke 558
612 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
613 gezelter 600
614 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
615 gezelter 600
616 tim 725 if (fabs(gab) > tol){
617     dx = rab[0] * gab;
618     dy = rab[1] * gab;
619     dz = rab[2] * gab;
620    
621     velA[0] += rma * dx;
622     velA[1] += rma * dy;
623     velA[2] += rma * dz;
624    
625     atoms[a]->setVel(velA);
626    
627     velB[0] -= rmb * dx;
628     velB[1] -= rmb * dy;
629     velB[2] -= rmb * dz;
630    
631     atoms[b]->setVel(velB);
632    
633     moving[a] = 1;
634     moving[b] = 1;
635     done = 0;
636     }
637 mmeineke 558 }
638     }
639    
640 tim 725 for (i = 0; i < nAtoms; i++){
641 mmeineke 558 moved[i] = moving[i];
642     moving[i] = 0;
643     }
644 tim 725
645 mmeineke 558 iteration++;
646     }
647    
648 tim 725 if (!done){
649     sprintf(painCave.errMsg,
650     "Constraint failure in constrainB, too many iterations: %d\n",
651     iteration);
652 mmeineke 558 painCave.isFatal = 1;
653     simError();
654 tim 725 }
655 mmeineke 558 }
656    
657 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
658     ( DirectionalAtom* dAtom, double ji[3] ){
659    
660     double angle;
661     double A[3][3], I[3][3];
662    
663     // use the angular velocities to propagate the rotation matrix a
664     // full time step
665    
666     dAtom->getA(A);
667     dAtom->getI(I);
668 tim 837
669     // rotate about the x-axis
670 mmeineke 778 angle = dt2 * ji[0] / I[0][0];
671 tim 837 this->rotate( 1, 2, angle, ji, A );
672    
673 mmeineke 778 // rotate about the y-axis
674     angle = dt2 * ji[1] / I[1][1];
675     this->rotate( 2, 0, angle, ji, A );
676 tim 837
677 mmeineke 778 // rotate about the z-axis
678     angle = dt * ji[2] / I[2][2];
679     this->rotate( 0, 1, angle, ji, A);
680 tim 837
681 mmeineke 778 // rotate about the y-axis
682     angle = dt2 * ji[1] / I[1][1];
683     this->rotate( 2, 0, angle, ji, A );
684 tim 837
685 mmeineke 778 // rotate about the x-axis
686     angle = dt2 * ji[0] / I[0][0];
687     this->rotate( 1, 2, angle, ji, A );
688 tim 837
689     dAtom->setA( A );
690 mmeineke 778 }
691    
692 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
693     double angle, double ji[3],
694     double A[3][3]){
695     int i, j, k;
696 mmeineke 558 double sinAngle;
697     double cosAngle;
698     double angleSqr;
699     double angleSqrOver4;
700     double top, bottom;
701     double rot[3][3];
702     double tempA[3][3];
703     double tempJ[3];
704    
705     // initialize the tempA
706    
707 tim 725 for (i = 0; i < 3; i++){
708     for (j = 0; j < 3; j++){
709 gezelter 600 tempA[j][i] = A[i][j];
710 mmeineke 558 }
711     }
712    
713     // initialize the tempJ
714    
715 tim 725 for (i = 0; i < 3; i++)
716     tempJ[i] = ji[i];
717    
718 mmeineke 558 // initalize rot as a unit matrix
719    
720     rot[0][0] = 1.0;
721     rot[0][1] = 0.0;
722     rot[0][2] = 0.0;
723    
724     rot[1][0] = 0.0;
725     rot[1][1] = 1.0;
726     rot[1][2] = 0.0;
727 tim 725
728 mmeineke 558 rot[2][0] = 0.0;
729     rot[2][1] = 0.0;
730     rot[2][2] = 1.0;
731 tim 725
732 mmeineke 558 // use a small angle aproximation for sin and cosine
733    
734 tim 725 angleSqr = angle * angle;
735 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
736     top = 1.0 - angleSqrOver4;
737     bottom = 1.0 + angleSqrOver4;
738    
739     cosAngle = top / bottom;
740     sinAngle = angle / bottom;
741    
742     rot[axes1][axes1] = cosAngle;
743     rot[axes2][axes2] = cosAngle;
744    
745     rot[axes1][axes2] = sinAngle;
746     rot[axes2][axes1] = -sinAngle;
747 tim 725
748 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
749 tim 725
750     for (i = 0; i < 3; i++){
751 mmeineke 558 ji[i] = 0.0;
752 tim 725 for (k = 0; k < 3; k++){
753 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
754     }
755     }
756    
757 tim 837 // rotate the Rotation matrix acording to:
758 mmeineke 558 // A[][] = A[][] * transpose(rot[][])
759    
760    
761 mmeineke 561 // NOte for as yet unknown reason, we are performing the
762 mmeineke 558 // calculation as:
763     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
764    
765 tim 725 for (i = 0; i < 3; i++){
766     for (j = 0; j < 3; j++){
767 gezelter 600 A[j][i] = 0.0;
768 tim 725 for (k = 0; k < 3; k++){
769     A[j][i] += tempA[i][k] * rot[j][k];
770 mmeineke 558 }
771     }
772     }
773     }
774 tim 677
775 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
776     myFF->doForces(calcPot, calcStress);
777 tim 677 }
778    
779     template<typename T> void Integrator<T>::thermalize(){
780 tim 725 tStats->velocitize();
781 tim 677 }
782 tim 763
783     template<typename T> double Integrator<T>::getConservedQuantity(void){
784     return tStats->getTotalE();
785 mmeineke 768 }
786 tim 837 template<typename T> string Integrator<T>::getAdditionalParameters(void){
787     //By default, return a null string
788     //The reason we use string instead of char* is that if we use char*, we will
789     //return a pointer point to local variable which might cause problem
790     return string();
791     }