ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 892
Committed: Mon Dec 22 21:27:04 2003 UTC (20 years, 6 months ago) by chuckv
File size: 17393 byte(s)
Log Message:
Fixes to profile code.

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2 gezelter 829 #include <stdlib.h>
3     #include <math.h>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10 chuckv 892 #ifdef PROFILE
11     #include "mdProfile.hpp"
12     #endif // profile
13    
14 mmeineke 558 #include "Integrator.hpp"
15     #include "simError.h"
16    
17    
18 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19     ForceFields* the_ff){
20 mmeineke 558 info = theInfo;
21     myFF = the_ff;
22     isFirst = 1;
23    
24     molecules = info->molecules;
25     nMols = info->n_mol;
26    
27     // give a little love back to the SimInfo object
28 tim 725
29     if (info->the_integrator != NULL){
30     delete info->the_integrator;
31     }
32 tim 837
33 mmeineke 558 nAtoms = info->n_atoms;
34    
35     // check for constraints
36 tim 725
37     constrainedA = NULL;
38     constrainedB = NULL;
39 mmeineke 558 constrainedDsqr = NULL;
40 tim 725 moving = NULL;
41     moved = NULL;
42     oldPos = NULL;
43    
44 mmeineke 558 nConstrained = 0;
45    
46     checkConstraints();
47     }
48    
49 tim 725 template<typename T> Integrator<T>::~Integrator(){
50     if (nConstrained){
51 mmeineke 558 delete[] constrainedA;
52     delete[] constrainedB;
53     delete[] constrainedDsqr;
54     delete[] moving;
55     delete[] moved;
56 mmeineke 561 delete[] oldPos;
57 mmeineke 558 }
58     }
59    
60 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
61 mmeineke 558 isConstrained = 0;
62    
63 tim 725 Constraint* temp_con;
64     Constraint* dummy_plug;
65 mmeineke 558 temp_con = new Constraint[info->n_SRI];
66     nConstrained = 0;
67     int constrained = 0;
68 tim 725
69 mmeineke 558 SRI** theArray;
70 tim 725 for (int i = 0; i < nMols; i++){
71     theArray = (SRI * *) molecules[i].getMyBonds();
72     for (int j = 0; j < molecules[i].getNBonds(); j++){
73 mmeineke 558 constrained = theArray[j]->is_constrained();
74 mmeineke 594
75 tim 725 if (constrained){
76     dummy_plug = theArray[j]->get_constraint();
77     temp_con[nConstrained].set_a(dummy_plug->get_a());
78     temp_con[nConstrained].set_b(dummy_plug->get_b());
79     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
80 mmeineke 594
81 tim 725 nConstrained++;
82     constrained = 0;
83     }
84 mmeineke 558 }
85    
86 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
87     for (int j = 0; j < molecules[i].getNBends(); j++){
88 mmeineke 558 constrained = theArray[j]->is_constrained();
89 tim 725
90     if (constrained){
91     dummy_plug = theArray[j]->get_constraint();
92     temp_con[nConstrained].set_a(dummy_plug->get_a());
93     temp_con[nConstrained].set_b(dummy_plug->get_b());
94     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
95    
96     nConstrained++;
97     constrained = 0;
98 mmeineke 558 }
99     }
100    
101 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
102     for (int j = 0; j < molecules[i].getNTorsions(); j++){
103 mmeineke 558 constrained = theArray[j]->is_constrained();
104 tim 725
105     if (constrained){
106     dummy_plug = theArray[j]->get_constraint();
107     temp_con[nConstrained].set_a(dummy_plug->get_a());
108     temp_con[nConstrained].set_b(dummy_plug->get_b());
109     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
110    
111     nConstrained++;
112     constrained = 0;
113 mmeineke 558 }
114     }
115     }
116    
117 tim 725 if (nConstrained > 0){
118 mmeineke 558 isConstrained = 1;
119    
120 tim 725 if (constrainedA != NULL)
121     delete[] constrainedA;
122     if (constrainedB != NULL)
123     delete[] constrainedB;
124     if (constrainedDsqr != NULL)
125     delete[] constrainedDsqr;
126 mmeineke 558
127 tim 725 constrainedA = new int[nConstrained];
128     constrainedB = new int[nConstrained];
129 mmeineke 558 constrainedDsqr = new double[nConstrained];
130 tim 725
131     for (int i = 0; i < nConstrained; i++){
132 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
133     constrainedB[i] = temp_con[i].get_b();
134     constrainedDsqr[i] = temp_con[i].get_dsqr();
135     }
136    
137 tim 725
138 mmeineke 558 // save oldAtoms to check for lode balanceing later on.
139 tim 725
140 mmeineke 558 oldAtoms = nAtoms;
141 tim 725
142 mmeineke 558 moving = new int[nAtoms];
143 tim 725 moved = new int[nAtoms];
144 mmeineke 558
145 tim 725 oldPos = new double[nAtoms * 3];
146 mmeineke 558 }
147 tim 725
148 mmeineke 558 delete[] temp_con;
149     }
150    
151    
152 tim 725 template<typename T> void Integrator<T>::integrate(void){
153 mmeineke 558
154 tim 725 double runTime = info->run_time;
155     double sampleTime = info->sampleTime;
156     double statusTime = info->statusTime;
157 mmeineke 558 double thermalTime = info->thermalTime;
158 mmeineke 746 double resetTime = info->resetTime;
159 mmeineke 558
160 mmeineke 746
161 mmeineke 558 double currSample;
162     double currThermal;
163     double currStatus;
164 mmeineke 746 double currReset;
165 tim 837
166 mmeineke 558 int calcPot, calcStress;
167    
168 tim 725 tStats = new Thermo(info);
169     statOut = new StatWriter(info);
170     dumpOut = new DumpWriter(info);
171 mmeineke 558
172 mmeineke 561 atoms = info->atoms;
173    
174     dt = info->dt;
175 mmeineke 558 dt2 = 0.5 * dt;
176    
177 mmeineke 784 readyCheck();
178    
179 mmeineke 558 // initialize the forces before the first step
180    
181 tim 677 calcForce(1, 1);
182 tim 781
183     if (nConstrained){
184     preMove();
185     constrainA();
186 tim 837 calcForce(1, 1);
187 tim 781 constrainB();
188     }
189 mmeineke 843
190 tim 725 if (info->setTemp){
191 tim 677 thermalize();
192 mmeineke 558 }
193 tim 725
194 mmeineke 558 calcPot = 0;
195     calcStress = 0;
196 mmeineke 711 currSample = sampleTime + info->getTime();
197     currThermal = thermalTime+ info->getTime();
198     currStatus = statusTime + info->getTime();
199 mmeineke 746 currReset = resetTime + info->getTime();
200 mmeineke 558
201 tim 725 dumpOut->writeDump(info->getTime());
202     statOut->writeStat(info->getTime());
203 mmeineke 559
204    
205     #ifdef IS_MPI
206 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
207 mmeineke 559 MPIcheckPoint();
208     #endif // is_mpi
209    
210 tim 725 while (info->getTime() < runTime){
211     if ((info->getTime() + dt) >= currStatus){
212 mmeineke 558 calcPot = 1;
213     calcStress = 1;
214     }
215 mmeineke 561
216 chuckv 892 #ifdef PROFILE
217     startProfile( pro1 );
218     #endif
219    
220 tim 725 integrateStep(calcPot, calcStress);
221    
222 chuckv 892 #ifdef PROFILE
223     endProfile( pro1 );
224    
225     startProfile( pro2 );
226     #endif // profile
227    
228 mmeineke 643 info->incrTime(dt);
229 mmeineke 558
230 tim 725 if (info->setTemp){
231     if (info->getTime() >= currThermal){
232     thermalize();
233     currThermal += thermalTime;
234 mmeineke 558 }
235     }
236    
237 tim 725 if (info->getTime() >= currSample){
238     dumpOut->writeDump(info->getTime());
239 mmeineke 558 currSample += sampleTime;
240     }
241    
242 tim 725 if (info->getTime() >= currStatus){
243 tim 837 statOut->writeStat(info->getTime());
244     calcPot = 0;
245 mmeineke 558 calcStress = 0;
246     currStatus += statusTime;
247 tim 837 }
248 mmeineke 559
249 mmeineke 746 if (info->resetIntegrator){
250     if (info->getTime() >= currReset){
251     this->resetIntegrator();
252     currReset += resetTime;
253     }
254     }
255 chuckv 892
256     #ifdef PROFILE
257     endProfile( pro2 );
258     #endif //profile
259 mmeineke 746
260 mmeineke 559 #ifdef IS_MPI
261 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
262 mmeineke 559 MPIcheckPoint();
263     #endif // is_mpi
264 mmeineke 558 }
265    
266    
267 mmeineke 804 // write the last frame
268     dumpOut->writeDump(info->getTime());
269    
270 mmeineke 561 delete dumpOut;
271     delete statOut;
272 mmeineke 558 }
273    
274 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
275     int calcStress){
276 mmeineke 558 // Position full step, and velocity half step
277 chuckv 892
278     #ifdef PROFILE
279     startProfile(pro3);
280     #endif //profile
281    
282 tim 725 preMove();
283 mmeineke 558
284 chuckv 892 #ifdef PROFILE
285     endProfile(pro3);
286    
287     startProfile(pro4);
288     #endif // profile
289    
290 mmeineke 558 moveA();
291    
292 chuckv 892 #ifdef PROFILE
293     endProfile(pro4);
294    
295     startProfile(pro5);
296     #endif//profile
297 tim 725
298    
299 mmeineke 614 #ifdef IS_MPI
300 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
301 mmeineke 614 MPIcheckPoint();
302     #endif // is_mpi
303    
304 tim 725
305 mmeineke 558 // calc forces
306    
307 tim 725 calcForce(calcPot, calcStress);
308 mmeineke 558
309 mmeineke 614 #ifdef IS_MPI
310 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
311 mmeineke 614 MPIcheckPoint();
312     #endif // is_mpi
313    
314 chuckv 892 #ifdef PROFILE
315     endProfile( pro5 );
316 tim 725
317 chuckv 892 startProfile( pro6 );
318     #endif //profile
319    
320 mmeineke 558 // finish the velocity half step
321 tim 725
322 mmeineke 558 moveB();
323 tim 725
324 chuckv 892 #ifdef PROFILE
325     endProfile(pro6);
326     #endif // profile
327 tim 725
328 mmeineke 614 #ifdef IS_MPI
329 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
330 mmeineke 614 MPIcheckPoint();
331     #endif // is_mpi
332 mmeineke 558 }
333    
334    
335 tim 725 template<typename T> void Integrator<T>::moveA(void){
336 gezelter 600 int i, j;
337 mmeineke 558 DirectionalAtom* dAtom;
338 gezelter 600 double Tb[3], ji[3];
339     double vel[3], pos[3], frc[3];
340     double mass;
341 mmeineke 558
342 tim 725 for (i = 0; i < nAtoms; i++){
343     atoms[i]->getVel(vel);
344     atoms[i]->getPos(pos);
345     atoms[i]->getFrc(frc);
346 mmeineke 567
347 gezelter 600 mass = atoms[i]->getMass();
348 mmeineke 594
349 tim 725 for (j = 0; j < 3; j++){
350 gezelter 600 // velocity half step
351 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
352 gezelter 600 // position whole step
353     pos[j] += dt * vel[j];
354     }
355 mmeineke 594
356 tim 725 atoms[i]->setVel(vel);
357     atoms[i]->setPos(pos);
358 gezelter 600
359 tim 725 if (atoms[i]->isDirectional()){
360     dAtom = (DirectionalAtom *) atoms[i];
361 mmeineke 558
362     // get and convert the torque to body frame
363 mmeineke 597
364 tim 725 dAtom->getTrq(Tb);
365     dAtom->lab2Body(Tb);
366    
367 mmeineke 558 // get the angular momentum, and propagate a half step
368 gezelter 600
369 tim 725 dAtom->getJ(ji);
370 gezelter 600
371 tim 725 for (j = 0; j < 3; j++)
372 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
373 tim 725
374 mmeineke 778 this->rotationPropagation( dAtom, ji );
375 gezelter 600
376 tim 725 dAtom->setJ(ji);
377     }
378 mmeineke 558 }
379 mmeineke 768
380     if (nConstrained){
381     constrainA();
382     }
383 mmeineke 558 }
384    
385    
386 tim 725 template<typename T> void Integrator<T>::moveB(void){
387 gezelter 600 int i, j;
388 mmeineke 558 DirectionalAtom* dAtom;
389 gezelter 600 double Tb[3], ji[3];
390     double vel[3], frc[3];
391     double mass;
392 mmeineke 558
393 tim 725 for (i = 0; i < nAtoms; i++){
394     atoms[i]->getVel(vel);
395     atoms[i]->getFrc(frc);
396 mmeineke 558
397 gezelter 600 mass = atoms[i]->getMass();
398    
399 mmeineke 558 // velocity half step
400 tim 725 for (j = 0; j < 3; j++)
401     vel[j] += (dt2 * frc[j] / mass) * eConvert;
402 gezelter 600
403 tim 725 atoms[i]->setVel(vel);
404 mmeineke 597
405 tim 725 if (atoms[i]->isDirectional()){
406     dAtom = (DirectionalAtom *) atoms[i];
407    
408 tim 837 // get and convert the torque to body frame
409 gezelter 600
410 tim 725 dAtom->getTrq(Tb);
411     dAtom->lab2Body(Tb);
412 gezelter 600
413     // get the angular momentum, and propagate a half step
414    
415 tim 725 dAtom->getJ(ji);
416 gezelter 600
417 tim 725 for (j = 0; j < 3; j++)
418 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
419 mmeineke 597
420 tim 725
421     dAtom->setJ(ji);
422 mmeineke 558 }
423     }
424 mmeineke 768
425     if (nConstrained){
426     constrainB();
427     }
428 mmeineke 558 }
429    
430 tim 725 template<typename T> void Integrator<T>::preMove(void){
431 gezelter 600 int i, j;
432     double pos[3];
433 mmeineke 558
434 tim 725 if (nConstrained){
435     for (i = 0; i < nAtoms; i++){
436     atoms[i]->getPos(pos);
437 mmeineke 561
438 tim 725 for (j = 0; j < 3; j++){
439     oldPos[3 * i + j] = pos[j];
440 gezelter 600 }
441     }
442 tim 725 }
443 gezelter 600 }
444    
445 tim 645 template<typename T> void Integrator<T>::constrainA(){
446 mmeineke 787 int i, j;
447 mmeineke 558 int done;
448 gezelter 600 double posA[3], posB[3];
449     double velA[3], velB[3];
450 mmeineke 572 double pab[3];
451     double rab[3];
452 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
453 mmeineke 558 double rma, rmb;
454     double dx, dy, dz;
455 mmeineke 561 double rpab;
456 mmeineke 558 double rabsq, pabsq, rpabsq;
457     double diffsq;
458     double gab;
459     int iteration;
460    
461 tim 725 for (i = 0; i < nAtoms; i++){
462 mmeineke 558 moving[i] = 0;
463 tim 725 moved[i] = 1;
464 mmeineke 558 }
465 mmeineke 567
466 mmeineke 558 iteration = 0;
467     done = 0;
468 tim 725 while (!done && (iteration < maxIteration)){
469 mmeineke 558 done = 1;
470 tim 725 for (i = 0; i < nConstrained; i++){
471 mmeineke 558 a = constrainedA[i];
472     b = constrainedB[i];
473 mmeineke 563
474 tim 725 ax = (a * 3) + 0;
475     ay = (a * 3) + 1;
476     az = (a * 3) + 2;
477 mmeineke 563
478 tim 725 bx = (b * 3) + 0;
479     by = (b * 3) + 1;
480     bz = (b * 3) + 2;
481    
482     if (moved[a] || moved[b]){
483     atoms[a]->getPos(posA);
484     atoms[b]->getPos(posB);
485    
486     for (j = 0; j < 3; j++)
487 gezelter 600 pab[j] = posA[j] - posB[j];
488 mmeineke 567
489 tim 725 //periodic boundary condition
490 mmeineke 567
491 tim 725 info->wrapVector(pab);
492 mmeineke 572
493 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
494 mmeineke 558
495 tim 725 rabsq = constrainedDsqr[i];
496     diffsq = rabsq - pabsq;
497 mmeineke 567
498 tim 725 // the original rattle code from alan tidesley
499     if (fabs(diffsq) > (tol * rabsq * 2)){
500     rab[0] = oldPos[ax] - oldPos[bx];
501     rab[1] = oldPos[ay] - oldPos[by];
502     rab[2] = oldPos[az] - oldPos[bz];
503 mmeineke 558
504 tim 725 info->wrapVector(rab);
505 mmeineke 567
506 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
507 mmeineke 558
508 tim 725 rpabsq = rpab * rpab;
509 mmeineke 558
510 mmeineke 563
511 tim 725 if (rpabsq < (rabsq * -diffsq)){
512 mmeineke 558 #ifdef IS_MPI
513 tim 725 a = atoms[a]->getGlobalIndex();
514     b = atoms[b]->getGlobalIndex();
515 mmeineke 558 #endif //is_mpi
516 tim 725 sprintf(painCave.errMsg,
517     "Constraint failure in constrainA at atom %d and %d.\n", a,
518     b);
519     painCave.isFatal = 1;
520     simError();
521     }
522 mmeineke 558
523 tim 725 rma = 1.0 / atoms[a]->getMass();
524     rmb = 1.0 / atoms[b]->getMass();
525 mmeineke 567
526 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
527 mmeineke 567
528 mmeineke 572 dx = rab[0] * gab;
529     dy = rab[1] * gab;
530     dz = rab[2] * gab;
531 mmeineke 558
532 tim 725 posA[0] += rma * dx;
533     posA[1] += rma * dy;
534     posA[2] += rma * dz;
535 mmeineke 558
536 tim 725 atoms[a]->setPos(posA);
537 mmeineke 558
538 tim 725 posB[0] -= rmb * dx;
539     posB[1] -= rmb * dy;
540     posB[2] -= rmb * dz;
541 gezelter 600
542 tim 725 atoms[b]->setPos(posB);
543 gezelter 600
544 mmeineke 558 dx = dx / dt;
545     dy = dy / dt;
546     dz = dz / dt;
547    
548 tim 725 atoms[a]->getVel(velA);
549 mmeineke 558
550 tim 725 velA[0] += rma * dx;
551     velA[1] += rma * dy;
552     velA[2] += rma * dz;
553 mmeineke 558
554 tim 725 atoms[a]->setVel(velA);
555 gezelter 600
556 tim 725 atoms[b]->getVel(velB);
557 gezelter 600
558 tim 725 velB[0] -= rmb * dx;
559     velB[1] -= rmb * dy;
560     velB[2] -= rmb * dz;
561 gezelter 600
562 tim 725 atoms[b]->setVel(velB);
563 gezelter 600
564 tim 725 moving[a] = 1;
565     moving[b] = 1;
566     done = 0;
567     }
568 mmeineke 558 }
569     }
570 tim 725
571     for (i = 0; i < nAtoms; i++){
572 mmeineke 558 moved[i] = moving[i];
573     moving[i] = 0;
574     }
575    
576     iteration++;
577     }
578    
579 tim 725 if (!done){
580     sprintf(painCave.errMsg,
581     "Constraint failure in constrainA, too many iterations: %d\n",
582     iteration);
583 mmeineke 558 painCave.isFatal = 1;
584     simError();
585     }
586 mmeineke 768
587 mmeineke 558 }
588    
589 tim 725 template<typename T> void Integrator<T>::constrainB(void){
590 mmeineke 787 int i, j;
591 mmeineke 558 int done;
592 gezelter 600 double posA[3], posB[3];
593     double velA[3], velB[3];
594 mmeineke 558 double vxab, vyab, vzab;
595 mmeineke 572 double rab[3];
596 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
597 mmeineke 558 double rma, rmb;
598     double dx, dy, dz;
599 mmeineke 787 double rvab;
600 mmeineke 558 double gab;
601     int iteration;
602    
603 tim 725 for (i = 0; i < nAtoms; i++){
604 mmeineke 558 moving[i] = 0;
605     moved[i] = 1;
606     }
607    
608     done = 0;
609 mmeineke 561 iteration = 0;
610 tim 725 while (!done && (iteration < maxIteration)){
611 mmeineke 567 done = 1;
612    
613 tim 725 for (i = 0; i < nConstrained; i++){
614 mmeineke 558 a = constrainedA[i];
615     b = constrainedB[i];
616    
617 tim 725 ax = (a * 3) + 0;
618     ay = (a * 3) + 1;
619     az = (a * 3) + 2;
620 mmeineke 563
621 tim 725 bx = (b * 3) + 0;
622     by = (b * 3) + 1;
623     bz = (b * 3) + 2;
624 mmeineke 563
625 tim 725 if (moved[a] || moved[b]){
626     atoms[a]->getVel(velA);
627     atoms[b]->getVel(velB);
628 mmeineke 558
629 tim 725 vxab = velA[0] - velB[0];
630     vyab = velA[1] - velB[1];
631     vzab = velA[2] - velB[2];
632 gezelter 600
633 tim 725 atoms[a]->getPos(posA);
634     atoms[b]->getPos(posB);
635 gezelter 600
636 tim 725 for (j = 0; j < 3; j++)
637 gezelter 600 rab[j] = posA[j] - posB[j];
638 mmeineke 558
639 tim 725 info->wrapVector(rab);
640 mmeineke 558
641 tim 725 rma = 1.0 / atoms[a]->getMass();
642     rmb = 1.0 / atoms[b]->getMass();
643 mmeineke 558
644 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
645 gezelter 600
646 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
647 gezelter 600
648 tim 725 if (fabs(gab) > tol){
649     dx = rab[0] * gab;
650     dy = rab[1] * gab;
651     dz = rab[2] * gab;
652    
653     velA[0] += rma * dx;
654     velA[1] += rma * dy;
655     velA[2] += rma * dz;
656    
657     atoms[a]->setVel(velA);
658    
659     velB[0] -= rmb * dx;
660     velB[1] -= rmb * dy;
661     velB[2] -= rmb * dz;
662    
663     atoms[b]->setVel(velB);
664    
665     moving[a] = 1;
666     moving[b] = 1;
667     done = 0;
668     }
669 mmeineke 558 }
670     }
671    
672 tim 725 for (i = 0; i < nAtoms; i++){
673 mmeineke 558 moved[i] = moving[i];
674     moving[i] = 0;
675     }
676 tim 725
677 mmeineke 558 iteration++;
678     }
679    
680 tim 725 if (!done){
681     sprintf(painCave.errMsg,
682     "Constraint failure in constrainB, too many iterations: %d\n",
683     iteration);
684 mmeineke 558 painCave.isFatal = 1;
685     simError();
686 tim 725 }
687 mmeineke 558 }
688    
689 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
690     ( DirectionalAtom* dAtom, double ji[3] ){
691    
692     double angle;
693     double A[3][3], I[3][3];
694    
695     // use the angular velocities to propagate the rotation matrix a
696     // full time step
697    
698     dAtom->getA(A);
699     dAtom->getI(I);
700 tim 837
701     // rotate about the x-axis
702 mmeineke 778 angle = dt2 * ji[0] / I[0][0];
703 tim 837 this->rotate( 1, 2, angle, ji, A );
704    
705 mmeineke 778 // rotate about the y-axis
706     angle = dt2 * ji[1] / I[1][1];
707     this->rotate( 2, 0, angle, ji, A );
708 tim 837
709 mmeineke 778 // rotate about the z-axis
710     angle = dt * ji[2] / I[2][2];
711     this->rotate( 0, 1, angle, ji, A);
712 tim 837
713 mmeineke 778 // rotate about the y-axis
714     angle = dt2 * ji[1] / I[1][1];
715     this->rotate( 2, 0, angle, ji, A );
716 tim 837
717 mmeineke 778 // rotate about the x-axis
718     angle = dt2 * ji[0] / I[0][0];
719     this->rotate( 1, 2, angle, ji, A );
720 tim 837
721     dAtom->setA( A );
722 mmeineke 778 }
723    
724 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
725     double angle, double ji[3],
726     double A[3][3]){
727     int i, j, k;
728 mmeineke 558 double sinAngle;
729     double cosAngle;
730     double angleSqr;
731     double angleSqrOver4;
732     double top, bottom;
733     double rot[3][3];
734     double tempA[3][3];
735     double tempJ[3];
736    
737     // initialize the tempA
738    
739 tim 725 for (i = 0; i < 3; i++){
740     for (j = 0; j < 3; j++){
741 gezelter 600 tempA[j][i] = A[i][j];
742 mmeineke 558 }
743     }
744    
745     // initialize the tempJ
746    
747 tim 725 for (i = 0; i < 3; i++)
748     tempJ[i] = ji[i];
749    
750 mmeineke 558 // initalize rot as a unit matrix
751    
752     rot[0][0] = 1.0;
753     rot[0][1] = 0.0;
754     rot[0][2] = 0.0;
755    
756     rot[1][0] = 0.0;
757     rot[1][1] = 1.0;
758     rot[1][2] = 0.0;
759 tim 725
760 mmeineke 558 rot[2][0] = 0.0;
761     rot[2][1] = 0.0;
762     rot[2][2] = 1.0;
763 tim 725
764 mmeineke 558 // use a small angle aproximation for sin and cosine
765    
766 tim 725 angleSqr = angle * angle;
767 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
768     top = 1.0 - angleSqrOver4;
769     bottom = 1.0 + angleSqrOver4;
770    
771     cosAngle = top / bottom;
772     sinAngle = angle / bottom;
773    
774     rot[axes1][axes1] = cosAngle;
775     rot[axes2][axes2] = cosAngle;
776    
777     rot[axes1][axes2] = sinAngle;
778     rot[axes2][axes1] = -sinAngle;
779 tim 725
780 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
781 tim 725
782     for (i = 0; i < 3; i++){
783 mmeineke 558 ji[i] = 0.0;
784 tim 725 for (k = 0; k < 3; k++){
785 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
786     }
787     }
788    
789 tim 837 // rotate the Rotation matrix acording to:
790 mmeineke 558 // A[][] = A[][] * transpose(rot[][])
791    
792    
793 mmeineke 561 // NOte for as yet unknown reason, we are performing the
794 mmeineke 558 // calculation as:
795     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
796    
797 tim 725 for (i = 0; i < 3; i++){
798     for (j = 0; j < 3; j++){
799 gezelter 600 A[j][i] = 0.0;
800 tim 725 for (k = 0; k < 3; k++){
801     A[j][i] += tempA[i][k] * rot[j][k];
802 mmeineke 558 }
803     }
804     }
805     }
806 tim 677
807 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
808     myFF->doForces(calcPot, calcStress);
809 tim 677 }
810    
811     template<typename T> void Integrator<T>::thermalize(){
812 tim 725 tStats->velocitize();
813 tim 677 }
814 tim 763
815     template<typename T> double Integrator<T>::getConservedQuantity(void){
816     return tStats->getTotalE();
817 mmeineke 768 }
818 tim 837 template<typename T> string Integrator<T>::getAdditionalParameters(void){
819     //By default, return a null string
820     //The reason we use string instead of char* is that if we use char*, we will
821     //return a pointer point to local variable which might cause problem
822     return string();
823     }