ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 929
Committed: Tue Jan 13 15:46:49 2004 UTC (20 years, 5 months ago) by tim
File size: 17326 byte(s)
Log Message:
 Merge the code of writeFinal and writeDump;
 Adding sortingIndex into DumpWriter;
 Fix a bug of writing last frame twice in integrator

File Contents

# User Rev Content
1 mmeineke 558 #include <iostream>
2 gezelter 829 #include <stdlib.h>
3     #include <math.h>
4 mmeineke 558
5     #ifdef IS_MPI
6     #include "mpiSimulation.hpp"
7     #include <unistd.h>
8     #endif //is_mpi
9    
10 chuckv 892 #ifdef PROFILE
11     #include "mdProfile.hpp"
12     #endif // profile
13    
14 mmeineke 558 #include "Integrator.hpp"
15     #include "simError.h"
16    
17    
18 tim 725 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19     ForceFields* the_ff){
20 mmeineke 558 info = theInfo;
21     myFF = the_ff;
22     isFirst = 1;
23    
24     molecules = info->molecules;
25     nMols = info->n_mol;
26    
27     // give a little love back to the SimInfo object
28 tim 725
29     if (info->the_integrator != NULL){
30     delete info->the_integrator;
31     }
32 tim 837
33 mmeineke 558 nAtoms = info->n_atoms;
34    
35     // check for constraints
36 tim 725
37     constrainedA = NULL;
38     constrainedB = NULL;
39 mmeineke 558 constrainedDsqr = NULL;
40 tim 725 moving = NULL;
41     moved = NULL;
42     oldPos = NULL;
43    
44 mmeineke 558 nConstrained = 0;
45    
46     checkConstraints();
47     }
48    
49 tim 725 template<typename T> Integrator<T>::~Integrator(){
50     if (nConstrained){
51 mmeineke 558 delete[] constrainedA;
52     delete[] constrainedB;
53     delete[] constrainedDsqr;
54     delete[] moving;
55     delete[] moved;
56 mmeineke 561 delete[] oldPos;
57 mmeineke 558 }
58     }
59    
60 tim 725 template<typename T> void Integrator<T>::checkConstraints(void){
61 mmeineke 558 isConstrained = 0;
62    
63 tim 725 Constraint* temp_con;
64     Constraint* dummy_plug;
65 mmeineke 558 temp_con = new Constraint[info->n_SRI];
66     nConstrained = 0;
67     int constrained = 0;
68 tim 725
69 mmeineke 558 SRI** theArray;
70 tim 725 for (int i = 0; i < nMols; i++){
71     theArray = (SRI * *) molecules[i].getMyBonds();
72     for (int j = 0; j < molecules[i].getNBonds(); j++){
73 mmeineke 558 constrained = theArray[j]->is_constrained();
74 mmeineke 594
75 tim 725 if (constrained){
76     dummy_plug = theArray[j]->get_constraint();
77     temp_con[nConstrained].set_a(dummy_plug->get_a());
78     temp_con[nConstrained].set_b(dummy_plug->get_b());
79     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
80 mmeineke 594
81 tim 725 nConstrained++;
82     constrained = 0;
83     }
84 mmeineke 558 }
85    
86 tim 725 theArray = (SRI * *) molecules[i].getMyBends();
87     for (int j = 0; j < molecules[i].getNBends(); j++){
88 mmeineke 558 constrained = theArray[j]->is_constrained();
89 tim 725
90     if (constrained){
91     dummy_plug = theArray[j]->get_constraint();
92     temp_con[nConstrained].set_a(dummy_plug->get_a());
93     temp_con[nConstrained].set_b(dummy_plug->get_b());
94     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
95    
96     nConstrained++;
97     constrained = 0;
98 mmeineke 558 }
99     }
100    
101 tim 725 theArray = (SRI * *) molecules[i].getMyTorsions();
102     for (int j = 0; j < molecules[i].getNTorsions(); j++){
103 mmeineke 558 constrained = theArray[j]->is_constrained();
104 tim 725
105     if (constrained){
106     dummy_plug = theArray[j]->get_constraint();
107     temp_con[nConstrained].set_a(dummy_plug->get_a());
108     temp_con[nConstrained].set_b(dummy_plug->get_b());
109     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
110    
111     nConstrained++;
112     constrained = 0;
113 mmeineke 558 }
114     }
115     }
116    
117 tim 725 if (nConstrained > 0){
118 mmeineke 558 isConstrained = 1;
119    
120 tim 725 if (constrainedA != NULL)
121     delete[] constrainedA;
122     if (constrainedB != NULL)
123     delete[] constrainedB;
124     if (constrainedDsqr != NULL)
125     delete[] constrainedDsqr;
126 mmeineke 558
127 tim 725 constrainedA = new int[nConstrained];
128     constrainedB = new int[nConstrained];
129 mmeineke 558 constrainedDsqr = new double[nConstrained];
130 tim 725
131     for (int i = 0; i < nConstrained; i++){
132 mmeineke 558 constrainedA[i] = temp_con[i].get_a();
133     constrainedB[i] = temp_con[i].get_b();
134     constrainedDsqr[i] = temp_con[i].get_dsqr();
135     }
136    
137 tim 725
138 mmeineke 558 // save oldAtoms to check for lode balanceing later on.
139 tim 725
140 mmeineke 558 oldAtoms = nAtoms;
141 tim 725
142 mmeineke 558 moving = new int[nAtoms];
143 tim 725 moved = new int[nAtoms];
144 mmeineke 558
145 tim 725 oldPos = new double[nAtoms * 3];
146 mmeineke 558 }
147 tim 725
148 mmeineke 558 delete[] temp_con;
149     }
150    
151    
152 tim 725 template<typename T> void Integrator<T>::integrate(void){
153 mmeineke 558
154 tim 725 double runTime = info->run_time;
155     double sampleTime = info->sampleTime;
156     double statusTime = info->statusTime;
157 mmeineke 558 double thermalTime = info->thermalTime;
158 mmeineke 746 double resetTime = info->resetTime;
159 mmeineke 558
160 mmeineke 746
161 mmeineke 558 double currSample;
162     double currThermal;
163     double currStatus;
164 mmeineke 746 double currReset;
165 tim 837
166 mmeineke 558 int calcPot, calcStress;
167    
168 tim 725 tStats = new Thermo(info);
169     statOut = new StatWriter(info);
170     dumpOut = new DumpWriter(info);
171 mmeineke 558
172 mmeineke 561 atoms = info->atoms;
173    
174     dt = info->dt;
175 mmeineke 558 dt2 = 0.5 * dt;
176    
177 mmeineke 784 readyCheck();
178    
179 mmeineke 558 // initialize the forces before the first step
180    
181 tim 677 calcForce(1, 1);
182 tim 781
183     if (nConstrained){
184     preMove();
185     constrainA();
186 tim 837 calcForce(1, 1);
187 tim 781 constrainB();
188     }
189 mmeineke 843
190 tim 725 if (info->setTemp){
191 tim 677 thermalize();
192 mmeineke 558 }
193 tim 725
194 mmeineke 558 calcPot = 0;
195     calcStress = 0;
196 mmeineke 711 currSample = sampleTime + info->getTime();
197     currThermal = thermalTime+ info->getTime();
198     currStatus = statusTime + info->getTime();
199 mmeineke 746 currReset = resetTime + info->getTime();
200 mmeineke 558
201 tim 725 dumpOut->writeDump(info->getTime());
202     statOut->writeStat(info->getTime());
203 mmeineke 559
204    
205     #ifdef IS_MPI
206 tim 725 strcpy(checkPointMsg, "The integrator is ready to go.");
207 mmeineke 559 MPIcheckPoint();
208     #endif // is_mpi
209    
210 tim 725 while (info->getTime() < runTime){
211     if ((info->getTime() + dt) >= currStatus){
212 mmeineke 558 calcPot = 1;
213     calcStress = 1;
214     }
215 mmeineke 561
216 chuckv 892 #ifdef PROFILE
217     startProfile( pro1 );
218     #endif
219    
220 tim 725 integrateStep(calcPot, calcStress);
221    
222 chuckv 892 #ifdef PROFILE
223     endProfile( pro1 );
224    
225     startProfile( pro2 );
226     #endif // profile
227    
228 mmeineke 643 info->incrTime(dt);
229 mmeineke 558
230 tim 725 if (info->setTemp){
231     if (info->getTime() >= currThermal){
232     thermalize();
233     currThermal += thermalTime;
234 mmeineke 558 }
235     }
236    
237 tim 725 if (info->getTime() >= currSample){
238     dumpOut->writeDump(info->getTime());
239 mmeineke 558 currSample += sampleTime;
240     }
241    
242 tim 725 if (info->getTime() >= currStatus){
243 tim 837 statOut->writeStat(info->getTime());
244     calcPot = 0;
245 mmeineke 558 calcStress = 0;
246     currStatus += statusTime;
247 tim 837 }
248 mmeineke 559
249 mmeineke 746 if (info->resetIntegrator){
250     if (info->getTime() >= currReset){
251     this->resetIntegrator();
252     currReset += resetTime;
253     }
254     }
255 chuckv 892
256     #ifdef PROFILE
257     endProfile( pro2 );
258     #endif //profile
259 mmeineke 746
260 mmeineke 559 #ifdef IS_MPI
261 tim 725 strcpy(checkPointMsg, "successfully took a time step.");
262 mmeineke 559 MPIcheckPoint();
263     #endif // is_mpi
264 mmeineke 558 }
265    
266 mmeineke 561 delete dumpOut;
267     delete statOut;
268 mmeineke 558 }
269    
270 tim 725 template<typename T> void Integrator<T>::integrateStep(int calcPot,
271     int calcStress){
272 mmeineke 558 // Position full step, and velocity half step
273 chuckv 892
274     #ifdef PROFILE
275     startProfile(pro3);
276     #endif //profile
277    
278 tim 725 preMove();
279 mmeineke 558
280 chuckv 892 #ifdef PROFILE
281     endProfile(pro3);
282    
283     startProfile(pro4);
284     #endif // profile
285    
286 mmeineke 558 moveA();
287    
288 chuckv 892 #ifdef PROFILE
289     endProfile(pro4);
290    
291     startProfile(pro5);
292     #endif//profile
293 tim 725
294    
295 mmeineke 614 #ifdef IS_MPI
296 tim 725 strcpy(checkPointMsg, "Succesful moveA\n");
297 mmeineke 614 MPIcheckPoint();
298     #endif // is_mpi
299    
300 tim 725
301 mmeineke 558 // calc forces
302    
303 tim 725 calcForce(calcPot, calcStress);
304 mmeineke 558
305 mmeineke 614 #ifdef IS_MPI
306 tim 725 strcpy(checkPointMsg, "Succesful doForces\n");
307 mmeineke 614 MPIcheckPoint();
308     #endif // is_mpi
309    
310 chuckv 892 #ifdef PROFILE
311     endProfile( pro5 );
312 tim 725
313 chuckv 892 startProfile( pro6 );
314     #endif //profile
315    
316 mmeineke 558 // finish the velocity half step
317 tim 725
318 mmeineke 558 moveB();
319 tim 725
320 chuckv 892 #ifdef PROFILE
321     endProfile(pro6);
322     #endif // profile
323 tim 725
324 mmeineke 614 #ifdef IS_MPI
325 tim 725 strcpy(checkPointMsg, "Succesful moveB\n");
326 mmeineke 614 MPIcheckPoint();
327     #endif // is_mpi
328 mmeineke 558 }
329    
330    
331 tim 725 template<typename T> void Integrator<T>::moveA(void){
332 gezelter 600 int i, j;
333 mmeineke 558 DirectionalAtom* dAtom;
334 gezelter 600 double Tb[3], ji[3];
335     double vel[3], pos[3], frc[3];
336     double mass;
337 mmeineke 558
338 tim 725 for (i = 0; i < nAtoms; i++){
339     atoms[i]->getVel(vel);
340     atoms[i]->getPos(pos);
341     atoms[i]->getFrc(frc);
342 mmeineke 567
343 gezelter 600 mass = atoms[i]->getMass();
344 mmeineke 594
345 tim 725 for (j = 0; j < 3; j++){
346 gezelter 600 // velocity half step
347 tim 725 vel[j] += (dt2 * frc[j] / mass) * eConvert;
348 gezelter 600 // position whole step
349     pos[j] += dt * vel[j];
350     }
351 mmeineke 594
352 tim 725 atoms[i]->setVel(vel);
353     atoms[i]->setPos(pos);
354 gezelter 600
355 tim 725 if (atoms[i]->isDirectional()){
356     dAtom = (DirectionalAtom *) atoms[i];
357 mmeineke 558
358     // get and convert the torque to body frame
359 mmeineke 597
360 tim 725 dAtom->getTrq(Tb);
361     dAtom->lab2Body(Tb);
362    
363 mmeineke 558 // get the angular momentum, and propagate a half step
364 gezelter 600
365 tim 725 dAtom->getJ(ji);
366 gezelter 600
367 tim 725 for (j = 0; j < 3; j++)
368 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
369 tim 725
370 mmeineke 778 this->rotationPropagation( dAtom, ji );
371 gezelter 600
372 tim 725 dAtom->setJ(ji);
373     }
374 mmeineke 558 }
375 mmeineke 768
376     if (nConstrained){
377     constrainA();
378     }
379 mmeineke 558 }
380    
381    
382 tim 725 template<typename T> void Integrator<T>::moveB(void){
383 gezelter 600 int i, j;
384 mmeineke 558 DirectionalAtom* dAtom;
385 gezelter 600 double Tb[3], ji[3];
386     double vel[3], frc[3];
387     double mass;
388 mmeineke 558
389 tim 725 for (i = 0; i < nAtoms; i++){
390     atoms[i]->getVel(vel);
391     atoms[i]->getFrc(frc);
392 mmeineke 558
393 gezelter 600 mass = atoms[i]->getMass();
394    
395 mmeineke 558 // velocity half step
396 tim 725 for (j = 0; j < 3; j++)
397     vel[j] += (dt2 * frc[j] / mass) * eConvert;
398 gezelter 600
399 tim 725 atoms[i]->setVel(vel);
400 mmeineke 597
401 tim 725 if (atoms[i]->isDirectional()){
402     dAtom = (DirectionalAtom *) atoms[i];
403    
404 tim 837 // get and convert the torque to body frame
405 gezelter 600
406 tim 725 dAtom->getTrq(Tb);
407     dAtom->lab2Body(Tb);
408 gezelter 600
409     // get the angular momentum, and propagate a half step
410    
411 tim 725 dAtom->getJ(ji);
412 gezelter 600
413 tim 725 for (j = 0; j < 3; j++)
414 gezelter 600 ji[j] += (dt2 * Tb[j]) * eConvert;
415 mmeineke 597
416 tim 725
417     dAtom->setJ(ji);
418 mmeineke 558 }
419     }
420 mmeineke 768
421     if (nConstrained){
422     constrainB();
423     }
424 mmeineke 558 }
425    
426 tim 725 template<typename T> void Integrator<T>::preMove(void){
427 gezelter 600 int i, j;
428     double pos[3];
429 mmeineke 558
430 tim 725 if (nConstrained){
431     for (i = 0; i < nAtoms; i++){
432     atoms[i]->getPos(pos);
433 mmeineke 561
434 tim 725 for (j = 0; j < 3; j++){
435     oldPos[3 * i + j] = pos[j];
436 gezelter 600 }
437     }
438 tim 725 }
439 gezelter 600 }
440    
441 tim 645 template<typename T> void Integrator<T>::constrainA(){
442 mmeineke 787 int i, j;
443 mmeineke 558 int done;
444 gezelter 600 double posA[3], posB[3];
445     double velA[3], velB[3];
446 mmeineke 572 double pab[3];
447     double rab[3];
448 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
449 mmeineke 558 double rma, rmb;
450     double dx, dy, dz;
451 mmeineke 561 double rpab;
452 mmeineke 558 double rabsq, pabsq, rpabsq;
453     double diffsq;
454     double gab;
455     int iteration;
456    
457 tim 725 for (i = 0; i < nAtoms; i++){
458 mmeineke 558 moving[i] = 0;
459 tim 725 moved[i] = 1;
460 mmeineke 558 }
461 mmeineke 567
462 mmeineke 558 iteration = 0;
463     done = 0;
464 tim 725 while (!done && (iteration < maxIteration)){
465 mmeineke 558 done = 1;
466 tim 725 for (i = 0; i < nConstrained; i++){
467 mmeineke 558 a = constrainedA[i];
468     b = constrainedB[i];
469 mmeineke 563
470 tim 725 ax = (a * 3) + 0;
471     ay = (a * 3) + 1;
472     az = (a * 3) + 2;
473 mmeineke 563
474 tim 725 bx = (b * 3) + 0;
475     by = (b * 3) + 1;
476     bz = (b * 3) + 2;
477    
478     if (moved[a] || moved[b]){
479     atoms[a]->getPos(posA);
480     atoms[b]->getPos(posB);
481    
482     for (j = 0; j < 3; j++)
483 gezelter 600 pab[j] = posA[j] - posB[j];
484 mmeineke 567
485 tim 725 //periodic boundary condition
486 mmeineke 567
487 tim 725 info->wrapVector(pab);
488 mmeineke 572
489 tim 725 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
490 mmeineke 558
491 tim 725 rabsq = constrainedDsqr[i];
492     diffsq = rabsq - pabsq;
493 mmeineke 567
494 tim 725 // the original rattle code from alan tidesley
495     if (fabs(diffsq) > (tol * rabsq * 2)){
496     rab[0] = oldPos[ax] - oldPos[bx];
497     rab[1] = oldPos[ay] - oldPos[by];
498     rab[2] = oldPos[az] - oldPos[bz];
499 mmeineke 558
500 tim 725 info->wrapVector(rab);
501 mmeineke 567
502 tim 725 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
503 mmeineke 558
504 tim 725 rpabsq = rpab * rpab;
505 mmeineke 558
506 mmeineke 563
507 tim 725 if (rpabsq < (rabsq * -diffsq)){
508 mmeineke 558 #ifdef IS_MPI
509 tim 725 a = atoms[a]->getGlobalIndex();
510     b = atoms[b]->getGlobalIndex();
511 mmeineke 558 #endif //is_mpi
512 tim 725 sprintf(painCave.errMsg,
513     "Constraint failure in constrainA at atom %d and %d.\n", a,
514     b);
515     painCave.isFatal = 1;
516     simError();
517     }
518 mmeineke 558
519 tim 725 rma = 1.0 / atoms[a]->getMass();
520     rmb = 1.0 / atoms[b]->getMass();
521 mmeineke 567
522 tim 725 gab = diffsq / (2.0 * (rma + rmb) * rpab);
523 mmeineke 567
524 mmeineke 572 dx = rab[0] * gab;
525     dy = rab[1] * gab;
526     dz = rab[2] * gab;
527 mmeineke 558
528 tim 725 posA[0] += rma * dx;
529     posA[1] += rma * dy;
530     posA[2] += rma * dz;
531 mmeineke 558
532 tim 725 atoms[a]->setPos(posA);
533 mmeineke 558
534 tim 725 posB[0] -= rmb * dx;
535     posB[1] -= rmb * dy;
536     posB[2] -= rmb * dz;
537 gezelter 600
538 tim 725 atoms[b]->setPos(posB);
539 gezelter 600
540 mmeineke 558 dx = dx / dt;
541     dy = dy / dt;
542     dz = dz / dt;
543    
544 tim 725 atoms[a]->getVel(velA);
545 mmeineke 558
546 tim 725 velA[0] += rma * dx;
547     velA[1] += rma * dy;
548     velA[2] += rma * dz;
549 mmeineke 558
550 tim 725 atoms[a]->setVel(velA);
551 gezelter 600
552 tim 725 atoms[b]->getVel(velB);
553 gezelter 600
554 tim 725 velB[0] -= rmb * dx;
555     velB[1] -= rmb * dy;
556     velB[2] -= rmb * dz;
557 gezelter 600
558 tim 725 atoms[b]->setVel(velB);
559 gezelter 600
560 tim 725 moving[a] = 1;
561     moving[b] = 1;
562     done = 0;
563     }
564 mmeineke 558 }
565     }
566 tim 725
567     for (i = 0; i < nAtoms; i++){
568 mmeineke 558 moved[i] = moving[i];
569     moving[i] = 0;
570     }
571    
572     iteration++;
573     }
574    
575 tim 725 if (!done){
576     sprintf(painCave.errMsg,
577     "Constraint failure in constrainA, too many iterations: %d\n",
578     iteration);
579 mmeineke 558 painCave.isFatal = 1;
580     simError();
581     }
582 mmeineke 768
583 mmeineke 558 }
584    
585 tim 725 template<typename T> void Integrator<T>::constrainB(void){
586 mmeineke 787 int i, j;
587 mmeineke 558 int done;
588 gezelter 600 double posA[3], posB[3];
589     double velA[3], velB[3];
590 mmeineke 558 double vxab, vyab, vzab;
591 mmeineke 572 double rab[3];
592 mmeineke 563 int a, b, ax, ay, az, bx, by, bz;
593 mmeineke 558 double rma, rmb;
594     double dx, dy, dz;
595 mmeineke 787 double rvab;
596 mmeineke 558 double gab;
597     int iteration;
598    
599 tim 725 for (i = 0; i < nAtoms; i++){
600 mmeineke 558 moving[i] = 0;
601     moved[i] = 1;
602     }
603    
604     done = 0;
605 mmeineke 561 iteration = 0;
606 tim 725 while (!done && (iteration < maxIteration)){
607 mmeineke 567 done = 1;
608    
609 tim 725 for (i = 0; i < nConstrained; i++){
610 mmeineke 558 a = constrainedA[i];
611     b = constrainedB[i];
612    
613 tim 725 ax = (a * 3) + 0;
614     ay = (a * 3) + 1;
615     az = (a * 3) + 2;
616 mmeineke 563
617 tim 725 bx = (b * 3) + 0;
618     by = (b * 3) + 1;
619     bz = (b * 3) + 2;
620 mmeineke 563
621 tim 725 if (moved[a] || moved[b]){
622     atoms[a]->getVel(velA);
623     atoms[b]->getVel(velB);
624 mmeineke 558
625 tim 725 vxab = velA[0] - velB[0];
626     vyab = velA[1] - velB[1];
627     vzab = velA[2] - velB[2];
628 gezelter 600
629 tim 725 atoms[a]->getPos(posA);
630     atoms[b]->getPos(posB);
631 gezelter 600
632 tim 725 for (j = 0; j < 3; j++)
633 gezelter 600 rab[j] = posA[j] - posB[j];
634 mmeineke 558
635 tim 725 info->wrapVector(rab);
636 mmeineke 558
637 tim 725 rma = 1.0 / atoms[a]->getMass();
638     rmb = 1.0 / atoms[b]->getMass();
639 mmeineke 558
640 tim 725 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
641 gezelter 600
642 tim 725 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
643 gezelter 600
644 tim 725 if (fabs(gab) > tol){
645     dx = rab[0] * gab;
646     dy = rab[1] * gab;
647     dz = rab[2] * gab;
648    
649     velA[0] += rma * dx;
650     velA[1] += rma * dy;
651     velA[2] += rma * dz;
652    
653     atoms[a]->setVel(velA);
654    
655     velB[0] -= rmb * dx;
656     velB[1] -= rmb * dy;
657     velB[2] -= rmb * dz;
658    
659     atoms[b]->setVel(velB);
660    
661     moving[a] = 1;
662     moving[b] = 1;
663     done = 0;
664     }
665 mmeineke 558 }
666     }
667    
668 tim 725 for (i = 0; i < nAtoms; i++){
669 mmeineke 558 moved[i] = moving[i];
670     moving[i] = 0;
671     }
672 tim 725
673 mmeineke 558 iteration++;
674     }
675    
676 tim 725 if (!done){
677     sprintf(painCave.errMsg,
678     "Constraint failure in constrainB, too many iterations: %d\n",
679     iteration);
680 mmeineke 558 painCave.isFatal = 1;
681     simError();
682 tim 725 }
683 mmeineke 558 }
684    
685 mmeineke 778 template<typename T> void Integrator<T>::rotationPropagation
686     ( DirectionalAtom* dAtom, double ji[3] ){
687    
688     double angle;
689     double A[3][3], I[3][3];
690    
691     // use the angular velocities to propagate the rotation matrix a
692     // full time step
693    
694     dAtom->getA(A);
695     dAtom->getI(I);
696 tim 837
697     // rotate about the x-axis
698 mmeineke 778 angle = dt2 * ji[0] / I[0][0];
699 tim 837 this->rotate( 1, 2, angle, ji, A );
700    
701 mmeineke 778 // rotate about the y-axis
702     angle = dt2 * ji[1] / I[1][1];
703     this->rotate( 2, 0, angle, ji, A );
704 tim 837
705 mmeineke 778 // rotate about the z-axis
706     angle = dt * ji[2] / I[2][2];
707     this->rotate( 0, 1, angle, ji, A);
708 tim 837
709 mmeineke 778 // rotate about the y-axis
710     angle = dt2 * ji[1] / I[1][1];
711     this->rotate( 2, 0, angle, ji, A );
712 tim 837
713 mmeineke 778 // rotate about the x-axis
714     angle = dt2 * ji[0] / I[0][0];
715     this->rotate( 1, 2, angle, ji, A );
716 tim 837
717     dAtom->setA( A );
718 mmeineke 778 }
719    
720 tim 725 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
721     double angle, double ji[3],
722     double A[3][3]){
723     int i, j, k;
724 mmeineke 558 double sinAngle;
725     double cosAngle;
726     double angleSqr;
727     double angleSqrOver4;
728     double top, bottom;
729     double rot[3][3];
730     double tempA[3][3];
731     double tempJ[3];
732    
733     // initialize the tempA
734    
735 tim 725 for (i = 0; i < 3; i++){
736     for (j = 0; j < 3; j++){
737 gezelter 600 tempA[j][i] = A[i][j];
738 mmeineke 558 }
739     }
740    
741     // initialize the tempJ
742    
743 tim 725 for (i = 0; i < 3; i++)
744     tempJ[i] = ji[i];
745    
746 mmeineke 558 // initalize rot as a unit matrix
747    
748     rot[0][0] = 1.0;
749     rot[0][1] = 0.0;
750     rot[0][2] = 0.0;
751    
752     rot[1][0] = 0.0;
753     rot[1][1] = 1.0;
754     rot[1][2] = 0.0;
755 tim 725
756 mmeineke 558 rot[2][0] = 0.0;
757     rot[2][1] = 0.0;
758     rot[2][2] = 1.0;
759 tim 725
760 mmeineke 558 // use a small angle aproximation for sin and cosine
761    
762 tim 725 angleSqr = angle * angle;
763 mmeineke 558 angleSqrOver4 = angleSqr / 4.0;
764     top = 1.0 - angleSqrOver4;
765     bottom = 1.0 + angleSqrOver4;
766    
767     cosAngle = top / bottom;
768     sinAngle = angle / bottom;
769    
770     rot[axes1][axes1] = cosAngle;
771     rot[axes2][axes2] = cosAngle;
772    
773     rot[axes1][axes2] = sinAngle;
774     rot[axes2][axes1] = -sinAngle;
775 tim 725
776 mmeineke 558 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
777 tim 725
778     for (i = 0; i < 3; i++){
779 mmeineke 558 ji[i] = 0.0;
780 tim 725 for (k = 0; k < 3; k++){
781 mmeineke 558 ji[i] += rot[i][k] * tempJ[k];
782     }
783     }
784    
785 tim 837 // rotate the Rotation matrix acording to:
786 mmeineke 558 // A[][] = A[][] * transpose(rot[][])
787    
788    
789 mmeineke 561 // NOte for as yet unknown reason, we are performing the
790 mmeineke 558 // calculation as:
791     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
792    
793 tim 725 for (i = 0; i < 3; i++){
794     for (j = 0; j < 3; j++){
795 gezelter 600 A[j][i] = 0.0;
796 tim 725 for (k = 0; k < 3; k++){
797     A[j][i] += tempA[i][k] * rot[j][k];
798 mmeineke 558 }
799     }
800     }
801     }
802 tim 677
803 tim 725 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
804     myFF->doForces(calcPot, calcStress);
805 tim 677 }
806    
807     template<typename T> void Integrator<T>::thermalize(){
808 tim 725 tStats->velocitize();
809 tim 677 }
810 tim 763
811     template<typename T> double Integrator<T>::getConservedQuantity(void){
812     return tStats->getTotalE();
813 mmeineke 768 }
814 tim 837 template<typename T> string Integrator<T>::getAdditionalParameters(void){
815     //By default, return a null string
816     //The reason we use string instead of char* is that if we use char*, we will
817     //return a pointer point to local variable which might cause problem
818     return string();
819     }