ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Integrator.cpp (file contents):
Revision 929 by tim, Tue Jan 13 15:46:49 2004 UTC vs.
Revision 1144 by tim, Sat May 1 18:52:38 2004 UTC

# Line 31 | Line 31 | template<typename T> Integrator<T>::Integrator(SimInfo
31    }
32  
33    nAtoms = info->n_atoms;
34 +  integrableObjects = info->integrableObjects;
35  
36    // check for constraints
37  
# Line 68 | Line 69 | template<typename T> void Integrator<T>::checkConstrai
69  
70    SRI** theArray;
71    for (int i = 0; i < nMols; i++){
72 <    theArray = (SRI * *) molecules[i].getMyBonds();
72 >
73 >          theArray = (SRI * *) molecules[i].getMyBonds();
74      for (int j = 0; j < molecules[i].getNBonds(); j++){
75        constrained = theArray[j]->is_constrained();
76  
# Line 114 | Line 116 | template<typename T> void Integrator<T>::checkConstrai
116      }
117    }
118  
119 +
120    if (nConstrained > 0){
121      isConstrained = 1;
122  
# Line 135 | Line 138 | template<typename T> void Integrator<T>::checkConstrai
138      }
139  
140  
141 <    // save oldAtoms to check for lode balanceing later on.
141 >    // save oldAtoms to check for lode balancing later on.
142  
143      oldAtoms = nAtoms;
144  
# Line 175 | Line 178 | template<typename T> void Integrator<T>::integrate(voi
178    dt2 = 0.5 * dt;
179  
180    readyCheck();
181 +
182 +  // remove center of mass drift velocity (in case we passed in a configuration
183 +  // that was drifting
184 +  tStats->removeCOMdrift();
185  
186    // initialize the forces before the first step
187  
188    calcForce(1, 1);
189 <
189 >  
190    if (nConstrained){
191      preMove();
192      constrainA();
# Line 207 | Line 214 | template<typename T> void Integrator<T>::integrate(voi
214    MPIcheckPoint();
215   #endif // is_mpi
216  
217 <  while (info->getTime() < runTime){
217 >  while (info->getTime() < runTime && !stopIntegrator()){
218      if ((info->getTime() + dt) >= currStatus){
219        calcPot = 1;
220        calcStress = 1;
# Line 329 | Line 336 | template<typename T> void Integrator<T>::moveA(void){
336  
337  
338   template<typename T> void Integrator<T>::moveA(void){
339 <  int i, j;
339 >  size_t i, j;
340    DirectionalAtom* dAtom;
341    double Tb[3], ji[3];
342    double vel[3], pos[3], frc[3];
343    double mass;
344 +
345 +  for (i = 0; i < integrableObjects.size() ; i++){
346 +    integrableObjects[i]->getVel(vel);
347 +    integrableObjects[i]->getPos(pos);
348 +    integrableObjects[i]->getFrc(frc);
349  
350 <  for (i = 0; i < nAtoms; i++){
351 <    atoms[i]->getVel(vel);
352 <    atoms[i]->getPos(pos);
341 <    atoms[i]->getFrc(frc);
350 >    std::cerr << "i =\t" << i << "\t" << frc[0] << "\t" << frc[1]<< "\t" << frc[2] << "\n";
351 >    
352 >    mass = integrableObjects[i]->getMass();
353  
343    mass = atoms[i]->getMass();
344
354      for (j = 0; j < 3; j++){
355        // velocity half step
356        vel[j] += (dt2 * frc[j] / mass) * eConvert;
# Line 349 | Line 358 | template<typename T> void Integrator<T>::moveA(void){
358        pos[j] += dt * vel[j];
359      }
360  
361 <    atoms[i]->setVel(vel);
362 <    atoms[i]->setPos(pos);
361 >    integrableObjects[i]->setVel(vel);
362 >    integrableObjects[i]->setPos(pos);
363  
364 <    if (atoms[i]->isDirectional()){
356 <      dAtom = (DirectionalAtom *) atoms[i];
364 >    if (integrableObjects[i]->isDirectional()){
365  
366        // get and convert the torque to body frame
367  
368 <      dAtom->getTrq(Tb);
369 <      dAtom->lab2Body(Tb);
368 >      integrableObjects[i]->getTrq(Tb);
369 >      integrableObjects[i]->lab2Body(Tb);
370  
371        // get the angular momentum, and propagate a half step
372  
373 <      dAtom->getJ(ji);
373 >      integrableObjects[i]->getJ(ji);
374  
375        for (j = 0; j < 3; j++)
376          ji[j] += (dt2 * Tb[j]) * eConvert;
377  
378 <      this->rotationPropagation( dAtom, ji );
378 >      this->rotationPropagation( integrableObjects[i], ji );
379  
380 <      dAtom->setJ(ji);
380 >      integrableObjects[i]->setJ(ji);
381      }
382    }
383  
# Line 381 | Line 389 | template<typename T> void Integrator<T>::moveB(void){
389  
390   template<typename T> void Integrator<T>::moveB(void){
391    int i, j;
384  DirectionalAtom* dAtom;
392    double Tb[3], ji[3];
393    double vel[3], frc[3];
394    double mass;
395  
396 <  for (i = 0; i < nAtoms; i++){
397 <    atoms[i]->getVel(vel);
398 <    atoms[i]->getFrc(frc);
396 >  for (i = 0; i < integrableObjects.size(); i++){
397 >    integrableObjects[i]->getVel(vel);
398 >    integrableObjects[i]->getFrc(frc);
399  
400 <    mass = atoms[i]->getMass();
400 >    mass = integrableObjects[i]->getMass();
401  
402      // velocity half step
403      for (j = 0; j < 3; j++)
404        vel[j] += (dt2 * frc[j] / mass) * eConvert;
405  
406 <    atoms[i]->setVel(vel);
406 >    integrableObjects[i]->setVel(vel);
407  
408 <    if (atoms[i]->isDirectional()){
402 <      dAtom = (DirectionalAtom *) atoms[i];
408 >    if (integrableObjects[i]->isDirectional()){
409  
410        // get and convert the torque to body frame
411  
412 <      dAtom->getTrq(Tb);
413 <      dAtom->lab2Body(Tb);
412 >      integrableObjects[i]->getTrq(Tb);
413 >      integrableObjects[i]->lab2Body(Tb);
414  
415        // get the angular momentum, and propagate a half step
416  
417 <      dAtom->getJ(ji);
417 >      integrableObjects[i]->getJ(ji);
418  
419        for (j = 0; j < 3; j++)
420          ji[j] += (dt2 * Tb[j]) * eConvert;
421  
422  
423 <      dAtom->setJ(ji);
423 >      integrableObjects[i]->setJ(ji);
424      }
425    }
426  
# Line 683 | Line 689 | template<typename T> void Integrator<T>::rotationPropa
689   }
690  
691   template<typename T> void Integrator<T>::rotationPropagation
692 < ( DirectionalAtom* dAtom, double ji[3] ){
692 > ( StuntDouble* sd, double ji[3] ){
693  
694    double angle;
695    double A[3][3], I[3][3];
696 +  int i, j, k;
697  
698    // use the angular velocities to propagate the rotation matrix a
699    // full time step
700  
701 <  dAtom->getA(A);
702 <  dAtom->getI(I);
696 <
697 <  // rotate about the x-axis
698 <  angle = dt2 * ji[0] / I[0][0];
699 <  this->rotate( 1, 2, angle, ji, A );
701 >  sd->getA(A);
702 >  sd->getI(I);
703  
704 <  // rotate about the y-axis
705 <  angle = dt2 * ji[1] / I[1][1];
706 <  this->rotate( 2, 0, angle, ji, A );
704 >  if (sd->isLinear()) {
705 >    i = sd->linearAxis();
706 >    j = (i+1)%3;
707 >    k = (i+2)%3;
708 >    
709 >    angle = dt2 * ji[j] / I[j][j];
710 >    this->rotate( k, i, angle, ji, A );
711  
712 <  // rotate about the z-axis
713 <  angle = dt * ji[2] / I[2][2];
707 <  this->rotate( 0, 1, angle, ji, A);
712 >    angle = dt * ji[k] / I[k][k];
713 >    this->rotate( i, j, angle, ji, A);
714  
715 <  // rotate about the y-axis
716 <  angle = dt2 * ji[1] / I[1][1];
711 <  this->rotate( 2, 0, angle, ji, A );
715 >    angle = dt2 * ji[j] / I[j][j];
716 >    this->rotate( k, i, angle, ji, A );
717  
718 <  // rotate about the x-axis
719 <  angle = dt2 * ji[0] / I[0][0];
720 <  this->rotate( 1, 2, angle, ji, A );
721 <
722 <  dAtom->setA( A  );
718 >  } else {
719 >    // rotate about the x-axis
720 >    angle = dt2 * ji[0] / I[0][0];
721 >    this->rotate( 1, 2, angle, ji, A );
722 >    
723 >    // rotate about the y-axis
724 >    angle = dt2 * ji[1] / I[1][1];
725 >    this->rotate( 2, 0, angle, ji, A );
726 >    
727 >    // rotate about the z-axis
728 >    angle = dt * ji[2] / I[2][2];
729 >    this->rotate( 0, 1, angle, ji, A);
730 >    
731 >    // rotate about the y-axis
732 >    angle = dt2 * ji[1] / I[1][1];
733 >    this->rotate( 2, 0, angle, ji, A );
734 >    
735 >    // rotate about the x-axis
736 >    angle = dt2 * ji[0] / I[0][0];
737 >    this->rotate( 1, 2, angle, ji, A );
738 >    
739 >  }
740 >  sd->setA( A  );
741   }
742  
743   template<typename T> void Integrator<T>::rotate(int axes1, int axes2,

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines