ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Integrator.cpp (file contents):
Revision 843 by mmeineke, Wed Oct 29 20:41:39 2003 UTC vs.
Revision 1150 by gezelter, Fri May 7 21:35:05 2004 UTC

# Line 7 | Line 7
7   #include <unistd.h>
8   #endif //is_mpi
9  
10 + #ifdef PROFILE
11 + #include "mdProfile.hpp"
12 + #endif // profile
13 +
14   #include "Integrator.hpp"
15   #include "simError.h"
16  
# Line 27 | Line 31 | template<typename T> Integrator<T>::Integrator(SimInfo
31    }
32  
33    nAtoms = info->n_atoms;
34 +  integrableObjects = info->integrableObjects;
35  
36    // check for constraints
37  
# Line 64 | Line 69 | template<typename T> void Integrator<T>::checkConstrai
69  
70    SRI** theArray;
71    for (int i = 0; i < nMols; i++){
72 <    theArray = (SRI * *) molecules[i].getMyBonds();
72 >
73 >          theArray = (SRI * *) molecules[i].getMyBonds();
74      for (int j = 0; j < molecules[i].getNBonds(); j++){
75        constrained = theArray[j]->is_constrained();
76  
# Line 110 | Line 116 | template<typename T> void Integrator<T>::checkConstrai
116      }
117    }
118  
119 +
120    if (nConstrained > 0){
121      isConstrained = 1;
122  
# Line 131 | Line 138 | template<typename T> void Integrator<T>::checkConstrai
138      }
139  
140  
141 <    // save oldAtoms to check for lode balanceing later on.
141 >    // save oldAtoms to check for lode balancing later on.
142  
143      oldAtoms = nAtoms;
144  
# Line 172 | Line 179 | template<typename T> void Integrator<T>::integrate(voi
179  
180    readyCheck();
181  
182 +  // remove center of mass drift velocity (in case we passed in a configuration
183 +  // that was drifting
184 +  tStats->removeCOMdrift();
185 +
186    // initialize the forces before the first step
187  
188    calcForce(1, 1);
189 <
189 >  
190    if (nConstrained){
191      preMove();
192      constrainA();
# Line 203 | Line 214 | template<typename T> void Integrator<T>::integrate(voi
214    MPIcheckPoint();
215   #endif // is_mpi
216  
217 <  while (info->getTime() < runTime){
217 >  while (info->getTime() < runTime && !stopIntegrator()){
218      if ((info->getTime() + dt) >= currStatus){
219        calcPot = 1;
220        calcStress = 1;
221      }
222  
223 + #ifdef PROFILE
224 +    startProfile( pro1 );
225 + #endif
226 +    
227      integrateStep(calcPot, calcStress);
228 +
229 + #ifdef PROFILE
230 +    endProfile( pro1 );
231  
232 +    startProfile( pro2 );
233 + #endif // profile
234 +
235      info->incrTime(dt);
236  
237      if (info->setTemp){
# Line 238 | Line 259 | template<typename T> void Integrator<T>::integrate(voi
259          currReset += resetTime;
260        }
261      }
262 +    
263 + #ifdef PROFILE
264 +    endProfile( pro2 );
265 + #endif //profile
266  
267   #ifdef IS_MPI
268      strcpy(checkPointMsg, "successfully took a time step.");
# Line 245 | Line 270 | template<typename T> void Integrator<T>::integrate(voi
270   #endif // is_mpi
271    }
272  
248
249  // write the last frame
250  dumpOut->writeDump(info->getTime());
251
273    delete dumpOut;
274    delete statOut;
275   }
# Line 256 | Line 277 | template<typename T> void Integrator<T>::integrateStep
277   template<typename T> void Integrator<T>::integrateStep(int calcPot,
278                                                         int calcStress){
279    // Position full step, and velocity half step
280 +
281 + #ifdef PROFILE
282 +  startProfile(pro3);
283 + #endif //profile
284 +
285    preMove();
286  
287 <  moveA();
287 > #ifdef PROFILE
288 >  endProfile(pro3);
289 >
290 >  startProfile(pro4);
291 > #endif // profile
292  
293 +  moveA();
294  
295 + #ifdef PROFILE
296 +  endProfile(pro4);
297 +  
298 +  startProfile(pro5);
299 + #endif//profile
300  
301  
302   #ifdef IS_MPI
# Line 278 | Line 314 | template<typename T> void Integrator<T>::integrateStep
314    MPIcheckPoint();
315   #endif // is_mpi
316  
317 + #ifdef PROFILE
318 +  endProfile( pro5 );
319  
320 +  startProfile( pro6 );
321 + #endif //profile
322 +
323    // finish the velocity  half step
324  
325    moveB();
326  
327 + #ifdef PROFILE
328 +  endProfile(pro6);
329 + #endif // profile
330  
287
331   #ifdef IS_MPI
332    strcpy(checkPointMsg, "Succesful moveB\n");
333    MPIcheckPoint();
# Line 293 | Line 336 | template<typename T> void Integrator<T>::moveA(void){
336  
337  
338   template<typename T> void Integrator<T>::moveA(void){
339 <  int i, j;
339 >  size_t i, j;
340    DirectionalAtom* dAtom;
341    double Tb[3], ji[3];
342    double vel[3], pos[3], frc[3];
343    double mass;
344 +
345 +  for (i = 0; i < integrableObjects.size() ; i++){
346 +    integrableObjects[i]->getVel(vel);
347 +    integrableObjects[i]->getPos(pos);
348 +    integrableObjects[i]->getFrc(frc);
349 +    
350 +    mass = integrableObjects[i]->getMass();
351  
302  for (i = 0; i < nAtoms; i++){
303    atoms[i]->getVel(vel);
304    atoms[i]->getPos(pos);
305    atoms[i]->getFrc(frc);
306
307    mass = atoms[i]->getMass();
308
352      for (j = 0; j < 3; j++){
353        // velocity half step
354        vel[j] += (dt2 * frc[j] / mass) * eConvert;
# Line 313 | Line 356 | template<typename T> void Integrator<T>::moveA(void){
356        pos[j] += dt * vel[j];
357      }
358  
359 <    atoms[i]->setVel(vel);
360 <    atoms[i]->setPos(pos);
359 >    integrableObjects[i]->setVel(vel);
360 >    integrableObjects[i]->setPos(pos);
361  
362 <    if (atoms[i]->isDirectional()){
320 <      dAtom = (DirectionalAtom *) atoms[i];
362 >    if (integrableObjects[i]->isDirectional()){
363  
364        // get and convert the torque to body frame
365  
366 <      dAtom->getTrq(Tb);
367 <      dAtom->lab2Body(Tb);
366 >      integrableObjects[i]->getTrq(Tb);
367 >      integrableObjects[i]->lab2Body(Tb);
368  
369        // get the angular momentum, and propagate a half step
370  
371 <      dAtom->getJ(ji);
371 >      integrableObjects[i]->getJ(ji);
372  
373        for (j = 0; j < 3; j++)
374          ji[j] += (dt2 * Tb[j]) * eConvert;
375  
376 <      this->rotationPropagation( dAtom, ji );
376 >      this->rotationPropagation( integrableObjects[i], ji );
377  
378 <      dAtom->setJ(ji);
378 >      integrableObjects[i]->setJ(ji);
379      }
380    }
381  
# Line 345 | Line 387 | template<typename T> void Integrator<T>::moveB(void){
387  
388   template<typename T> void Integrator<T>::moveB(void){
389    int i, j;
348  DirectionalAtom* dAtom;
390    double Tb[3], ji[3];
391    double vel[3], frc[3];
392    double mass;
393  
394 <  for (i = 0; i < nAtoms; i++){
395 <    atoms[i]->getVel(vel);
396 <    atoms[i]->getFrc(frc);
394 >  for (i = 0; i < integrableObjects.size(); i++){
395 >    integrableObjects[i]->getVel(vel);
396 >    integrableObjects[i]->getFrc(frc);
397  
398 <    mass = atoms[i]->getMass();
398 >    mass = integrableObjects[i]->getMass();
399  
400      // velocity half step
401      for (j = 0; j < 3; j++)
402        vel[j] += (dt2 * frc[j] / mass) * eConvert;
403  
404 <    atoms[i]->setVel(vel);
404 >    integrableObjects[i]->setVel(vel);
405  
406 <    if (atoms[i]->isDirectional()){
366 <      dAtom = (DirectionalAtom *) atoms[i];
406 >    if (integrableObjects[i]->isDirectional()){
407  
408        // get and convert the torque to body frame
409  
410 <      dAtom->getTrq(Tb);
411 <      dAtom->lab2Body(Tb);
410 >      integrableObjects[i]->getTrq(Tb);
411 >      integrableObjects[i]->lab2Body(Tb);
412  
413        // get the angular momentum, and propagate a half step
414  
415 <      dAtom->getJ(ji);
415 >      integrableObjects[i]->getJ(ji);
416  
417        for (j = 0; j < 3; j++)
418          ji[j] += (dt2 * Tb[j]) * eConvert;
419  
420  
421 <      dAtom->setJ(ji);
421 >      integrableObjects[i]->setJ(ji);
422      }
423    }
424  
# Line 647 | Line 687 | template<typename T> void Integrator<T>::rotationPropa
687   }
688  
689   template<typename T> void Integrator<T>::rotationPropagation
690 < ( DirectionalAtom* dAtom, double ji[3] ){
690 > ( StuntDouble* sd, double ji[3] ){
691  
692    double angle;
693    double A[3][3], I[3][3];
694 +  int i, j, k;
695  
696    // use the angular velocities to propagate the rotation matrix a
697    // full time step
698  
699 <  dAtom->getA(A);
700 <  dAtom->getI(I);
699 >  sd->getA(A);
700 >  sd->getI(I);
701  
702 <  // rotate about the x-axis
703 <  angle = dt2 * ji[0] / I[0][0];
704 <  this->rotate( 1, 2, angle, ji, A );
705 <
706 <  // rotate about the y-axis
707 <  angle = dt2 * ji[1] / I[1][1];
708 <  this->rotate( 2, 0, angle, ji, A );
668 <
669 <  // rotate about the z-axis
670 <  angle = dt * ji[2] / I[2][2];
671 <  this->rotate( 0, 1, angle, ji, A);
702 >  if (sd->isLinear()) {
703 >    i = sd->linearAxis();
704 >    j = (i+1)%3;
705 >    k = (i+2)%3;
706 >    
707 >    angle = dt2 * ji[j] / I[j][j];
708 >    this->rotate( k, i, angle, ji, A );
709  
710 <  // rotate about the y-axis
711 <  angle = dt2 * ji[1] / I[1][1];
675 <  this->rotate( 2, 0, angle, ji, A );
710 >    angle = dt * ji[k] / I[k][k];
711 >    this->rotate( i, j, angle, ji, A);
712  
713 <  // rotate about the x-axis
714 <  angle = dt2 * ji[0] / I[0][0];
679 <  this->rotate( 1, 2, angle, ji, A );
713 >    angle = dt2 * ji[j] / I[j][j];
714 >    this->rotate( k, i, angle, ji, A );
715  
716 <  dAtom->setA( A  );
716 >  } else {
717 >    // rotate about the x-axis
718 >    angle = dt2 * ji[0] / I[0][0];
719 >    this->rotate( 1, 2, angle, ji, A );
720 >    
721 >    // rotate about the y-axis
722 >    angle = dt2 * ji[1] / I[1][1];
723 >    this->rotate( 2, 0, angle, ji, A );
724 >    
725 >    // rotate about the z-axis
726 >    angle = dt * ji[2] / I[2][2];
727 >    this->rotate( 0, 1, angle, ji, A);
728 >    
729 >    // rotate about the y-axis
730 >    angle = dt2 * ji[1] / I[1][1];
731 >    this->rotate( 2, 0, angle, ji, A );
732 >    
733 >    // rotate about the x-axis
734 >    angle = dt2 * ji[0] / I[0][0];
735 >    this->rotate( 1, 2, angle, ji, A );
736 >    
737 >  }
738 >  sd->setA( A  );
739   }
740  
741   template<typename T> void Integrator<T>::rotate(int axes1, int axes2,

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines