ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Integrator.cpp (file contents):
Revision 559 by mmeineke, Thu Jun 19 22:02:44 2003 UTC vs.
Revision 1187 by chrisfen, Sat May 22 18:16:18 2004 UTC

# Line 1 | Line 1
1   #include <iostream>
2 < #include <cstdlib>
2 > #include <stdlib.h>
3 > #include <math.h>
4  
5   #ifdef IS_MPI
6   #include "mpiSimulation.hpp"
7   #include <unistd.h>
8   #endif //is_mpi
9  
10 + #ifdef PROFILE
11 + #include "mdProfile.hpp"
12 + #endif // profile
13 +
14   #include "Integrator.hpp"
15   #include "simError.h"
16  
17  
18 < Integrator::Integrator( SimInfo* theInfo, ForceFields* the_ff ){
19 <  
18 > template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19 >                                               ForceFields* the_ff){
20    info = theInfo;
21    myFF = the_ff;
22    isFirst = 1;
# Line 20 | Line 25 | Integrator::Integrator( SimInfo* theInfo, ForceFields*
25    nMols = info->n_mol;
26  
27    // give a little love back to the SimInfo object
23  
24  if( info->the_integrator != NULL ) delete info->the_integrator;
25  info->the_integrator = this;
28  
29 <  nAtoms = info->n_atoms;
29 >  if (info->the_integrator != NULL){
30 >    delete info->the_integrator;
31 >  }
32  
33 +  nAtoms = info->n_atoms;
34 +  integrableObjects = info->integrableObjects;
35 +
36    // check for constraints
37 <  
38 <  constrainedA    = NULL;
39 <  constrainedB    = NULL;
37 >
38 >  constrainedA = NULL;
39 >  constrainedB = NULL;
40    constrainedDsqr = NULL;
41 <  moving          = NULL;
42 <  moved           = NULL;
43 <  prePos          = NULL;
44 <  
41 >  moving = NULL;
42 >  moved = NULL;
43 >  oldPos = NULL;
44 >
45    nConstrained = 0;
46  
47    checkConstraints();
48 +
49   }
50  
51 < Integrator::~Integrator() {
52 <  
45 <  if( nConstrained ){
51 > template<typename T> Integrator<T>::~Integrator(){
52 >  if (nConstrained){
53      delete[] constrainedA;
54      delete[] constrainedB;
55      delete[] constrainedDsqr;
56      delete[] moving;
57      delete[] moved;
58 <    delete[] prePos;
58 >    delete[] oldPos;
59    }
53  
60   }
61  
62 < void Integrator::checkConstraints( void ){
57 <
58 <
62 > template<typename T> void Integrator<T>::checkConstraints(void){
63    isConstrained = 0;
64  
65 <  Constraint *temp_con;
66 <  Constraint *dummy_plug;
65 >  Constraint* temp_con;
66 >  Constraint* dummy_plug;
67    temp_con = new Constraint[info->n_SRI];
68    nConstrained = 0;
69    int constrained = 0;
70 <  
70 >
71    SRI** theArray;
72 <  for(int i = 0; i < nMols; i++){
73 <    
74 <    theArray = (SRI**) molecules[i].getMyBonds();
75 <    for(int j=0; j<molecules[i].getNBonds(); j++){
72 <      
72 >  for (int i = 0; i < nMols; i++){
73 >
74 >          theArray = (SRI * *) molecules[i].getMyBonds();
75 >    for (int j = 0; j < molecules[i].getNBonds(); j++){
76        constrained = theArray[j]->is_constrained();
77 <      
78 <      if(constrained){
79 <        
80 <        dummy_plug = theArray[j]->get_constraint();
81 <        temp_con[nConstrained].set_a( dummy_plug->get_a() );
82 <        temp_con[nConstrained].set_b( dummy_plug->get_b() );
83 <        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
84 <        
85 <        nConstrained++;
83 <        constrained = 0;
77 >
78 >      if (constrained){
79 >        dummy_plug = theArray[j]->get_constraint();
80 >        temp_con[nConstrained].set_a(dummy_plug->get_a());
81 >        temp_con[nConstrained].set_b(dummy_plug->get_b());
82 >        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
83 >
84 >        nConstrained++;
85 >        constrained = 0;
86        }
87      }
88  
89 <    theArray = (SRI**) molecules[i].getMyBends();
90 <    for(int j=0; j<molecules[i].getNBends(); j++){
89 <      
89 >    theArray = (SRI * *) molecules[i].getMyBends();
90 >    for (int j = 0; j < molecules[i].getNBends(); j++){
91        constrained = theArray[j]->is_constrained();
92 <      
93 <      if(constrained){
94 <        
95 <        dummy_plug = theArray[j]->get_constraint();
96 <        temp_con[nConstrained].set_a( dummy_plug->get_a() );
97 <        temp_con[nConstrained].set_b( dummy_plug->get_b() );
98 <        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
99 <        
100 <        nConstrained++;
100 <        constrained = 0;
92 >
93 >      if (constrained){
94 >        dummy_plug = theArray[j]->get_constraint();
95 >        temp_con[nConstrained].set_a(dummy_plug->get_a());
96 >        temp_con[nConstrained].set_b(dummy_plug->get_b());
97 >        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
98 >
99 >        nConstrained++;
100 >        constrained = 0;
101        }
102      }
103  
104 <    theArray = (SRI**) molecules[i].getMyTorsions();
105 <    for(int j=0; j<molecules[i].getNTorsions(); j++){
106 <      
104 >    theArray = (SRI * *) molecules[i].getMyTorsions();
105 >    for (int j = 0; j < molecules[i].getNTorsions(); j++){
106        constrained = theArray[j]->is_constrained();
107 <      
108 <      if(constrained){
109 <        
110 <        dummy_plug = theArray[j]->get_constraint();
111 <        temp_con[nConstrained].set_a( dummy_plug->get_a() );
112 <        temp_con[nConstrained].set_b( dummy_plug->get_b() );
113 <        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
114 <        
115 <        nConstrained++;
117 <        constrained = 0;
107 >
108 >      if (constrained){
109 >        dummy_plug = theArray[j]->get_constraint();
110 >        temp_con[nConstrained].set_a(dummy_plug->get_a());
111 >        temp_con[nConstrained].set_b(dummy_plug->get_b());
112 >        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
113 >
114 >        nConstrained++;
115 >        constrained = 0;
116        }
117      }
118    }
119  
120 <  if(nConstrained > 0){
121 <    
120 >
121 >  if (nConstrained > 0){
122      isConstrained = 1;
123  
124 <    if(constrainedA != NULL )    delete[] constrainedA;
125 <    if(constrainedB != NULL )    delete[] constrainedB;
126 <    if(constrainedDsqr != NULL ) delete[] constrainedDsqr;
124 >    if (constrainedA != NULL)
125 >      delete[] constrainedA;
126 >    if (constrainedB != NULL)
127 >      delete[] constrainedB;
128 >    if (constrainedDsqr != NULL)
129 >      delete[] constrainedDsqr;
130  
131 <    constrainedA =    new int[nConstrained];
132 <    constrainedB =    new int[nConstrained];
131 >    constrainedA = new int[nConstrained];
132 >    constrainedB = new int[nConstrained];
133      constrainedDsqr = new double[nConstrained];
134 <    
135 <    for( int i = 0; i < nConstrained; i++){
135 <      
134 >
135 >    for (int i = 0; i < nConstrained; i++){
136        constrainedA[i] = temp_con[i].get_a();
137        constrainedB[i] = temp_con[i].get_b();
138        constrainedDsqr[i] = temp_con[i].get_dsqr();
139      }
140  
141 <    
142 <    // save oldAtoms to check for lode balanceing later on.
143 <    
141 >
142 >    // save oldAtoms to check for lode balancing later on.
143 >
144      oldAtoms = nAtoms;
145 <    
145 >
146      moving = new int[nAtoms];
147 <    moved  = new int[nAtoms];
147 >    moved = new int[nAtoms];
148  
149 <    prePos = new double[nAtoms*3];
149 >    oldPos = new double[nAtoms * 3];
150    }
151 <  
151 >
152    delete[] temp_con;
153   }
154  
155  
156 < void Integrator::integrate( void ){
156 > template<typename T> void Integrator<T>::integrate(void){
157  
158 <  int i, j;                         // loop counters
159 <  double kE = 0.0;                  // the kinetic energy  
160 <  double rot_kE;
161 <  double trans_kE;
162 <  int tl;                        // the time loop conter
163 <  double dt2;                       // half the dt
164 <
165 <  double vx, vy, vz;    // the velocities
166 <  double vx2, vy2, vz2; // the square of the velocities
167 <  double rx, ry, rz;    // the postitions
168 <  
169 <  double ji[3];   // the body frame angular momentum
170 <  double jx2, jy2, jz2; // the square of the angular momentums
171 <  double Tb[3];   // torque in the body frame
172 <  double angle;   // the angle through which to rotate the rotation matrix
173 <  double A[3][3]; // the rotation matrix
174 <  double press[9];
175 <
176 <  double dt          = info->dt;
177 <  double runTime     = info->run_time;
178 <  double sampleTime  = info->sampleTime;
179 <  double statusTime  = info->statusTime;
158 >  double runTime = info->run_time;
159 >  double sampleTime = info->sampleTime;
160 >  double statusTime = info->statusTime;
161    double thermalTime = info->thermalTime;
162 +  double resetTime = info->resetTime;
163  
164 +  double difference;
165    double currSample;
166    double currThermal;
167    double currStatus;
168 <  double currTime;
168 >  double currReset;
169  
170    int calcPot, calcStress;
188  int isError;
171  
172 <  tStats   = new Thermo( info );
173 <  e_out    = new StatWriter( info );
174 <  dump_out = new DumpWriter( info );
172 >  tStats = new Thermo(info);
173 >  statOut = new StatWriter(info);
174 >  dumpOut = new DumpWriter(info);
175  
176 <  Atom** atoms = info->atoms;
177 <  DirectionalAtom* dAtom;
176 >  atoms = info->atoms;
177 >
178 >  dt = info->dt;
179    dt2 = 0.5 * dt;
180  
181 +  readyCheck();
182 +
183 +  // remove center of mass drift velocity (in case we passed in a configuration
184 +  // that was drifting
185 +  tStats->removeCOMdrift();
186 +
187 +  // initialize the retraints if necessary
188 +  if (info->useThermInt) {
189 +    myFF->initRestraints();
190 +  }
191 +
192    // initialize the forces before the first step
193  
194 <  myFF->doForces(1,1);
194 >  calcForce(1, 1);
195    
196 <  if( info->setTemp ){
197 <    
198 <    tStats->velocitize();
196 >  if (nConstrained){
197 >    preMove();
198 >    constrainA();
199 >    calcForce(1, 1);
200 >    constrainB();
201    }
202    
203 <  dump_out->writeDump( 0.0 );
204 <  e_out->writeStat( 0.0 );
205 <  
203 >  if (info->setTemp){
204 >    thermalize();
205 >  }
206 >
207    calcPot     = 0;
208    calcStress  = 0;
209 <  currSample  = sampleTime;
210 <  currThermal = thermalTime;
211 <  currStatus  = statusTime;
212 <  currTime    = 0.0;;
209 >  currSample  = sampleTime + info->getTime();
210 >  currThermal = thermalTime+ info->getTime();
211 >  currStatus  = statusTime + info->getTime();
212 >  currReset   = resetTime  + info->getTime();
213  
214 +  dumpOut->writeDump(info->getTime());
215 +  statOut->writeStat(info->getTime());
216  
218  readyCheck();
217  
218   #ifdef IS_MPI
219 <  strcpy( checkPointMsg,
222 <          "The integrator is ready to go." );
219 >  strcpy(checkPointMsg, "The integrator is ready to go.");
220    MPIcheckPoint();
221   #endif // is_mpi
222  
223 <  while( currTime < runTime ){
224 <
225 <    if( (currTime+dt) >= currStatus ){
223 >  while (info->getTime() < runTime && !stopIntegrator()){
224 >    difference = info->getTime() + dt - currStatus;
225 >    if (difference > 0 || fabs(difference) < 1e-4 ){
226        calcPot = 1;
227        calcStress = 1;
228      }
229 +
230 + #ifdef PROFILE
231 +    startProfile( pro1 );
232 + #endif
233      
234 <    integrateStep( calcPot, calcStress );
234 <      
235 <    currTime += dt;
234 >    integrateStep(calcPot, calcStress);
235  
236 <    if( info->setTemp ){
237 <      if( currTime >= currThermal ){
238 <        tStats->velocitize();
239 <        currThermal += thermalTime;
236 > #ifdef PROFILE
237 >    endProfile( pro1 );
238 >
239 >    startProfile( pro2 );
240 > #endif // profile
241 >
242 >    info->incrTime(dt);
243 >
244 >    if (info->setTemp){
245 >      if (info->getTime() >= currThermal){
246 >        thermalize();
247 >        currThermal += thermalTime;
248        }
249      }
250  
251 <    if( currTime >= currSample ){
252 <      dump_out->writeDump( currTime );
251 >    if (info->getTime() >= currSample){
252 >      dumpOut->writeDump(info->getTime());
253        currSample += sampleTime;
254      }
255  
256 <    if( currTime >= currStatus ){
257 <      e_out->writeStat( time * dt );
258 <      calcPot = 0;
256 >    if (info->getTime() >= currStatus){
257 >      statOut->writeStat(info->getTime());
258 >      statOut->writeRaw(info->getTime());
259 >      calcPot = 0;
260        calcStress = 0;
261        currStatus += statusTime;
262 <    }
262 >    }
263  
264 +    if (info->resetIntegrator){
265 +      if (info->getTime() >= currReset){
266 +        this->resetIntegrator();
267 +        currReset += resetTime;
268 +      }
269 +    }
270 +    
271 + #ifdef PROFILE
272 +    endProfile( pro2 );
273 + #endif //profile
274 +
275   #ifdef IS_MPI
276 <    strcpy( checkPointMsg,
258 <            "successfully took a time step." );
276 >    strcpy(checkPointMsg, "successfully took a time step.");
277      MPIcheckPoint();
278   #endif // is_mpi
261
279    }
280  
281 <  dump_out->writeFinal();
281 >  // dump out a file containing the omega values for the final configuration
282 >  if (info->useThermInt)
283 >    myFF->dumpzAngle();
284 >  
285  
286 <  delete dump_out;
287 <  delete e_out;
286 >  delete dumpOut;
287 >  delete statOut;
288   }
289  
290 < void Integrator::integrateStep( int calcPot, int calcStress ){
291 <
290 > template<typename T> void Integrator<T>::integrateStep(int calcPot,
291 >                                                       int calcStress){
292    // Position full step, and velocity half step
293  
294 <  //preMove();
294 > #ifdef PROFILE
295 >  startProfile(pro3);
296 > #endif //profile
297 >
298 >  preMove();
299 >
300 > #ifdef PROFILE
301 >  endProfile(pro3);
302 >
303 >  startProfile(pro4);
304 > #endif // profile
305 >
306    moveA();
276  if( nConstrained ) constrainA();
307  
308 + #ifdef PROFILE
309 +  endProfile(pro4);
310 +  
311 +  startProfile(pro5);
312 + #endif//profile
313 +
314 +
315 + #ifdef IS_MPI
316 +  strcpy(checkPointMsg, "Succesful moveA\n");
317 +  MPIcheckPoint();
318 + #endif // is_mpi
319 +
320    // calc forces
321 +  calcForce(calcPot, calcStress);
322  
323 <  myFF->doForces(calcPot,calcStress);
323 > #ifdef IS_MPI
324 >  strcpy(checkPointMsg, "Succesful doForces\n");
325 >  MPIcheckPoint();
326 > #endif // is_mpi
327  
328 + #ifdef PROFILE
329 +  endProfile( pro5 );
330 +
331 +  startProfile( pro6 );
332 + #endif //profile
333 +
334    // finish the velocity  half step
335 <  
335 >
336    moveB();
337 <  if( nConstrained ) constrainB();
338 <  
337 >
338 > #ifdef PROFILE
339 >  endProfile(pro6);
340 > #endif // profile
341 >
342 > #ifdef IS_MPI
343 >  strcpy(checkPointMsg, "Succesful moveB\n");
344 >  MPIcheckPoint();
345 > #endif // is_mpi
346   }
347  
348  
349 < void Integrator::moveA( void ){
350 <  
292 <  int i,j,k;
293 <  int atomIndex, aMatIndex;
349 > template<typename T> void Integrator<T>::moveA(void){
350 >  size_t i, j;
351    DirectionalAtom* dAtom;
352 <  double Tb[3];
353 <  double ji[3];
354 <
355 <  for( i=0; i<nAtoms; i++ ){
356 <    atomIndex = i * 3;
357 <    aMatIndex = i * 9;
352 >  double Tb[3], ji[3];
353 >  double vel[3], pos[3], frc[3];
354 >  double mass;
355 >  double omega;
356 >
357 >  for (i = 0; i < integrableObjects.size() ; i++){
358 >    integrableObjects[i]->getVel(vel);
359 >    integrableObjects[i]->getPos(pos);
360 >    integrableObjects[i]->getFrc(frc);
361      
362 <    // velocity half step
303 <    for( j=atomIndex; j<(atomIndex+3); j++ )
304 <      vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert;
362 >    mass = integrableObjects[i]->getMass();
363  
364 <    // position whole step    
365 <    for( j=atomIndex; j<(atomIndex+3); j++ )
364 >    for (j = 0; j < 3; j++){
365 >      // velocity half step
366 >      vel[j] += (dt2 * frc[j] / mass) * eConvert;
367 >      // position whole step
368        pos[j] += dt * vel[j];
369 +    }
370  
371 <  
372 <    if( atoms[i]->isDirectional() ){
371 >    integrableObjects[i]->setVel(vel);
372 >    integrableObjects[i]->setPos(pos);
373  
374 <      dAtom = (DirectionalAtom *)atoms[i];
375 <          
374 >    if (integrableObjects[i]->isDirectional()){
375 >
376        // get and convert the torque to body frame
377 <      
378 <      Tb[0] = dAtom->getTx();
379 <      Tb[1] = dAtom->getTy();
380 <      Tb[2] = dAtom->getTz();
320 <      
321 <      dAtom->lab2Body( Tb );
322 <      
377 >
378 >      integrableObjects[i]->getTrq(Tb);
379 >      integrableObjects[i]->lab2Body(Tb);
380 >
381        // get the angular momentum, and propagate a half step
382 <      
383 <      ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert;
384 <      ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert;
385 <      ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert;
386 <      
387 <      // use the angular velocities to propagate the rotation matrix a
388 <      // full time step
389 <      
390 <      // rotate about the x-axis      
333 <      angle = dt2 * ji[0] / dAtom->getIxx();
334 <      this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] );
335 <      
336 <      // rotate about the y-axis
337 <      angle = dt2 * ji[1] / dAtom->getIyy();
338 <      this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] );
339 <      
340 <      // rotate about the z-axis
341 <      angle = dt * ji[2] / dAtom->getIzz();
342 <      this->rotate( 0, 1, angle, ji, &aMat[aMatIndex] );
343 <      
344 <      // rotate about the y-axis
345 <      angle = dt2 * ji[1] / dAtom->getIyy();
346 <      this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] );
347 <      
348 <       // rotate about the x-axis
349 <      angle = dt2 * ji[0] / dAtom->getIxx();
350 <      this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] );
351 <      
352 <      dAtom->setJx( ji[0] );
353 <      dAtom->setJy( ji[1] );
354 <      dAtom->setJz( ji[2] );
382 >
383 >      integrableObjects[i]->getJ(ji);
384 >
385 >      for (j = 0; j < 3; j++)
386 >        ji[j] += (dt2 * Tb[j]) * eConvert;
387 >
388 >      this->rotationPropagation( integrableObjects[i], ji );
389 >
390 >      integrableObjects[i]->setJ(ji);
391      }
356    
392    }
393 +
394 +  if (nConstrained){
395 +    constrainA();
396 +  }
397   }
398  
399  
400 < void Integrator::moveB( void ){
401 <  int i,j,k;
402 <  int atomIndex;
403 <  DirectionalAtom* dAtom;
404 <  double Tb[3];
366 <  double ji[3];
400 > template<typename T> void Integrator<T>::moveB(void){
401 >  int i, j;
402 >  double Tb[3], ji[3];
403 >  double vel[3], frc[3];
404 >  double mass;
405  
406 <  for( i=0; i<nAtoms; i++ ){
407 <    atomIndex = i * 3;
406 >  for (i = 0; i < integrableObjects.size(); i++){
407 >    integrableObjects[i]->getVel(vel);
408 >    integrableObjects[i]->getFrc(frc);
409  
410 +    mass = integrableObjects[i]->getMass();
411 +
412      // velocity half step
413 <    for( j=atomIndex; j<(atomIndex+3); j++ )
414 <      vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert;
413 >    for (j = 0; j < 3; j++)
414 >      vel[j] += (dt2 * frc[j] / mass) * eConvert;
415  
416 <    if( atoms[i]->isDirectional() ){
417 <      
418 <      dAtom = (DirectionalAtom *)atoms[i];
419 <      
416 >    integrableObjects[i]->setVel(vel);
417 >
418 >    if (integrableObjects[i]->isDirectional()){
419 >
420        // get and convert the torque to body frame
421 <      
422 <      Tb[0] = dAtom->getTx();
423 <      Tb[1] = dAtom->getTy();
424 <      Tb[2] = dAtom->getTz();
425 <      
426 <      dAtom->lab2Body( Tb );
427 <      
428 <      // get the angular momentum, and complete the angular momentum
429 <      // half step
430 <      
431 <      ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert;
432 <      ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert;
433 <      ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert;
393 <      
394 <      jx2 = ji[0] * ji[0];
395 <      jy2 = ji[1] * ji[1];
396 <      jz2 = ji[2] * ji[2];
397 <      
398 <      dAtom->setJx( ji[0] );
399 <      dAtom->setJy( ji[1] );
400 <      dAtom->setJz( ji[2] );
421 >
422 >      integrableObjects[i]->getTrq(Tb);
423 >      integrableObjects[i]->lab2Body(Tb);
424 >
425 >      // get the angular momentum, and propagate a half step
426 >
427 >      integrableObjects[i]->getJ(ji);
428 >
429 >      for (j = 0; j < 3; j++)
430 >        ji[j] += (dt2 * Tb[j]) * eConvert;
431 >
432 >
433 >      integrableObjects[i]->setJ(ji);
434      }
435    }
436  
437 +  if (nConstrained){
438 +    constrainB();
439 +  }
440   }
441  
442 < void Integrator::preMove( void ){
443 <  int i;
442 > template<typename T> void Integrator<T>::preMove(void){
443 >  int i, j;
444 >  double pos[3];
445  
446 <  if( nConstrained ){
447 <    if( oldAtoms != nAtoms ){
448 <      
449 <      // save oldAtoms to check for lode balanceing later on.
450 <      
451 <      oldAtoms = nAtoms;
452 <      
416 <      delete[] moving;
417 <      delete[] moved;
418 <      delete[] oldPos;
419 <      
420 <      moving = new int[nAtoms];
421 <      moved  = new int[nAtoms];
422 <      
423 <      oldPos = new double[nAtoms*3];
446 >  if (nConstrained){
447 >    for (i = 0; i < nAtoms; i++){
448 >      atoms[i]->getPos(pos);
449 >
450 >      for (j = 0; j < 3; j++){
451 >        oldPos[3 * i + j] = pos[j];
452 >      }
453      }
425  
426    for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i];
454    }
455 < }  
455 > }
456  
457 < void Integrator::constrainA(){
458 <
432 <  int i,j,k;
457 > template<typename T> void Integrator<T>::constrainA(){
458 >  int i, j;
459    int done;
460 <  double pxab, pyab, pzab;
461 <  double rxab, ryab, rzab;
462 <  int a, b;
460 >  double posA[3], posB[3];
461 >  double velA[3], velB[3];
462 >  double pab[3];
463 >  double rab[3];
464 >  int a, b, ax, ay, az, bx, by, bz;
465    double rma, rmb;
466    double dx, dy, dz;
467 +  double rpab;
468    double rabsq, pabsq, rpabsq;
469    double diffsq;
470    double gab;
471    int iteration;
472  
473 <
445 <  
446 <  for( i=0; i<nAtoms; i++){
447 <    
473 >  for (i = 0; i < nAtoms; i++){
474      moving[i] = 0;
475 <    moved[i]  = 1;
475 >    moved[i] = 1;
476    }
477 <  
452 <  
477 >
478    iteration = 0;
479    done = 0;
480 <  while( !done && (iteration < maxIteration )){
456 <
480 >  while (!done && (iteration < maxIteration)){
481      done = 1;
482 <    for(i=0; i<nConstrained; i++){
459 <
482 >    for (i = 0; i < nConstrained; i++){
483        a = constrainedA[i];
484        b = constrainedB[i];
462    
463      if( moved[a] || moved[b] ){
464        
465        pxab = pos[3*a+0] - pos[3*b+0];
466        pyab = pos[3*a+1] - pos[3*b+1];
467        pzab = pos[3*a+2] - pos[3*b+2];
485  
486 <        //periodic boundary condition
487 <        pxab = pxab - info->box_x * copysign(1, pxab)
488 <          * int(pxab / info->box_x + 0.5);
472 <        pyab = pyab - info->box_y * copysign(1, pyab)
473 <          * int(pyab / info->box_y + 0.5);
474 <        pzab = pzab - info->box_z * copysign(1, pzab)
475 <          * int(pzab / info->box_z + 0.5);
476 <      
477 <        pabsq = pxab * pxab + pyab * pyab + pzab * pzab;
478 <        rabsq = constraintedDsqr[i];
479 <        diffsq = pabsq - rabsq;
486 >      ax = (a * 3) + 0;
487 >      ay = (a * 3) + 1;
488 >      az = (a * 3) + 2;
489  
490 <        // the original rattle code from alan tidesley
491 <        if (fabs(diffsq) > tol*rabsq*2) {
492 <          rxab = oldPos[3*a+0] - oldPos[3*b+0];
484 <          ryab = oldPos[3*a+1] - oldPos[3*b+1];
485 <          rzab = oldPos[3*a+2] - oldPos[3*b+2];
486 <
487 <          rxab = rxab - info->box_x * copysign(1, rxab)
488 <            * int(rxab / info->box_x + 0.5);
489 <          ryab = ryab - info->box_y * copysign(1, ryab)
490 <            * int(ryab / info->box_y + 0.5);
491 <          rzab = rzab - info->box_z * copysign(1, rzab)
492 <            * int(rzab / info->box_z + 0.5);
490 >      bx = (b * 3) + 0;
491 >      by = (b * 3) + 1;
492 >      bz = (b * 3) + 2;
493  
494 <          rpab = rxab * pxab + ryab * pyab + rzab * pzab;
495 <          rpabsq = rpab * rpab;
494 >      if (moved[a] || moved[b]){
495 >        atoms[a]->getPos(posA);
496 >        atoms[b]->getPos(posB);
497  
498 +        for (j = 0; j < 3; j++)
499 +          pab[j] = posA[j] - posB[j];
500  
501 <          if (rpabsq < (rabsq * -diffsq)){
501 >        //periodic boundary condition
502 >
503 >        info->wrapVector(pab);
504 >
505 >        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
506 >
507 >        rabsq = constrainedDsqr[i];
508 >        diffsq = rabsq - pabsq;
509 >
510 >        // the original rattle code from alan tidesley
511 >        if (fabs(diffsq) > (tol * rabsq * 2)){
512 >          rab[0] = oldPos[ax] - oldPos[bx];
513 >          rab[1] = oldPos[ay] - oldPos[by];
514 >          rab[2] = oldPos[az] - oldPos[bz];
515 >
516 >          info->wrapVector(rab);
517 >
518 >          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
519 >
520 >          rpabsq = rpab * rpab;
521 >
522 >
523 >          if (rpabsq < (rabsq * -diffsq)){
524   #ifdef IS_MPI
525 <            a = atoms[a]->getGlobalIndex();
526 <            b = atoms[b]->getGlobalIndex();
525 >            a = atoms[a]->getGlobalIndex();
526 >            b = atoms[b]->getGlobalIndex();
527   #endif //is_mpi
528 <            sprintf( painCave.errMsg,
529 <                     "Constraint failure in constrainA at atom %d and %d\n.",
530 <                     a, b );
531 <            painCave.isFatal = 1;
532 <            simError();
533 <          }
528 >            sprintf(painCave.errMsg,
529 >                    "Constraint failure in constrainA at atom %d and %d.\n", a,
530 >                    b);
531 >            painCave.isFatal = 1;
532 >            simError();
533 >          }
534  
535 <          rma = 1.0 / atoms[a]->getMass();
536 <          rmb = 1.0 / atoms[b]->getMass();
512 <          
513 <          gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab );
514 <          dx = rxab * gab;
515 <          dy = ryab * gab;
516 <          dz = rzab * gab;
535 >          rma = 1.0 / atoms[a]->getMass();
536 >          rmb = 1.0 / atoms[b]->getMass();
537  
538 <          pos[3*a+0] += rma * dx;
519 <          pos[3*a+1] += rma * dy;
520 <          pos[3*a+2] += rma * dz;
538 >          gab = diffsq / (2.0 * (rma + rmb) * rpab);
539  
540 <          pos[3*b+0] -= rmb * dx;
541 <          pos[3*b+1] -= rmb * dy;
542 <          pos[3*b+2] -= rmb * dz;
540 >          dx = rab[0] * gab;
541 >          dy = rab[1] * gab;
542 >          dz = rab[2] * gab;
543  
544 +          posA[0] += rma * dx;
545 +          posA[1] += rma * dy;
546 +          posA[2] += rma * dz;
547 +
548 +          atoms[a]->setPos(posA);
549 +
550 +          posB[0] -= rmb * dx;
551 +          posB[1] -= rmb * dy;
552 +          posB[2] -= rmb * dz;
553 +
554 +          atoms[b]->setPos(posB);
555 +
556            dx = dx / dt;
557            dy = dy / dt;
558            dz = dz / dt;
559  
560 <          vel[3*a+0] += rma * dx;
531 <          vel[3*a+1] += rma * dy;
532 <          vel[3*a+2] += rma * dz;
560 >          atoms[a]->getVel(velA);
561  
562 <          vel[3*b+0] -= rmb * dx;
563 <          vel[3*b+1] -= rmb * dy;
564 <          vel[3*b+2] -= rmb * dz;
562 >          velA[0] += rma * dx;
563 >          velA[1] += rma * dy;
564 >          velA[2] += rma * dz;
565  
566 <          moving[a] = 1;
567 <          moving[b] = 1;
568 <          done = 0;
569 <        }
566 >          atoms[a]->setVel(velA);
567 >
568 >          atoms[b]->getVel(velB);
569 >
570 >          velB[0] -= rmb * dx;
571 >          velB[1] -= rmb * dy;
572 >          velB[2] -= rmb * dz;
573 >
574 >          atoms[b]->setVel(velB);
575 >
576 >          moving[a] = 1;
577 >          moving[b] = 1;
578 >          done = 0;
579 >        }
580        }
581      }
582 <    
583 <    for(i=0; i<nAtoms; i++){
546 <      
582 >
583 >    for (i = 0; i < nAtoms; i++){
584        moved[i] = moving[i];
585        moving[i] = 0;
586      }
# Line 551 | Line 588 | void Integrator::constrainA(){
588      iteration++;
589    }
590  
591 <  if( !done ){
592 <
593 <    sprintf( painCae.errMsg,
594 <             "Constraint failure in constrainA, too many iterations: %d\n",
558 <             iterations );
591 >  if (!done){
592 >    sprintf(painCave.errMsg,
593 >            "Constraint failure in constrainA, too many iterations: %d\n",
594 >            iteration);
595      painCave.isFatal = 1;
596      simError();
597    }
598  
599   }
600  
601 < void Integrator::constrainB( void ){
602 <  
567 <  int i,j,k;
601 > template<typename T> void Integrator<T>::constrainB(void){
602 >  int i, j;
603    int done;
604 +  double posA[3], posB[3];
605 +  double velA[3], velB[3];
606    double vxab, vyab, vzab;
607 <  double rxab, ryab, rzab;
608 <  int a, b;
607 >  double rab[3];
608 >  int a, b, ax, ay, az, bx, by, bz;
609    double rma, rmb;
610    double dx, dy, dz;
611 <  double rabsq, pabsq, rvab;
575 <  double diffsq;
611 >  double rvab;
612    double gab;
613    int iteration;
614  
615 <  for(i=0; i<nAtom; i++){
615 >  for (i = 0; i < nAtoms; i++){
616      moving[i] = 0;
617      moved[i] = 1;
618    }
619  
620    done = 0;
621 <  while( !done && (iteration < maxIteration ) ){
621 >  iteration = 0;
622 >  while (!done && (iteration < maxIteration)){
623 >    done = 1;
624  
625 <    for(i=0; i<nConstrained; i++){
588 <      
625 >    for (i = 0; i < nConstrained; i++){
626        a = constrainedA[i];
627        b = constrainedB[i];
628  
629 <      if( moved[a] || moved[b] ){
630 <        
631 <        vxab = vel[3*a+0] - vel[3*b+0];
595 <        vyab = vel[3*a+1] - vel[3*b+1];
596 <        vzab = vel[3*a+2] - vel[3*b+2];
629 >      ax = (a * 3) + 0;
630 >      ay = (a * 3) + 1;
631 >      az = (a * 3) + 2;
632  
633 <        rxab = pos[3*a+0] - pos[3*b+0];q
634 <        ryab = pos[3*a+1] - pos[3*b+1];
635 <        rzab = pos[3*a+2] - pos[3*b+2];
601 <        
602 <        rxab = rxab - info->box_x * copysign(1, rxab)
603 <          * int(rxab / info->box_x + 0.5);
604 <        ryab = ryab - info->box_y * copysign(1, ryab)
605 <          * int(ryab / info->box_y + 0.5);
606 <        rzab = rzab - info->box_z * copysign(1, rzab)
607 <          * int(rzab / info->box_z + 0.5);
633 >      bx = (b * 3) + 0;
634 >      by = (b * 3) + 1;
635 >      bz = (b * 3) + 2;
636  
637 <        rma = 1.0 / atoms[a]->getMass();
638 <        rmb = 1.0 / atoms[b]->getMass();
637 >      if (moved[a] || moved[b]){
638 >        atoms[a]->getVel(velA);
639 >        atoms[b]->getVel(velB);
640  
641 <        rvab = rxab * vxab + ryab * vyab + rzab * vzab;
642 <          
643 <        gab = -rvab / ( ( rma + rmb ) * constraintsDsqr[i] );
641 >        vxab = velA[0] - velB[0];
642 >        vyab = velA[1] - velB[1];
643 >        vzab = velA[2] - velB[2];
644  
645 <        if (fabs(gab) > tol) {
646 <          
618 <          dx = rxab * gab;
619 <          dy = ryab * gab;
620 <          dz = rzab * gab;
621 <          
622 <          vel[3*a+0] += rma * dx;
623 <          vel[3*a+1] += rma * dy;
624 <          vel[3*a+2] += rma * dz;
645 >        atoms[a]->getPos(posA);
646 >        atoms[b]->getPos(posB);
647  
648 <          vel[3*b+0] -= rmb * dx;
649 <          vel[3*b+1] -= rmb * dy;
650 <          vel[3*b+2] -= rmb * dz;
651 <          
652 <          moving[a] = 1;
653 <          moving[b] = 1;
654 <          done = 0;
655 <        }
648 >        for (j = 0; j < 3; j++)
649 >          rab[j] = posA[j] - posB[j];
650 >
651 >        info->wrapVector(rab);
652 >
653 >        rma = 1.0 / atoms[a]->getMass();
654 >        rmb = 1.0 / atoms[b]->getMass();
655 >
656 >        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
657 >
658 >        gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
659 >
660 >        if (fabs(gab) > tol){
661 >          dx = rab[0] * gab;
662 >          dy = rab[1] * gab;
663 >          dz = rab[2] * gab;
664 >
665 >          velA[0] += rma * dx;
666 >          velA[1] += rma * dy;
667 >          velA[2] += rma * dz;
668 >
669 >          atoms[a]->setVel(velA);
670 >
671 >          velB[0] -= rmb * dx;
672 >          velB[1] -= rmb * dy;
673 >          velB[2] -= rmb * dz;
674 >
675 >          atoms[b]->setVel(velB);
676 >
677 >          moving[a] = 1;
678 >          moving[b] = 1;
679 >          done = 0;
680 >        }
681        }
682      }
683  
684 <    for(i=0; i<nAtoms; i++){
684 >    for (i = 0; i < nAtoms; i++){
685        moved[i] = moving[i];
686        moving[i] = 0;
687      }
688 <    
688 >
689      iteration++;
690    }
691  
692 <  if( !done ){
693 <
694 <  
695 <    sprintf( painCae.errMsg,
649 <             "Constraint failure in constrainB, too many iterations: %d\n",
650 <             iterations );
692 >  if (!done){
693 >    sprintf(painCave.errMsg,
694 >            "Constraint failure in constrainB, too many iterations: %d\n",
695 >            iteration);
696      painCave.isFatal = 1;
697      simError();
698 <  }
654 <
698 >  }
699   }
700  
701 + template<typename T> void Integrator<T>::rotationPropagation
702 + ( StuntDouble* sd, double ji[3] ){
703  
704 +  double angle;
705 +  double A[3][3], I[3][3];
706 +  int i, j, k;
707  
708 +  // use the angular velocities to propagate the rotation matrix a
709 +  // full time step
710  
711 +  sd->getA(A);
712 +  sd->getI(I);
713  
714 +  if (sd->isLinear()) {
715 +    i = sd->linearAxis();
716 +    j = (i+1)%3;
717 +    k = (i+2)%3;
718 +    
719 +    angle = dt2 * ji[j] / I[j][j];
720 +    this->rotate( k, i, angle, ji, A );
721  
722 +    angle = dt * ji[k] / I[k][k];
723 +    this->rotate( i, j, angle, ji, A);
724  
725 < void Integrator::rotate( int axes1, int axes2, double angle, double ji[3],
726 <                         double A[3][3] ){
725 >    angle = dt2 * ji[j] / I[j][j];
726 >    this->rotate( k, i, angle, ji, A );
727  
728 <  int i,j,k;
728 >  } else {
729 >    // rotate about the x-axis
730 >    angle = dt2 * ji[0] / I[0][0];
731 >    this->rotate( 1, 2, angle, ji, A );
732 >    
733 >    // rotate about the y-axis
734 >    angle = dt2 * ji[1] / I[1][1];
735 >    this->rotate( 2, 0, angle, ji, A );
736 >    
737 >    // rotate about the z-axis
738 >    angle = dt * ji[2] / I[2][2];
739 >    sd->addZangle(angle);
740 >    this->rotate( 0, 1, angle, ji, A);
741 >    
742 >    // rotate about the y-axis
743 >    angle = dt2 * ji[1] / I[1][1];
744 >    this->rotate( 2, 0, angle, ji, A );
745 >    
746 >    // rotate about the x-axis
747 >    angle = dt2 * ji[0] / I[0][0];
748 >    this->rotate( 1, 2, angle, ji, A );
749 >    
750 >  }
751 >  sd->setA( A  );
752 > }
753 >
754 > template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
755 >                                                double angle, double ji[3],
756 >                                                double A[3][3]){
757 >  int i, j, k;
758    double sinAngle;
759    double cosAngle;
760    double angleSqr;
# Line 675 | Line 766 | void Integrator::rotate( int axes1, int axes2, double
766  
767    // initialize the tempA
768  
769 <  for(i=0; i<3; i++){
770 <    for(j=0; j<3; j++){
769 >  for (i = 0; i < 3; i++){
770 >    for (j = 0; j < 3; j++){
771        tempA[j][i] = A[i][j];
772      }
773    }
774  
775    // initialize the tempJ
776  
777 <  for( i=0; i<3; i++) tempJ[i] = ji[i];
778 <  
777 >  for (i = 0; i < 3; i++)
778 >    tempJ[i] = ji[i];
779 >
780    // initalize rot as a unit matrix
781  
782    rot[0][0] = 1.0;
# Line 694 | Line 786 | void Integrator::rotate( int axes1, int axes2, double
786    rot[1][0] = 0.0;
787    rot[1][1] = 1.0;
788    rot[1][2] = 0.0;
789 <  
789 >
790    rot[2][0] = 0.0;
791    rot[2][1] = 0.0;
792    rot[2][2] = 1.0;
793 <  
793 >
794    // use a small angle aproximation for sin and cosine
795  
796 <  angleSqr  = angle * angle;
796 >  angleSqr = angle * angle;
797    angleSqrOver4 = angleSqr / 4.0;
798    top = 1.0 - angleSqrOver4;
799    bottom = 1.0 + angleSqrOver4;
# Line 714 | Line 806 | void Integrator::rotate( int axes1, int axes2, double
806  
807    rot[axes1][axes2] = sinAngle;
808    rot[axes2][axes1] = -sinAngle;
809 <  
809 >
810    // rotate the momentum acoording to: ji[] = rot[][] * ji[]
811 <  
812 <  for(i=0; i<3; i++){
811 >
812 >  for (i = 0; i < 3; i++){
813      ji[i] = 0.0;
814 <    for(k=0; k<3; k++){
814 >    for (k = 0; k < 3; k++){
815        ji[i] += rot[i][k] * tempJ[k];
816      }
817    }
818  
819 <  // rotate the Rotation matrix acording to:
819 >  // rotate the Rotation matrix acording to:
820    //            A[][] = A[][] * transpose(rot[][])
821  
822  
823 <  // NOte for as yet unknown reason, we are setting the performing the
823 >  // NOte for as yet unknown reason, we are performing the
824    // calculation as:
825    //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
826  
827 <  for(i=0; i<3; i++){
828 <    for(j=0; j<3; j++){
827 >  for (i = 0; i < 3; i++){
828 >    for (j = 0; j < 3; j++){
829        A[j][i] = 0.0;
830 <      for(k=0; k<3; k++){
831 <        A[j][i] += tempA[i][k] * rot[j][k];
830 >      for (k = 0; k < 3; k++){
831 >        A[j][i] += tempA[i][k] * rot[j][k];
832        }
833      }
834    }
835   }
836 +
837 + template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
838 +  myFF->doForces(calcPot, calcStress);
839 + }
840 +
841 + template<typename T> void Integrator<T>::thermalize(){
842 +  tStats->velocitize();
843 + }
844 +
845 + template<typename T> double Integrator<T>::getConservedQuantity(void){
846 +  return tStats->getTotalE();
847 + }
848 + template<typename T> string Integrator<T>::getAdditionalParameters(void){
849 +  //By default, return a null string
850 +  //The reason we use string instead of char* is that if we use char*, we will
851 +  //return a pointer point to local variable which might cause problem
852 +  return string();
853 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines