| 1 |
|
#include <iostream> |
| 2 |
< |
#include <cstdlib> |
| 3 |
< |
#include <cmath> |
| 4 |
< |
|
| 2 |
> |
#include <stdlib.h> |
| 3 |
> |
#include <math.h> |
| 4 |
> |
#include "Rattle.hpp" |
| 5 |
> |
#include "Roll.hpp" |
| 6 |
|
#ifdef IS_MPI |
| 7 |
|
#include "mpiSimulation.hpp" |
| 8 |
|
#include <unistd.h> |
| 9 |
|
#endif //is_mpi |
| 10 |
|
|
| 11 |
+ |
#ifdef PROFILE |
| 12 |
+ |
#include "mdProfile.hpp" |
| 13 |
+ |
#endif // profile |
| 14 |
+ |
|
| 15 |
|
#include "Integrator.hpp" |
| 16 |
|
#include "simError.h" |
| 17 |
|
|
| 30 |
|
if (info->the_integrator != NULL){ |
| 31 |
|
delete info->the_integrator; |
| 32 |
|
} |
| 33 |
< |
|
| 33 |
> |
|
| 34 |
|
nAtoms = info->n_atoms; |
| 35 |
+ |
integrableObjects = info->integrableObjects; |
| 36 |
|
|
| 37 |
+ |
consFramework = new RattleFramework(info); |
| 38 |
+ |
|
| 39 |
+ |
if(consFramework == NULL){ |
| 40 |
+ |
sprintf(painCave.errMsg, |
| 41 |
+ |
"Integrator::Intergrator() Error: Memory allocation error for RattleFramework" ); |
| 42 |
+ |
painCave.isFatal = 1; |
| 43 |
+ |
simError(); |
| 44 |
+ |
} |
| 45 |
+ |
|
| 46 |
+ |
/* |
| 47 |
|
// check for constraints |
| 48 |
|
|
| 49 |
|
constrainedA = NULL; |
| 56 |
|
nConstrained = 0; |
| 57 |
|
|
| 58 |
|
checkConstraints(); |
| 59 |
+ |
*/ |
| 60 |
|
} |
| 61 |
|
|
| 62 |
|
template<typename T> Integrator<T>::~Integrator(){ |
| 63 |
+ |
if (consFramework != NULL) |
| 64 |
+ |
delete consFramework; |
| 65 |
+ |
/* |
| 66 |
|
if (nConstrained){ |
| 67 |
|
delete[] constrainedA; |
| 68 |
|
delete[] constrainedB; |
| 71 |
|
delete[] moved; |
| 72 |
|
delete[] oldPos; |
| 73 |
|
} |
| 74 |
+ |
*/ |
| 75 |
|
} |
| 76 |
|
|
| 77 |
+ |
/* |
| 78 |
|
template<typename T> void Integrator<T>::checkConstraints(void){ |
| 79 |
|
isConstrained = 0; |
| 80 |
|
|
| 86 |
|
|
| 87 |
|
SRI** theArray; |
| 88 |
|
for (int i = 0; i < nMols; i++){ |
| 89 |
< |
theArray = (SRI * *) molecules[i].getMyBonds(); |
| 89 |
> |
|
| 90 |
> |
theArray = (SRI * *) molecules[i].getMyBonds(); |
| 91 |
|
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
| 92 |
|
constrained = theArray[j]->is_constrained(); |
| 93 |
|
|
| 109 |
|
if (constrained){ |
| 110 |
|
dummy_plug = theArray[j]->get_constraint(); |
| 111 |
|
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
| 112 |
< |
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
| 112 |
> |
temp_con[nConstrained].set_b(Dummy_plug->get_b()); |
| 113 |
|
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
| 114 |
|
|
| 115 |
|
nConstrained++; |
| 133 |
|
} |
| 134 |
|
} |
| 135 |
|
|
| 136 |
+ |
|
| 137 |
|
if (nConstrained > 0){ |
| 138 |
|
isConstrained = 1; |
| 139 |
|
|
| 155 |
|
} |
| 156 |
|
|
| 157 |
|
|
| 158 |
< |
// save oldAtoms to check for lode balanceing later on. |
| 158 |
> |
// save oldAtoms to check for lode balancing later on. |
| 159 |
|
|
| 160 |
|
oldAtoms = nAtoms; |
| 161 |
|
|
| 167 |
|
|
| 168 |
|
delete[] temp_con; |
| 169 |
|
} |
| 170 |
+ |
*/ |
| 171 |
|
|
| 147 |
– |
|
| 172 |
|
template<typename T> void Integrator<T>::integrate(void){ |
| 149 |
– |
int i, j; // loop counters |
| 173 |
|
|
| 174 |
|
double runTime = info->run_time; |
| 175 |
|
double sampleTime = info->sampleTime; |
| 177 |
|
double thermalTime = info->thermalTime; |
| 178 |
|
double resetTime = info->resetTime; |
| 179 |
|
|
| 180 |
< |
|
| 180 |
> |
double difference; |
| 181 |
|
double currSample; |
| 182 |
|
double currThermal; |
| 183 |
|
double currStatus; |
| 184 |
|
double currReset; |
| 185 |
< |
|
| 185 |
> |
|
| 186 |
|
int calcPot, calcStress; |
| 164 |
– |
int isError; |
| 187 |
|
|
| 188 |
|
tStats = new Thermo(info); |
| 189 |
|
statOut = new StatWriter(info); |
| 190 |
|
dumpOut = new DumpWriter(info); |
| 191 |
|
|
| 192 |
|
atoms = info->atoms; |
| 171 |
– |
DirectionalAtom* dAtom; |
| 193 |
|
|
| 194 |
|
dt = info->dt; |
| 195 |
|
dt2 = 0.5 * dt; |
| 196 |
|
|
| 197 |
|
readyCheck(); |
| 198 |
|
|
| 199 |
+ |
// remove center of mass drift velocity (in case we passed in a configuration |
| 200 |
+ |
// that was drifting |
| 201 |
+ |
tStats->removeCOMdrift(); |
| 202 |
+ |
|
| 203 |
+ |
// initialize the retraints if necessary |
| 204 |
+ |
if (info->useSolidThermInt && !info->useLiquidThermInt) { |
| 205 |
+ |
myFF->initRestraints(); |
| 206 |
+ |
} |
| 207 |
+ |
|
| 208 |
|
// initialize the forces before the first step |
| 209 |
|
|
| 210 |
|
calcForce(1, 1); |
| 211 |
|
|
| 212 |
< |
if (nConstrained){ |
| 213 |
< |
preMove(); |
| 214 |
< |
constrainA(); |
| 215 |
< |
calcForce(1, 1); |
| 216 |
< |
constrainB(); |
| 187 |
< |
} |
| 212 |
> |
//execute constraint algorithm to make sure at the very beginning the system is constrained |
| 213 |
> |
//consFramework->doPreConstraint(); |
| 214 |
> |
//consFramework->doConstrainA(); |
| 215 |
> |
//calcForce(1, 1); |
| 216 |
> |
//consFramework->doConstrainB(); |
| 217 |
|
|
| 218 |
|
if (info->setTemp){ |
| 219 |
|
thermalize(); |
| 230 |
|
statOut->writeStat(info->getTime()); |
| 231 |
|
|
| 232 |
|
|
| 204 |
– |
|
| 233 |
|
#ifdef IS_MPI |
| 234 |
|
strcpy(checkPointMsg, "The integrator is ready to go."); |
| 235 |
|
MPIcheckPoint(); |
| 236 |
|
#endif // is_mpi |
| 237 |
|
|
| 238 |
< |
while (info->getTime() < runTime){ |
| 239 |
< |
if ((info->getTime() + dt) >= currStatus){ |
| 238 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
| 239 |
> |
difference = info->getTime() + dt - currStatus; |
| 240 |
> |
if (difference > 0 || fabs(difference) < 1e-4 ){ |
| 241 |
|
calcPot = 1; |
| 242 |
|
calcStress = 1; |
| 243 |
|
} |
| 244 |
|
|
| 245 |
+ |
#ifdef PROFILE |
| 246 |
+ |
startProfile( pro1 ); |
| 247 |
+ |
#endif |
| 248 |
+ |
|
| 249 |
|
integrateStep(calcPot, calcStress); |
| 250 |
|
|
| 251 |
+ |
#ifdef PROFILE |
| 252 |
+ |
endProfile( pro1 ); |
| 253 |
+ |
|
| 254 |
+ |
startProfile( pro2 ); |
| 255 |
+ |
#endif // profile |
| 256 |
+ |
|
| 257 |
|
info->incrTime(dt); |
| 258 |
|
|
| 259 |
|
if (info->setTemp){ |
| 269 |
|
} |
| 270 |
|
|
| 271 |
|
if (info->getTime() >= currStatus){ |
| 272 |
< |
statOut->writeStat(info->getTime()); |
| 273 |
< |
calcPot = 0; |
| 272 |
> |
statOut->writeStat(info->getTime()); |
| 273 |
> |
calcPot = 0; |
| 274 |
|
calcStress = 0; |
| 275 |
|
currStatus += statusTime; |
| 276 |
< |
} |
| 276 |
> |
} |
| 277 |
|
|
| 278 |
|
if (info->resetIntegrator){ |
| 279 |
|
if (info->getTime() >= currReset){ |
| 281 |
|
currReset += resetTime; |
| 282 |
|
} |
| 283 |
|
} |
| 284 |
+ |
|
| 285 |
+ |
#ifdef PROFILE |
| 286 |
+ |
endProfile( pro2 ); |
| 287 |
+ |
#endif //profile |
| 288 |
|
|
| 289 |
|
#ifdef IS_MPI |
| 290 |
|
strcpy(checkPointMsg, "successfully took a time step."); |
| 292 |
|
#endif // is_mpi |
| 293 |
|
} |
| 294 |
|
|
| 295 |
< |
dumpOut->writeFinal(info->getTime()); |
| 295 |
> |
// dump out a file containing the omega values for the final configuration |
| 296 |
> |
if (info->useSolidThermInt && !info->useLiquidThermInt) |
| 297 |
> |
myFF->dumpzAngle(); |
| 298 |
> |
|
| 299 |
|
|
| 300 |
|
delete dumpOut; |
| 301 |
|
delete statOut; |
| 304 |
|
template<typename T> void Integrator<T>::integrateStep(int calcPot, |
| 305 |
|
int calcStress){ |
| 306 |
|
// Position full step, and velocity half step |
| 261 |
– |
preMove(); |
| 307 |
|
|
| 308 |
< |
moveA(); |
| 308 |
> |
#ifdef PROFILE |
| 309 |
> |
startProfile(pro3); |
| 310 |
> |
#endif //profile |
| 311 |
|
|
| 312 |
+ |
//save old state (position, velocity etc) |
| 313 |
+ |
consFramework->doPreConstraint(); |
| 314 |
|
|
| 315 |
+ |
#ifdef PROFILE |
| 316 |
+ |
endProfile(pro3); |
| 317 |
|
|
| 318 |
+ |
startProfile(pro4); |
| 319 |
+ |
#endif // profile |
| 320 |
|
|
| 321 |
+ |
moveA(); |
| 322 |
+ |
|
| 323 |
+ |
#ifdef PROFILE |
| 324 |
+ |
endProfile(pro4); |
| 325 |
+ |
|
| 326 |
+ |
startProfile(pro5); |
| 327 |
+ |
#endif//profile |
| 328 |
+ |
|
| 329 |
+ |
|
| 330 |
|
#ifdef IS_MPI |
| 331 |
|
strcpy(checkPointMsg, "Succesful moveA\n"); |
| 332 |
|
MPIcheckPoint(); |
| 333 |
|
#endif // is_mpi |
| 334 |
|
|
| 273 |
– |
|
| 335 |
|
// calc forces |
| 275 |
– |
|
| 336 |
|
calcForce(calcPot, calcStress); |
| 337 |
|
|
| 338 |
|
#ifdef IS_MPI |
| 340 |
|
MPIcheckPoint(); |
| 341 |
|
#endif // is_mpi |
| 342 |
|
|
| 343 |
+ |
#ifdef PROFILE |
| 344 |
+ |
endProfile( pro5 ); |
| 345 |
|
|
| 346 |
+ |
startProfile( pro6 ); |
| 347 |
+ |
#endif //profile |
| 348 |
+ |
|
| 349 |
|
// finish the velocity half step |
| 350 |
|
|
| 351 |
|
moveB(); |
| 352 |
|
|
| 353 |
+ |
#ifdef PROFILE |
| 354 |
+ |
endProfile(pro6); |
| 355 |
+ |
#endif // profile |
| 356 |
|
|
| 289 |
– |
|
| 357 |
|
#ifdef IS_MPI |
| 358 |
|
strcpy(checkPointMsg, "Succesful moveB\n"); |
| 359 |
|
MPIcheckPoint(); |
| 362 |
|
|
| 363 |
|
|
| 364 |
|
template<typename T> void Integrator<T>::moveA(void){ |
| 365 |
< |
int i, j; |
| 365 |
> |
size_t i, j; |
| 366 |
|
DirectionalAtom* dAtom; |
| 367 |
|
double Tb[3], ji[3]; |
| 368 |
|
double vel[3], pos[3], frc[3]; |
| 369 |
|
double mass; |
| 370 |
+ |
double omega; |
| 371 |
+ |
|
| 372 |
+ |
for (i = 0; i < integrableObjects.size() ; i++){ |
| 373 |
+ |
integrableObjects[i]->getVel(vel); |
| 374 |
+ |
integrableObjects[i]->getPos(pos); |
| 375 |
+ |
integrableObjects[i]->getFrc(frc); |
| 376 |
+ |
|
| 377 |
+ |
mass = integrableObjects[i]->getMass(); |
| 378 |
|
|
| 304 |
– |
for (i = 0; i < nAtoms; i++){ |
| 305 |
– |
atoms[i]->getVel(vel); |
| 306 |
– |
atoms[i]->getPos(pos); |
| 307 |
– |
atoms[i]->getFrc(frc); |
| 308 |
– |
|
| 309 |
– |
mass = atoms[i]->getMass(); |
| 310 |
– |
|
| 379 |
|
for (j = 0; j < 3; j++){ |
| 380 |
|
// velocity half step |
| 381 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
| 383 |
|
pos[j] += dt * vel[j]; |
| 384 |
|
} |
| 385 |
|
|
| 386 |
< |
atoms[i]->setVel(vel); |
| 387 |
< |
atoms[i]->setPos(pos); |
| 386 |
> |
integrableObjects[i]->setVel(vel); |
| 387 |
> |
integrableObjects[i]->setPos(pos); |
| 388 |
|
|
| 389 |
< |
if (atoms[i]->isDirectional()){ |
| 322 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
| 389 |
> |
if (integrableObjects[i]->isDirectional()){ |
| 390 |
|
|
| 391 |
|
// get and convert the torque to body frame |
| 392 |
|
|
| 393 |
< |
dAtom->getTrq(Tb); |
| 394 |
< |
dAtom->lab2Body(Tb); |
| 393 |
> |
integrableObjects[i]->getTrq(Tb); |
| 394 |
> |
integrableObjects[i]->lab2Body(Tb); |
| 395 |
|
|
| 396 |
|
// get the angular momentum, and propagate a half step |
| 397 |
|
|
| 398 |
< |
dAtom->getJ(ji); |
| 398 |
> |
integrableObjects[i]->getJ(ji); |
| 399 |
|
|
| 400 |
|
for (j = 0; j < 3; j++) |
| 401 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
| 402 |
|
|
| 403 |
< |
this->rotationPropagation( dAtom, ji ); |
| 403 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
| 404 |
|
|
| 405 |
< |
dAtom->setJ(ji); |
| 405 |
> |
integrableObjects[i]->setJ(ji); |
| 406 |
|
} |
| 407 |
|
} |
| 408 |
|
|
| 409 |
< |
if (nConstrained){ |
| 343 |
< |
constrainA(); |
| 344 |
< |
} |
| 409 |
> |
consFramework->doConstrainA(); |
| 410 |
|
} |
| 411 |
|
|
| 412 |
|
|
| 413 |
|
template<typename T> void Integrator<T>::moveB(void){ |
| 414 |
|
int i, j; |
| 350 |
– |
DirectionalAtom* dAtom; |
| 415 |
|
double Tb[3], ji[3]; |
| 416 |
|
double vel[3], frc[3]; |
| 417 |
|
double mass; |
| 418 |
|
|
| 419 |
< |
for (i = 0; i < nAtoms; i++){ |
| 420 |
< |
atoms[i]->getVel(vel); |
| 421 |
< |
atoms[i]->getFrc(frc); |
| 419 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
| 420 |
> |
integrableObjects[i]->getVel(vel); |
| 421 |
> |
integrableObjects[i]->getFrc(frc); |
| 422 |
|
|
| 423 |
< |
mass = atoms[i]->getMass(); |
| 423 |
> |
mass = integrableObjects[i]->getMass(); |
| 424 |
|
|
| 425 |
|
// velocity half step |
| 426 |
|
for (j = 0; j < 3; j++) |
| 427 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
| 428 |
|
|
| 429 |
< |
atoms[i]->setVel(vel); |
| 429 |
> |
integrableObjects[i]->setVel(vel); |
| 430 |
|
|
| 431 |
< |
if (atoms[i]->isDirectional()){ |
| 368 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
| 431 |
> |
if (integrableObjects[i]->isDirectional()){ |
| 432 |
|
|
| 433 |
< |
// get and convert the torque to body frame |
| 433 |
> |
// get and convert the torque to body frame |
| 434 |
|
|
| 435 |
< |
dAtom->getTrq(Tb); |
| 436 |
< |
dAtom->lab2Body(Tb); |
| 435 |
> |
integrableObjects[i]->getTrq(Tb); |
| 436 |
> |
integrableObjects[i]->lab2Body(Tb); |
| 437 |
|
|
| 438 |
|
// get the angular momentum, and propagate a half step |
| 439 |
|
|
| 440 |
< |
dAtom->getJ(ji); |
| 440 |
> |
integrableObjects[i]->getJ(ji); |
| 441 |
|
|
| 442 |
|
for (j = 0; j < 3; j++) |
| 443 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
| 444 |
|
|
| 445 |
|
|
| 446 |
< |
dAtom->setJ(ji); |
| 446 |
> |
integrableObjects[i]->setJ(ji); |
| 447 |
|
} |
| 448 |
|
} |
| 449 |
|
|
| 450 |
< |
if (nConstrained){ |
| 388 |
< |
constrainB(); |
| 389 |
< |
} |
| 450 |
> |
consFramework->doConstrainB(); |
| 451 |
|
} |
| 452 |
|
|
| 453 |
+ |
/* |
| 454 |
|
template<typename T> void Integrator<T>::preMove(void){ |
| 455 |
|
int i, j; |
| 456 |
|
double pos[3]; |
| 467 |
|
} |
| 468 |
|
|
| 469 |
|
template<typename T> void Integrator<T>::constrainA(){ |
| 470 |
< |
int i, j, k; |
| 470 |
> |
int i, j; |
| 471 |
|
int done; |
| 472 |
|
double posA[3], posB[3]; |
| 473 |
|
double velA[3], velB[3]; |
| 611 |
|
} |
| 612 |
|
|
| 613 |
|
template<typename T> void Integrator<T>::constrainB(void){ |
| 614 |
< |
int i, j, k; |
| 614 |
> |
int i, j; |
| 615 |
|
int done; |
| 616 |
|
double posA[3], posB[3]; |
| 617 |
|
double velA[3], velB[3]; |
| 620 |
|
int a, b, ax, ay, az, bx, by, bz; |
| 621 |
|
double rma, rmb; |
| 622 |
|
double dx, dy, dz; |
| 623 |
< |
double rabsq, pabsq, rvab; |
| 562 |
< |
double diffsq; |
| 623 |
> |
double rvab; |
| 624 |
|
double gab; |
| 625 |
|
int iteration; |
| 626 |
|
|
| 709 |
|
simError(); |
| 710 |
|
} |
| 711 |
|
} |
| 712 |
< |
|
| 712 |
> |
*/ |
| 713 |
|
template<typename T> void Integrator<T>::rotationPropagation |
| 714 |
< |
( DirectionalAtom* dAtom, double ji[3] ){ |
| 714 |
> |
( StuntDouble* sd, double ji[3] ){ |
| 715 |
|
|
| 716 |
|
double angle; |
| 717 |
|
double A[3][3], I[3][3]; |
| 718 |
+ |
int i, j, k; |
| 719 |
|
|
| 720 |
|
// use the angular velocities to propagate the rotation matrix a |
| 721 |
|
// full time step |
| 722 |
|
|
| 723 |
< |
dAtom->getA(A); |
| 724 |
< |
dAtom->getI(I); |
| 725 |
< |
|
| 726 |
< |
// rotate about the x-axis |
| 727 |
< |
angle = dt2 * ji[0] / I[0][0]; |
| 728 |
< |
this->rotate( 1, 2, angle, ji, A ); |
| 729 |
< |
|
| 730 |
< |
// rotate about the y-axis |
| 731 |
< |
angle = dt2 * ji[1] / I[1][1]; |
| 732 |
< |
this->rotate( 2, 0, angle, ji, A ); |
| 733 |
< |
|
| 734 |
< |
// rotate about the z-axis |
| 735 |
< |
angle = dt * ji[2] / I[2][2]; |
| 736 |
< |
this->rotate( 0, 1, angle, ji, A); |
| 737 |
< |
|
| 738 |
< |
// rotate about the y-axis |
| 739 |
< |
angle = dt2 * ji[1] / I[1][1]; |
| 740 |
< |
this->rotate( 2, 0, angle, ji, A ); |
| 741 |
< |
|
| 742 |
< |
// rotate about the x-axis |
| 743 |
< |
angle = dt2 * ji[0] / I[0][0]; |
| 744 |
< |
this->rotate( 1, 2, angle, ji, A ); |
| 745 |
< |
|
| 746 |
< |
dAtom->setA( A ); |
| 723 |
> |
sd->getA(A); |
| 724 |
> |
sd->getI(I); |
| 725 |
> |
|
| 726 |
> |
if (sd->isLinear()) { |
| 727 |
> |
i = sd->linearAxis(); |
| 728 |
> |
j = (i+1)%3; |
| 729 |
> |
k = (i+2)%3; |
| 730 |
> |
|
| 731 |
> |
angle = dt2 * ji[j] / I[j][j]; |
| 732 |
> |
this->rotate( k, i, angle, ji, A ); |
| 733 |
> |
|
| 734 |
> |
angle = dt * ji[k] / I[k][k]; |
| 735 |
> |
this->rotate( i, j, angle, ji, A); |
| 736 |
> |
|
| 737 |
> |
angle = dt2 * ji[j] / I[j][j]; |
| 738 |
> |
this->rotate( k, i, angle, ji, A ); |
| 739 |
> |
|
| 740 |
> |
} else { |
| 741 |
> |
// rotate about the x-axis |
| 742 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 743 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 744 |
> |
|
| 745 |
> |
// rotate about the y-axis |
| 746 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 747 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 748 |
> |
|
| 749 |
> |
// rotate about the z-axis |
| 750 |
> |
angle = dt * ji[2] / I[2][2]; |
| 751 |
> |
sd->addZangle(angle); |
| 752 |
> |
this->rotate( 0, 1, angle, ji, A); |
| 753 |
> |
|
| 754 |
> |
// rotate about the y-axis |
| 755 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 756 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 757 |
> |
|
| 758 |
> |
// rotate about the x-axis |
| 759 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 760 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 761 |
> |
|
| 762 |
> |
} |
| 763 |
> |
sd->setA( A ); |
| 764 |
|
} |
| 765 |
|
|
| 766 |
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
| 828 |
|
} |
| 829 |
|
} |
| 830 |
|
|
| 831 |
< |
// rotate the Rotation matrix acording to: |
| 831 |
> |
// rotate the Rotation matrix acording to: |
| 832 |
|
// A[][] = A[][] * transpose(rot[][]) |
| 833 |
|
|
| 834 |
|
|
| 857 |
|
template<typename T> double Integrator<T>::getConservedQuantity(void){ |
| 858 |
|
return tStats->getTotalE(); |
| 859 |
|
} |
| 860 |
+ |
template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
| 861 |
+ |
//By default, return a null string |
| 862 |
+ |
//The reason we use string instead of char* is that if we use char*, we will |
| 863 |
+ |
//return a pointer point to local variable which might cause problem |
| 864 |
+ |
return string(); |
| 865 |
+ |
} |