ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Integrator.cpp (file contents):
Revision 999 by chrisfen, Fri Jan 30 15:01:09 2004 UTC vs.
Revision 1284 by tim, Mon Jun 21 18:52:21 2004 UTC

# Line 1 | Line 1
1   #include <iostream>
2   #include <stdlib.h>
3   #include <math.h>
4 <
4 > #include "Rattle.hpp"
5 > #include "Roll.hpp"
6   #ifdef IS_MPI
7   #include "mpiSimulation.hpp"
8   #include <unistd.h>
# Line 31 | Line 32 | template<typename T> Integrator<T>::Integrator(SimInfo
32    }
33  
34    nAtoms = info->n_atoms;
35 +  integrableObjects = info->integrableObjects;
36  
37 +  consFramework = new RattleFramework(info);
38 +
39 +  if(consFramework == NULL){
40 +    sprintf(painCave.errMsg,
41 +      "Integrator::Intergrator() Error: Memory allocation error for RattleFramework" );
42 +    painCave.isFatal = 1;
43 +    simError();
44 +  }
45 +  
46 + /*
47    // check for constraints
48  
49    constrainedA = NULL;
# Line 44 | Line 56 | template<typename T> Integrator<T>::Integrator(SimInfo
56    nConstrained = 0;
57  
58    checkConstraints();
59 + */
60   }
61  
62   template<typename T> Integrator<T>::~Integrator(){
63 +  if (consFramework != NULL)
64 +    delete consFramework;
65 + /*
66    if (nConstrained){
67      delete[] constrainedA;
68      delete[] constrainedB;
# Line 55 | Line 71 | template<typename T> Integrator<T>::~Integrator(){
71      delete[] moved;
72      delete[] oldPos;
73    }
74 + */
75   }
76  
77 + /*
78   template<typename T> void Integrator<T>::checkConstraints(void){
79    isConstrained = 0;
80  
# Line 68 | Line 86 | template<typename T> void Integrator<T>::checkConstrai
86  
87    SRI** theArray;
88    for (int i = 0; i < nMols; i++){
89 <    theArray = (SRI * *) molecules[i].getMyBonds();
89 >
90 >          theArray = (SRI * *) molecules[i].getMyBonds();
91      for (int j = 0; j < molecules[i].getNBonds(); j++){
92        constrained = theArray[j]->is_constrained();
93  
# Line 90 | Line 109 | template<typename T> void Integrator<T>::checkConstrai
109        if (constrained){
110          dummy_plug = theArray[j]->get_constraint();
111          temp_con[nConstrained].set_a(dummy_plug->get_a());
112 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
112 >        temp_con[nConstrained].set_b(Dummy_plug->get_b());
113          temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
114  
115          nConstrained++;
# Line 114 | Line 133 | template<typename T> void Integrator<T>::checkConstrai
133      }
134    }
135  
136 +
137    if (nConstrained > 0){
138      isConstrained = 1;
139  
# Line 147 | Line 167 | template<typename T> void Integrator<T>::checkConstrai
167  
168    delete[] temp_con;
169   }
170 + */
171  
151
172   template<typename T> void Integrator<T>::integrate(void){
173  
174    double runTime = info->run_time;
# Line 157 | Line 177 | template<typename T> void Integrator<T>::integrate(voi
177    double thermalTime = info->thermalTime;
178    double resetTime = info->resetTime;
179  
180 <
180 >  double difference;
181    double currSample;
182    double currThermal;
183    double currStatus;
# Line 176 | Line 196 | template<typename T> void Integrator<T>::integrate(voi
196  
197    readyCheck();
198  
199 +  // remove center of mass drift velocity (in case we passed in a configuration
200 +  // that was drifting
201 +  tStats->removeCOMdrift();
202 +
203 +  // initialize the retraints if necessary
204 +  if (info->useSolidThermInt && !info->useLiquidThermInt) {
205 +    myFF->initRestraints();
206 +  }
207 +
208    // initialize the forces before the first step
209  
210    calcForce(1, 1);
211  
212 <  if (nConstrained){
213 <    preMove();
214 <    constrainA();
215 <    calcForce(1, 1);
216 <    constrainB();
188 <  }
212 >  //execute constraint algorithm to make sure at the very beginning the system is constrained  
213 >  //consFramework->doPreConstraint();
214 >  //consFramework->doConstrainA();
215 >  //calcForce(1, 1);
216 >  //consFramework->doConstrainB();
217    
218    if (info->setTemp){
219      thermalize();
# Line 207 | Line 235 | template<typename T> void Integrator<T>::integrate(voi
235    MPIcheckPoint();
236   #endif // is_mpi
237  
238 <  while (info->getTime() < runTime){
239 <    if ((info->getTime() + dt) >= currStatus){
238 >  while (info->getTime() < runTime && !stopIntegrator()){
239 >    difference = info->getTime() + dt - currStatus;
240 >    if (difference > 0 || fabs(difference) < 1e-4 ){
241        calcPot = 1;
242        calcStress = 1;
243      }
# Line 263 | Line 292 | template<typename T> void Integrator<T>::integrate(voi
292   #endif // is_mpi
293    }
294  
295 +  // dump out a file containing the omega values for the final configuration
296 +  if (info->useSolidThermInt && !info->useLiquidThermInt)
297 +    myFF->dumpzAngle();
298 +  
299 +
300    delete dumpOut;
301    delete statOut;
302   }
# Line 275 | Line 309 | template<typename T> void Integrator<T>::integrateStep
309    startProfile(pro3);
310   #endif //profile
311  
312 <  preMove();
312 >  //save old state (position, velocity etc)
313 >  consFramework->doPreConstraint();
314  
315   #ifdef PROFILE
316    endProfile(pro3);
# Line 297 | Line 332 | template<typename T> void Integrator<T>::integrateStep
332    MPIcheckPoint();
333   #endif // is_mpi
334  
300
335    // calc forces
302
336    calcForce(calcPot, calcStress);
337  
338   #ifdef IS_MPI
# Line 329 | Line 362 | template<typename T> void Integrator<T>::moveA(void){
362  
363  
364   template<typename T> void Integrator<T>::moveA(void){
365 <  int i, j;
365 >  size_t i, j;
366    DirectionalAtom* dAtom;
367    double Tb[3], ji[3];
368    double vel[3], pos[3], frc[3];
369    double mass;
370 +  double omega;
371 +
372 +  for (i = 0; i < integrableObjects.size() ; i++){
373 +    integrableObjects[i]->getVel(vel);
374 +    integrableObjects[i]->getPos(pos);
375 +    integrableObjects[i]->getFrc(frc);
376 +    
377 +    mass = integrableObjects[i]->getMass();
378  
338  for (i = 0; i < nAtoms; i++){
339    atoms[i]->getVel(vel);
340    atoms[i]->getPos(pos);
341    atoms[i]->getFrc(frc);
342
343    mass = atoms[i]->getMass();
344
379      for (j = 0; j < 3; j++){
380        // velocity half step
381        vel[j] += (dt2 * frc[j] / mass) * eConvert;
# Line 349 | Line 383 | template<typename T> void Integrator<T>::moveA(void){
383        pos[j] += dt * vel[j];
384      }
385  
386 <    atoms[i]->setVel(vel);
387 <    atoms[i]->setPos(pos);
386 >    integrableObjects[i]->setVel(vel);
387 >    integrableObjects[i]->setPos(pos);
388  
389 <    if (atoms[i]->isDirectional()){
356 <      dAtom = (DirectionalAtom *) atoms[i];
389 >    if (integrableObjects[i]->isDirectional()){
390  
391        // get and convert the torque to body frame
392  
393 <      dAtom->getTrq(Tb);
394 <      dAtom->lab2Body(Tb);
393 >      integrableObjects[i]->getTrq(Tb);
394 >      integrableObjects[i]->lab2Body(Tb);
395  
396        // get the angular momentum, and propagate a half step
397  
398 <      dAtom->getJ(ji);
398 >      integrableObjects[i]->getJ(ji);
399  
400        for (j = 0; j < 3; j++)
401          ji[j] += (dt2 * Tb[j]) * eConvert;
402  
403 <      this->rotationPropagation( dAtom, ji );
403 >      this->rotationPropagation( integrableObjects[i], ji );
404  
405 <      dAtom->setJ(ji);
405 >      integrableObjects[i]->setJ(ji);
406      }
407    }
408  
409 <  if (nConstrained){
377 <    constrainA();
378 <  }
409 >  consFramework->doConstrainA();
410   }
411  
412  
413   template<typename T> void Integrator<T>::moveB(void){
414    int i, j;
384  DirectionalAtom* dAtom;
415    double Tb[3], ji[3];
416    double vel[3], frc[3];
417    double mass;
418  
419 <  for (i = 0; i < nAtoms; i++){
420 <    atoms[i]->getVel(vel);
421 <    atoms[i]->getFrc(frc);
419 >  for (i = 0; i < integrableObjects.size(); i++){
420 >    integrableObjects[i]->getVel(vel);
421 >    integrableObjects[i]->getFrc(frc);
422  
423 <    mass = atoms[i]->getMass();
423 >    mass = integrableObjects[i]->getMass();
424  
425      // velocity half step
426      for (j = 0; j < 3; j++)
427        vel[j] += (dt2 * frc[j] / mass) * eConvert;
428  
429 <    atoms[i]->setVel(vel);
429 >    integrableObjects[i]->setVel(vel);
430  
431 <    if (atoms[i]->isDirectional()){
402 <      dAtom = (DirectionalAtom *) atoms[i];
431 >    if (integrableObjects[i]->isDirectional()){
432  
433        // get and convert the torque to body frame
434  
435 <      dAtom->getTrq(Tb);
436 <      dAtom->lab2Body(Tb);
435 >      integrableObjects[i]->getTrq(Tb);
436 >      integrableObjects[i]->lab2Body(Tb);
437  
438        // get the angular momentum, and propagate a half step
439  
440 <      dAtom->getJ(ji);
440 >      integrableObjects[i]->getJ(ji);
441  
442        for (j = 0; j < 3; j++)
443          ji[j] += (dt2 * Tb[j]) * eConvert;
444  
445  
446 <      dAtom->setJ(ji);
446 >      integrableObjects[i]->setJ(ji);
447      }
448    }
449  
450 <  if (nConstrained){
422 <    constrainB();
423 <  }
450 >  consFramework->doConstrainB();
451   }
452  
453 + /*
454   template<typename T> void Integrator<T>::preMove(void){
455    int i, j;
456    double pos[3];
# Line 681 | Line 709 | template<typename T> void Integrator<T>::constrainB(vo
709      simError();
710    }
711   }
712 <
712 > */
713   template<typename T> void Integrator<T>::rotationPropagation
714 < ( DirectionalAtom* dAtom, double ji[3] ){
714 > ( StuntDouble* sd, double ji[3] ){
715  
716    double angle;
717    double A[3][3], I[3][3];
718 +  int i, j, k;
719  
720    // use the angular velocities to propagate the rotation matrix a
721    // full time step
722  
723 <  dAtom->getA(A);
724 <  dAtom->getI(I);
696 <
697 <  // rotate about the x-axis
698 <  angle = dt2 * ji[0] / I[0][0];
699 <  this->rotate( 1, 2, angle, ji, A );
723 >  sd->getA(A);
724 >  sd->getI(I);
725  
726 <  // rotate about the y-axis
727 <  angle = dt2 * ji[1] / I[1][1];
728 <  this->rotate( 2, 0, angle, ji, A );
729 <
730 <  // rotate about the z-axis
731 <  angle = dt * ji[2] / I[2][2];
732 <  this->rotate( 0, 1, angle, ji, A);
726 >  if (sd->isLinear()) {
727 >    i = sd->linearAxis();
728 >    j = (i+1)%3;
729 >    k = (i+2)%3;
730 >    
731 >    angle = dt2 * ji[j] / I[j][j];
732 >    this->rotate( k, i, angle, ji, A );
733  
734 <  // rotate about the y-axis
735 <  angle = dt2 * ji[1] / I[1][1];
711 <  this->rotate( 2, 0, angle, ji, A );
734 >    angle = dt * ji[k] / I[k][k];
735 >    this->rotate( i, j, angle, ji, A);
736  
737 <  // rotate about the x-axis
738 <  angle = dt2 * ji[0] / I[0][0];
715 <  this->rotate( 1, 2, angle, ji, A );
737 >    angle = dt2 * ji[j] / I[j][j];
738 >    this->rotate( k, i, angle, ji, A );
739  
740 <  dAtom->setA( A  );
740 >  } else {
741 >    // rotate about the x-axis
742 >    angle = dt2 * ji[0] / I[0][0];
743 >    this->rotate( 1, 2, angle, ji, A );
744 >    
745 >    // rotate about the y-axis
746 >    angle = dt2 * ji[1] / I[1][1];
747 >    this->rotate( 2, 0, angle, ji, A );
748 >    
749 >    // rotate about the z-axis
750 >    angle = dt * ji[2] / I[2][2];
751 >    sd->addZangle(angle);
752 >    this->rotate( 0, 1, angle, ji, A);
753 >    
754 >    // rotate about the y-axis
755 >    angle = dt2 * ji[1] / I[1][1];
756 >    this->rotate( 2, 0, angle, ji, A );
757 >    
758 >    // rotate about the x-axis
759 >    angle = dt2 * ji[0] / I[0][0];
760 >    this->rotate( 1, 2, angle, ji, A );
761 >    
762 >  }
763 >  sd->setA( A  );
764   }
765  
766   template<typename T> void Integrator<T>::rotate(int axes1, int axes2,

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines