| 1 |
|
#include <iostream> |
| 2 |
|
#include <cstdlib> |
| 3 |
+ |
#include <cmath> |
| 4 |
|
|
| 5 |
|
#ifdef IS_MPI |
| 6 |
|
#include "mpiSimulation.hpp" |
| 11 |
|
#include "simError.h" |
| 12 |
|
|
| 13 |
|
|
| 14 |
< |
Integrator::Integrator( SimInfo* theInfo, ForceFields* the_ff ){ |
| 14 |
> |
Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){ |
| 15 |
|
|
| 16 |
|
info = theInfo; |
| 17 |
|
myFF = the_ff; |
| 34 |
|
constrainedDsqr = NULL; |
| 35 |
|
moving = NULL; |
| 36 |
|
moved = NULL; |
| 37 |
< |
prePos = NULL; |
| 37 |
> |
oldPos = NULL; |
| 38 |
|
|
| 39 |
|
nConstrained = 0; |
| 40 |
|
|
| 49 |
|
delete[] constrainedDsqr; |
| 50 |
|
delete[] moving; |
| 51 |
|
delete[] moved; |
| 52 |
< |
delete[] prePos; |
| 52 |
> |
delete[] oldPos; |
| 53 |
|
} |
| 54 |
|
|
| 55 |
|
} |
| 72 |
|
for(int j=0; j<molecules[i].getNBonds(); j++){ |
| 73 |
|
|
| 74 |
|
constrained = theArray[j]->is_constrained(); |
| 75 |
< |
|
| 75 |
> |
|
| 76 |
|
if(constrained){ |
| 77 |
< |
|
| 77 |
> |
|
| 78 |
|
dummy_plug = theArray[j]->get_constraint(); |
| 79 |
|
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
| 80 |
|
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
| 82 |
|
|
| 83 |
|
nConstrained++; |
| 84 |
|
constrained = 0; |
| 85 |
< |
} |
| 85 |
> |
} |
| 86 |
|
} |
| 87 |
|
|
| 88 |
|
theArray = (SRI**) molecules[i].getMyBends(); |
| 137 |
|
constrainedA[i] = temp_con[i].get_a(); |
| 138 |
|
constrainedB[i] = temp_con[i].get_b(); |
| 139 |
|
constrainedDsqr[i] = temp_con[i].get_dsqr(); |
| 140 |
+ |
|
| 141 |
|
} |
| 142 |
|
|
| 143 |
|
|
| 148 |
|
moving = new int[nAtoms]; |
| 149 |
|
moved = new int[nAtoms]; |
| 150 |
|
|
| 151 |
< |
prePos = new double[nAtoms*3]; |
| 151 |
> |
oldPos = new double[nAtoms*3]; |
| 152 |
|
} |
| 153 |
|
|
| 154 |
|
delete[] temp_con; |
| 158 |
|
void Integrator::integrate( void ){ |
| 159 |
|
|
| 160 |
|
int i, j; // loop counters |
| 159 |
– |
double kE = 0.0; // the kinetic energy |
| 160 |
– |
double rot_kE; |
| 161 |
– |
double trans_kE; |
| 162 |
– |
int tl; // the time loop conter |
| 163 |
– |
double dt2; // half the dt |
| 161 |
|
|
| 165 |
– |
double vx, vy, vz; // the velocities |
| 166 |
– |
double vx2, vy2, vz2; // the square of the velocities |
| 167 |
– |
double rx, ry, rz; // the postitions |
| 168 |
– |
|
| 169 |
– |
double ji[3]; // the body frame angular momentum |
| 170 |
– |
double jx2, jy2, jz2; // the square of the angular momentums |
| 171 |
– |
double Tb[3]; // torque in the body frame |
| 172 |
– |
double angle; // the angle through which to rotate the rotation matrix |
| 173 |
– |
double A[3][3]; // the rotation matrix |
| 174 |
– |
double press[9]; |
| 175 |
– |
|
| 176 |
– |
double dt = info->dt; |
| 162 |
|
double runTime = info->run_time; |
| 163 |
|
double sampleTime = info->sampleTime; |
| 164 |
|
double statusTime = info->statusTime; |
| 173 |
|
int isError; |
| 174 |
|
|
| 175 |
|
tStats = new Thermo( info ); |
| 176 |
< |
e_out = new StatWriter( info ); |
| 177 |
< |
dump_out = new DumpWriter( info ); |
| 176 |
> |
statOut = new StatWriter( info ); |
| 177 |
> |
dumpOut = new DumpWriter( info ); |
| 178 |
|
|
| 179 |
< |
Atom** atoms = info->atoms; |
| 179 |
> |
atoms = info->atoms; |
| 180 |
|
DirectionalAtom* dAtom; |
| 181 |
+ |
|
| 182 |
+ |
dt = info->dt; |
| 183 |
|
dt2 = 0.5 * dt; |
| 184 |
|
|
| 185 |
|
// initialize the forces before the first step |
| 191 |
|
tStats->velocitize(); |
| 192 |
|
} |
| 193 |
|
|
| 194 |
< |
dump_out->writeDump( 0.0 ); |
| 195 |
< |
e_out->writeStat( 0.0 ); |
| 194 |
> |
dumpOut->writeDump( 0.0 ); |
| 195 |
> |
statOut->writeStat( 0.0 ); |
| 196 |
|
|
| 197 |
|
calcPot = 0; |
| 198 |
|
calcStress = 0; |
| 216 |
|
calcPot = 1; |
| 217 |
|
calcStress = 1; |
| 218 |
|
} |
| 219 |
< |
|
| 219 |
> |
|
| 220 |
|
integrateStep( calcPot, calcStress ); |
| 221 |
|
|
| 222 |
|
currTime += dt; |
| 229 |
|
} |
| 230 |
|
|
| 231 |
|
if( currTime >= currSample ){ |
| 232 |
< |
dump_out->writeDump( currTime ); |
| 232 |
> |
dumpOut->writeDump( currTime ); |
| 233 |
|
currSample += sampleTime; |
| 234 |
|
} |
| 235 |
|
|
| 236 |
|
if( currTime >= currStatus ){ |
| 237 |
< |
e_out->writeStat( time * dt ); |
| 237 |
> |
statOut->writeStat( currTime ); |
| 238 |
|
calcPot = 0; |
| 239 |
|
calcStress = 0; |
| 240 |
|
currStatus += statusTime; |
| 248 |
|
|
| 249 |
|
} |
| 250 |
|
|
| 251 |
< |
dump_out->writeFinal(); |
| 251 |
> |
dumpOut->writeFinal(currTime); |
| 252 |
|
|
| 253 |
< |
delete dump_out; |
| 254 |
< |
delete e_out; |
| 253 |
> |
delete dumpOut; |
| 254 |
> |
delete statOut; |
| 255 |
|
} |
| 256 |
|
|
| 257 |
|
void Integrator::integrateStep( int calcPot, int calcStress ){ |
| 258 |
|
|
| 259 |
+ |
|
| 260 |
+ |
|
| 261 |
|
// Position full step, and velocity half step |
| 262 |
|
|
| 263 |
< |
//preMove(); |
| 263 |
> |
preMove(); |
| 264 |
|
moveA(); |
| 265 |
|
if( nConstrained ) constrainA(); |
| 266 |
|
|
| 267 |
+ |
|
| 268 |
+ |
#ifdef IS_MPI |
| 269 |
+ |
strcpy( checkPointMsg, "Succesful moveA\n" ); |
| 270 |
+ |
MPIcheckPoint(); |
| 271 |
+ |
#endif // is_mpi |
| 272 |
+ |
|
| 273 |
+ |
|
| 274 |
|
// calc forces |
| 275 |
|
|
| 276 |
|
myFF->doForces(calcPot,calcStress); |
| 277 |
|
|
| 278 |
+ |
#ifdef IS_MPI |
| 279 |
+ |
strcpy( checkPointMsg, "Succesful doForces\n" ); |
| 280 |
+ |
MPIcheckPoint(); |
| 281 |
+ |
#endif // is_mpi |
| 282 |
+ |
|
| 283 |
+ |
|
| 284 |
|
// finish the velocity half step |
| 285 |
|
|
| 286 |
|
moveB(); |
| 287 |
|
if( nConstrained ) constrainB(); |
| 288 |
< |
|
| 288 |
> |
|
| 289 |
> |
#ifdef IS_MPI |
| 290 |
> |
strcpy( checkPointMsg, "Succesful moveB\n" ); |
| 291 |
> |
MPIcheckPoint(); |
| 292 |
> |
#endif // is_mpi |
| 293 |
> |
|
| 294 |
> |
|
| 295 |
|
} |
| 296 |
|
|
| 297 |
|
|
| 298 |
|
void Integrator::moveA( void ){ |
| 299 |
|
|
| 300 |
< |
int i,j,k; |
| 293 |
< |
int atomIndex, aMatIndex; |
| 300 |
> |
int i, j; |
| 301 |
|
DirectionalAtom* dAtom; |
| 302 |
< |
double Tb[3]; |
| 303 |
< |
double ji[3]; |
| 302 |
> |
double Tb[3], ji[3]; |
| 303 |
> |
double A[3][3], I[3][3]; |
| 304 |
> |
double angle; |
| 305 |
> |
double vel[3], pos[3], frc[3]; |
| 306 |
> |
double mass; |
| 307 |
|
|
| 308 |
|
for( i=0; i<nAtoms; i++ ){ |
| 299 |
– |
atomIndex = i * 3; |
| 300 |
– |
aMatIndex = i * 9; |
| 301 |
– |
|
| 302 |
– |
// velocity half step |
| 303 |
– |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 304 |
– |
vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
| 309 |
|
|
| 310 |
< |
// position whole step |
| 311 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 310 |
> |
atoms[i]->getVel( vel ); |
| 311 |
> |
atoms[i]->getPos( pos ); |
| 312 |
> |
atoms[i]->getFrc( frc ); |
| 313 |
> |
|
| 314 |
> |
mass = atoms[i]->getMass(); |
| 315 |
> |
|
| 316 |
> |
for (j=0; j < 3; j++) { |
| 317 |
> |
// velocity half step |
| 318 |
> |
vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
| 319 |
> |
// position whole step |
| 320 |
|
pos[j] += dt * vel[j]; |
| 321 |
+ |
} |
| 322 |
|
|
| 323 |
< |
|
| 323 |
> |
atoms[i]->setVel( vel ); |
| 324 |
> |
atoms[i]->setPos( pos ); |
| 325 |
> |
|
| 326 |
|
if( atoms[i]->isDirectional() ){ |
| 327 |
|
|
| 328 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 329 |
|
|
| 330 |
|
// get and convert the torque to body frame |
| 331 |
|
|
| 332 |
< |
Tb[0] = dAtom->getTx(); |
| 318 |
< |
Tb[1] = dAtom->getTy(); |
| 319 |
< |
Tb[2] = dAtom->getTz(); |
| 320 |
< |
|
| 332 |
> |
dAtom->getTrq( Tb ); |
| 333 |
|
dAtom->lab2Body( Tb ); |
| 334 |
< |
|
| 334 |
> |
|
| 335 |
|
// get the angular momentum, and propagate a half step |
| 336 |
+ |
|
| 337 |
+ |
dAtom->getJ( ji ); |
| 338 |
+ |
|
| 339 |
+ |
for (j=0; j < 3; j++) |
| 340 |
+ |
ji[j] += (dt2 * Tb[j]) * eConvert; |
| 341 |
|
|
| 325 |
– |
ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
| 326 |
– |
ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
| 327 |
– |
ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
| 328 |
– |
|
| 342 |
|
// use the angular velocities to propagate the rotation matrix a |
| 343 |
|
// full time step |
| 344 |
< |
|
| 344 |
> |
|
| 345 |
> |
dAtom->getA(A); |
| 346 |
> |
dAtom->getI(I); |
| 347 |
> |
|
| 348 |
|
// rotate about the x-axis |
| 349 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 350 |
< |
this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
| 351 |
< |
|
| 349 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 350 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 351 |
> |
|
| 352 |
|
// rotate about the y-axis |
| 353 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 354 |
< |
this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
| 353 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 354 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 355 |
|
|
| 356 |
|
// rotate about the z-axis |
| 357 |
< |
angle = dt * ji[2] / dAtom->getIzz(); |
| 358 |
< |
this->rotate( 0, 1, angle, ji, &aMat[aMatIndex] ); |
| 357 |
> |
angle = dt * ji[2] / I[2][2]; |
| 358 |
> |
this->rotate( 0, 1, angle, ji, A); |
| 359 |
|
|
| 360 |
|
// rotate about the y-axis |
| 361 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 362 |
< |
this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
| 361 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 362 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 363 |
|
|
| 364 |
|
// rotate about the x-axis |
| 365 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 366 |
< |
this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
| 365 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 366 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 367 |
|
|
| 368 |
< |
dAtom->setJx( ji[0] ); |
| 369 |
< |
dAtom->setJy( ji[1] ); |
| 370 |
< |
dAtom->setJz( ji[2] ); |
| 371 |
< |
} |
| 372 |
< |
|
| 368 |
> |
|
| 369 |
> |
dAtom->setJ( ji ); |
| 370 |
> |
dAtom->setA( A ); |
| 371 |
> |
|
| 372 |
> |
} |
| 373 |
|
} |
| 374 |
|
} |
| 375 |
|
|
| 376 |
|
|
| 377 |
|
void Integrator::moveB( void ){ |
| 378 |
< |
int i,j,k; |
| 363 |
< |
int atomIndex; |
| 378 |
> |
int i, j; |
| 379 |
|
DirectionalAtom* dAtom; |
| 380 |
< |
double Tb[3]; |
| 381 |
< |
double ji[3]; |
| 380 |
> |
double Tb[3], ji[3]; |
| 381 |
> |
double vel[3], frc[3]; |
| 382 |
> |
double mass; |
| 383 |
|
|
| 384 |
|
for( i=0; i<nAtoms; i++ ){ |
| 385 |
< |
atomIndex = i * 3; |
| 385 |
> |
|
| 386 |
> |
atoms[i]->getVel( vel ); |
| 387 |
> |
atoms[i]->getFrc( frc ); |
| 388 |
|
|
| 389 |
< |
// velocity half step |
| 372 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 373 |
< |
vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
| 389 |
> |
mass = atoms[i]->getMass(); |
| 390 |
|
|
| 391 |
+ |
// velocity half step |
| 392 |
+ |
for (j=0; j < 3; j++) |
| 393 |
+ |
vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
| 394 |
+ |
|
| 395 |
+ |
atoms[i]->setVel( vel ); |
| 396 |
+ |
|
| 397 |
|
if( atoms[i]->isDirectional() ){ |
| 398 |
< |
|
| 398 |
> |
|
| 399 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 400 |
< |
|
| 401 |
< |
// get and convert the torque to body frame |
| 402 |
< |
|
| 403 |
< |
Tb[0] = dAtom->getTx(); |
| 382 |
< |
Tb[1] = dAtom->getTy(); |
| 383 |
< |
Tb[2] = dAtom->getTz(); |
| 384 |
< |
|
| 400 |
> |
|
| 401 |
> |
// get and convert the torque to body frame |
| 402 |
> |
|
| 403 |
> |
dAtom->getTrq( Tb ); |
| 404 |
|
dAtom->lab2Body( Tb ); |
| 405 |
+ |
|
| 406 |
+ |
// get the angular momentum, and propagate a half step |
| 407 |
+ |
|
| 408 |
+ |
dAtom->getJ( ji ); |
| 409 |
+ |
|
| 410 |
+ |
for (j=0; j < 3; j++) |
| 411 |
+ |
ji[j] += (dt2 * Tb[j]) * eConvert; |
| 412 |
|
|
| 413 |
< |
// get the angular momentum, and complete the angular momentum |
| 414 |
< |
// half step |
| 389 |
< |
|
| 390 |
< |
ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
| 391 |
< |
ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
| 392 |
< |
ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
| 393 |
< |
|
| 394 |
< |
jx2 = ji[0] * ji[0]; |
| 395 |
< |
jy2 = ji[1] * ji[1]; |
| 396 |
< |
jz2 = ji[2] * ji[2]; |
| 397 |
< |
|
| 398 |
< |
dAtom->setJx( ji[0] ); |
| 399 |
< |
dAtom->setJy( ji[1] ); |
| 400 |
< |
dAtom->setJz( ji[2] ); |
| 413 |
> |
|
| 414 |
> |
dAtom->setJ( ji ); |
| 415 |
|
} |
| 416 |
|
} |
| 403 |
– |
|
| 417 |
|
} |
| 418 |
|
|
| 419 |
|
void Integrator::preMove( void ){ |
| 420 |
< |
int i; |
| 420 |
> |
int i, j; |
| 421 |
> |
double pos[3]; |
| 422 |
|
|
| 423 |
|
if( nConstrained ){ |
| 424 |
< |
if( oldAtoms != nAtoms ){ |
| 425 |
< |
|
| 426 |
< |
// save oldAtoms to check for lode balanceing later on. |
| 427 |
< |
|
| 428 |
< |
oldAtoms = nAtoms; |
| 429 |
< |
|
| 430 |
< |
delete[] moving; |
| 431 |
< |
delete[] moved; |
| 432 |
< |
delete[] oldPos; |
| 419 |
< |
|
| 420 |
< |
moving = new int[nAtoms]; |
| 421 |
< |
moved = new int[nAtoms]; |
| 422 |
< |
|
| 423 |
< |
oldPos = new double[nAtoms*3]; |
| 424 |
> |
|
| 425 |
> |
for(i=0; i < nAtoms; i++) { |
| 426 |
> |
|
| 427 |
> |
atoms[i]->getPos( pos ); |
| 428 |
> |
|
| 429 |
> |
for (j = 0; j < 3; j++) { |
| 430 |
> |
oldPos[3*i + j] = pos[j]; |
| 431 |
> |
} |
| 432 |
> |
|
| 433 |
|
} |
| 434 |
< |
|
| 435 |
< |
for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i]; |
| 427 |
< |
} |
| 428 |
< |
} |
| 434 |
> |
} |
| 435 |
> |
} |
| 436 |
|
|
| 437 |
|
void Integrator::constrainA(){ |
| 438 |
|
|
| 439 |
|
int i,j,k; |
| 440 |
|
int done; |
| 441 |
< |
double pxab, pyab, pzab; |
| 442 |
< |
double rxab, ryab, rzab; |
| 443 |
< |
int a, b; |
| 441 |
> |
double posA[3], posB[3]; |
| 442 |
> |
double velA[3], velB[3]; |
| 443 |
> |
double pab[3]; |
| 444 |
> |
double rab[3]; |
| 445 |
> |
int a, b, ax, ay, az, bx, by, bz; |
| 446 |
|
double rma, rmb; |
| 447 |
|
double dx, dy, dz; |
| 448 |
+ |
double rpab; |
| 449 |
|
double rabsq, pabsq, rpabsq; |
| 450 |
|
double diffsq; |
| 451 |
|
double gab; |
| 452 |
|
int iteration; |
| 453 |
|
|
| 454 |
< |
|
| 445 |
< |
|
| 446 |
< |
for( i=0; i<nAtoms; i++){ |
| 447 |
< |
|
| 454 |
> |
for( i=0; i<nAtoms; i++){ |
| 455 |
|
moving[i] = 0; |
| 456 |
|
moved[i] = 1; |
| 457 |
|
} |
| 458 |
< |
|
| 452 |
< |
|
| 458 |
> |
|
| 459 |
|
iteration = 0; |
| 460 |
|
done = 0; |
| 461 |
|
while( !done && (iteration < maxIteration )){ |
| 465 |
|
|
| 466 |
|
a = constrainedA[i]; |
| 467 |
|
b = constrainedB[i]; |
| 468 |
< |
|
| 468 |
> |
|
| 469 |
> |
ax = (a*3) + 0; |
| 470 |
> |
ay = (a*3) + 1; |
| 471 |
> |
az = (a*3) + 2; |
| 472 |
> |
|
| 473 |
> |
bx = (b*3) + 0; |
| 474 |
> |
by = (b*3) + 1; |
| 475 |
> |
bz = (b*3) + 2; |
| 476 |
> |
|
| 477 |
|
if( moved[a] || moved[b] ){ |
| 478 |
< |
|
| 479 |
< |
pxab = pos[3*a+0] - pos[3*b+0]; |
| 480 |
< |
pyab = pos[3*a+1] - pos[3*b+1]; |
| 481 |
< |
pzab = pos[3*a+2] - pos[3*b+2]; |
| 478 |
> |
|
| 479 |
> |
atoms[a]->getPos( posA ); |
| 480 |
> |
atoms[b]->getPos( posB ); |
| 481 |
> |
|
| 482 |
> |
for (j = 0; j < 3; j++ ) |
| 483 |
> |
pab[j] = posA[j] - posB[j]; |
| 484 |
> |
|
| 485 |
> |
//periodic boundary condition |
| 486 |
|
|
| 487 |
< |
//periodic boundary condition |
| 470 |
< |
pxab = pxab - info->box_x * copysign(1, pxab) |
| 471 |
< |
* int(pxab / info->box_x + 0.5); |
| 472 |
< |
pyab = pyab - info->box_y * copysign(1, pyab) |
| 473 |
< |
* int(pyab / info->box_y + 0.5); |
| 474 |
< |
pzab = pzab - info->box_z * copysign(1, pzab) |
| 475 |
< |
* int(pzab / info->box_z + 0.5); |
| 476 |
< |
|
| 477 |
< |
pabsq = pxab * pxab + pyab * pyab + pzab * pzab; |
| 478 |
< |
rabsq = constraintedDsqr[i]; |
| 479 |
< |
diffsq = pabsq - rabsq; |
| 487 |
> |
info->wrapVector( pab ); |
| 488 |
|
|
| 489 |
+ |
pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
| 490 |
+ |
|
| 491 |
+ |
rabsq = constrainedDsqr[i]; |
| 492 |
+ |
diffsq = rabsq - pabsq; |
| 493 |
+ |
|
| 494 |
|
// the original rattle code from alan tidesley |
| 495 |
< |
if (fabs(diffsq) > tol*rabsq*2) { |
| 496 |
< |
rxab = oldPos[3*a+0] - oldPos[3*b+0]; |
| 497 |
< |
ryab = oldPos[3*a+1] - oldPos[3*b+1]; |
| 498 |
< |
rzab = oldPos[3*a+2] - oldPos[3*b+2]; |
| 486 |
< |
|
| 487 |
< |
rxab = rxab - info->box_x * copysign(1, rxab) |
| 488 |
< |
* int(rxab / info->box_x + 0.5); |
| 489 |
< |
ryab = ryab - info->box_y * copysign(1, ryab) |
| 490 |
< |
* int(ryab / info->box_y + 0.5); |
| 491 |
< |
rzab = rzab - info->box_z * copysign(1, rzab) |
| 492 |
< |
* int(rzab / info->box_z + 0.5); |
| 495 |
> |
if (fabs(diffsq) > (tol*rabsq*2)) { |
| 496 |
> |
rab[0] = oldPos[ax] - oldPos[bx]; |
| 497 |
> |
rab[1] = oldPos[ay] - oldPos[by]; |
| 498 |
> |
rab[2] = oldPos[az] - oldPos[bz]; |
| 499 |
|
|
| 500 |
< |
rpab = rxab * pxab + ryab * pyab + rzab * pzab; |
| 500 |
> |
info->wrapVector( rab ); |
| 501 |
> |
|
| 502 |
> |
rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
| 503 |
> |
|
| 504 |
|
rpabsq = rpab * rpab; |
| 505 |
|
|
| 506 |
|
|
| 507 |
|
if (rpabsq < (rabsq * -diffsq)){ |
| 508 |
+ |
|
| 509 |
|
#ifdef IS_MPI |
| 510 |
|
a = atoms[a]->getGlobalIndex(); |
| 511 |
|
b = atoms[b]->getGlobalIndex(); |
| 512 |
|
#endif //is_mpi |
| 513 |
|
sprintf( painCave.errMsg, |
| 514 |
< |
"Constraint failure in constrainA at atom %d and %d\n.", |
| 514 |
> |
"Constraint failure in constrainA at atom %d and %d.\n", |
| 515 |
|
a, b ); |
| 516 |
|
painCave.isFatal = 1; |
| 517 |
|
simError(); |
| 519 |
|
|
| 520 |
|
rma = 1.0 / atoms[a]->getMass(); |
| 521 |
|
rmb = 1.0 / atoms[b]->getMass(); |
| 522 |
< |
|
| 522 |
> |
|
| 523 |
|
gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); |
| 514 |
– |
dx = rxab * gab; |
| 515 |
– |
dy = ryab * gab; |
| 516 |
– |
dz = rzab * gab; |
| 524 |
|
|
| 525 |
< |
pos[3*a+0] += rma * dx; |
| 526 |
< |
pos[3*a+1] += rma * dy; |
| 527 |
< |
pos[3*a+2] += rma * dz; |
| 525 |
> |
dx = rab[0] * gab; |
| 526 |
> |
dy = rab[1] * gab; |
| 527 |
> |
dz = rab[2] * gab; |
| 528 |
|
|
| 529 |
< |
pos[3*b+0] -= rmb * dx; |
| 530 |
< |
pos[3*b+1] -= rmb * dy; |
| 531 |
< |
pos[3*b+2] -= rmb * dz; |
| 529 |
> |
posA[0] += rma * dx; |
| 530 |
> |
posA[1] += rma * dy; |
| 531 |
> |
posA[2] += rma * dz; |
| 532 |
|
|
| 533 |
+ |
atoms[a]->setPos( posA ); |
| 534 |
+ |
|
| 535 |
+ |
posB[0] -= rmb * dx; |
| 536 |
+ |
posB[1] -= rmb * dy; |
| 537 |
+ |
posB[2] -= rmb * dz; |
| 538 |
+ |
|
| 539 |
+ |
atoms[b]->setPos( posB ); |
| 540 |
+ |
|
| 541 |
|
dx = dx / dt; |
| 542 |
|
dy = dy / dt; |
| 543 |
|
dz = dz / dt; |
| 544 |
|
|
| 545 |
< |
vel[3*a+0] += rma * dx; |
| 531 |
< |
vel[3*a+1] += rma * dy; |
| 532 |
< |
vel[3*a+2] += rma * dz; |
| 545 |
> |
atoms[a]->getVel( velA ); |
| 546 |
|
|
| 547 |
< |
vel[3*b+0] -= rmb * dx; |
| 548 |
< |
vel[3*b+1] -= rmb * dy; |
| 549 |
< |
vel[3*b+2] -= rmb * dz; |
| 547 |
> |
velA[0] += rma * dx; |
| 548 |
> |
velA[1] += rma * dy; |
| 549 |
> |
velA[2] += rma * dz; |
| 550 |
|
|
| 551 |
+ |
atoms[a]->setVel( velA ); |
| 552 |
+ |
|
| 553 |
+ |
atoms[b]->getVel( velB ); |
| 554 |
+ |
|
| 555 |
+ |
velB[0] -= rmb * dx; |
| 556 |
+ |
velB[1] -= rmb * dy; |
| 557 |
+ |
velB[2] -= rmb * dz; |
| 558 |
+ |
|
| 559 |
+ |
atoms[b]->setVel( velB ); |
| 560 |
+ |
|
| 561 |
|
moving[a] = 1; |
| 562 |
|
moving[b] = 1; |
| 563 |
|
done = 0; |
| 576 |
|
|
| 577 |
|
if( !done ){ |
| 578 |
|
|
| 579 |
< |
sprintf( painCae.errMsg, |
| 579 |
> |
sprintf( painCave.errMsg, |
| 580 |
|
"Constraint failure in constrainA, too many iterations: %d\n", |
| 581 |
< |
iterations ); |
| 581 |
> |
iteration ); |
| 582 |
|
painCave.isFatal = 1; |
| 583 |
|
simError(); |
| 584 |
|
} |
| 589 |
|
|
| 590 |
|
int i,j,k; |
| 591 |
|
int done; |
| 592 |
+ |
double posA[3], posB[3]; |
| 593 |
+ |
double velA[3], velB[3]; |
| 594 |
|
double vxab, vyab, vzab; |
| 595 |
< |
double rxab, ryab, rzab; |
| 596 |
< |
int a, b; |
| 595 |
> |
double rab[3]; |
| 596 |
> |
int a, b, ax, ay, az, bx, by, bz; |
| 597 |
|
double rma, rmb; |
| 598 |
|
double dx, dy, dz; |
| 599 |
|
double rabsq, pabsq, rvab; |
| 601 |
|
double gab; |
| 602 |
|
int iteration; |
| 603 |
|
|
| 604 |
< |
for(i=0; i<nAtom; i++){ |
| 604 |
> |
for(i=0; i<nAtoms; i++){ |
| 605 |
|
moving[i] = 0; |
| 606 |
|
moved[i] = 1; |
| 607 |
|
} |
| 608 |
|
|
| 609 |
|
done = 0; |
| 610 |
+ |
iteration = 0; |
| 611 |
|
while( !done && (iteration < maxIteration ) ){ |
| 612 |
|
|
| 613 |
+ |
done = 1; |
| 614 |
+ |
|
| 615 |
|
for(i=0; i<nConstrained; i++){ |
| 616 |
|
|
| 617 |
|
a = constrainedA[i]; |
| 618 |
|
b = constrainedB[i]; |
| 619 |
|
|
| 620 |
+ |
ax = (a*3) + 0; |
| 621 |
+ |
ay = (a*3) + 1; |
| 622 |
+ |
az = (a*3) + 2; |
| 623 |
+ |
|
| 624 |
+ |
bx = (b*3) + 0; |
| 625 |
+ |
by = (b*3) + 1; |
| 626 |
+ |
bz = (b*3) + 2; |
| 627 |
+ |
|
| 628 |
|
if( moved[a] || moved[b] ){ |
| 593 |
– |
|
| 594 |
– |
vxab = vel[3*a+0] - vel[3*b+0]; |
| 595 |
– |
vyab = vel[3*a+1] - vel[3*b+1]; |
| 596 |
– |
vzab = vel[3*a+2] - vel[3*b+2]; |
| 629 |
|
|
| 630 |
< |
rxab = pos[3*a+0] - pos[3*b+0];q |
| 631 |
< |
ryab = pos[3*a+1] - pos[3*b+1]; |
| 632 |
< |
rzab = pos[3*a+2] - pos[3*b+2]; |
| 633 |
< |
|
| 634 |
< |
rxab = rxab - info->box_x * copysign(1, rxab) |
| 635 |
< |
* int(rxab / info->box_x + 0.5); |
| 604 |
< |
ryab = ryab - info->box_y * copysign(1, ryab) |
| 605 |
< |
* int(ryab / info->box_y + 0.5); |
| 606 |
< |
rzab = rzab - info->box_z * copysign(1, rzab) |
| 607 |
< |
* int(rzab / info->box_z + 0.5); |
| 630 |
> |
atoms[a]->getVel( velA ); |
| 631 |
> |
atoms[b]->getVel( velB ); |
| 632 |
> |
|
| 633 |
> |
vxab = velA[0] - velB[0]; |
| 634 |
> |
vyab = velA[1] - velB[1]; |
| 635 |
> |
vzab = velA[2] - velB[2]; |
| 636 |
|
|
| 637 |
+ |
atoms[a]->getPos( posA ); |
| 638 |
+ |
atoms[b]->getPos( posB ); |
| 639 |
+ |
|
| 640 |
+ |
for (j = 0; j < 3; j++) |
| 641 |
+ |
rab[j] = posA[j] - posB[j]; |
| 642 |
+ |
|
| 643 |
+ |
info->wrapVector( rab ); |
| 644 |
+ |
|
| 645 |
|
rma = 1.0 / atoms[a]->getMass(); |
| 646 |
|
rmb = 1.0 / atoms[b]->getMass(); |
| 647 |
|
|
| 648 |
< |
rvab = rxab * vxab + ryab * vyab + rzab * vzab; |
| 648 |
> |
rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
| 649 |
|
|
| 650 |
< |
gab = -rvab / ( ( rma + rmb ) * constraintsDsqr[i] ); |
| 650 |
> |
gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); |
| 651 |
|
|
| 652 |
|
if (fabs(gab) > tol) { |
| 653 |
|
|
| 654 |
< |
dx = rxab * gab; |
| 655 |
< |
dy = ryab * gab; |
| 656 |
< |
dz = rzab * gab; |
| 657 |
< |
|
| 658 |
< |
vel[3*a+0] += rma * dx; |
| 659 |
< |
vel[3*a+1] += rma * dy; |
| 660 |
< |
vel[3*a+2] += rma * dz; |
| 654 |
> |
dx = rab[0] * gab; |
| 655 |
> |
dy = rab[1] * gab; |
| 656 |
> |
dz = rab[2] * gab; |
| 657 |
> |
|
| 658 |
> |
velA[0] += rma * dx; |
| 659 |
> |
velA[1] += rma * dy; |
| 660 |
> |
velA[2] += rma * dz; |
| 661 |
|
|
| 662 |
< |
vel[3*b+0] -= rmb * dx; |
| 663 |
< |
vel[3*b+1] -= rmb * dy; |
| 664 |
< |
vel[3*b+2] -= rmb * dz; |
| 662 |
> |
atoms[a]->setVel( velA ); |
| 663 |
> |
|
| 664 |
> |
velB[0] -= rmb * dx; |
| 665 |
> |
velB[1] -= rmb * dy; |
| 666 |
> |
velB[2] -= rmb * dz; |
| 667 |
> |
|
| 668 |
> |
atoms[b]->setVel( velB ); |
| 669 |
|
|
| 670 |
|
moving[a] = 1; |
| 671 |
|
moving[b] = 1; |
| 681 |
|
|
| 682 |
|
iteration++; |
| 683 |
|
} |
| 684 |
< |
|
| 684 |
> |
|
| 685 |
|
if( !done ){ |
| 686 |
|
|
| 687 |
|
|
| 688 |
< |
sprintf( painCae.errMsg, |
| 688 |
> |
sprintf( painCave.errMsg, |
| 689 |
|
"Constraint failure in constrainB, too many iterations: %d\n", |
| 690 |
< |
iterations ); |
| 690 |
> |
iteration ); |
| 691 |
|
painCave.isFatal = 1; |
| 692 |
|
simError(); |
| 693 |
|
} |
| 694 |
|
|
| 695 |
|
} |
| 696 |
|
|
| 657 |
– |
|
| 658 |
– |
|
| 659 |
– |
|
| 660 |
– |
|
| 661 |
– |
|
| 662 |
– |
|
| 697 |
|
void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], |
| 698 |
|
double A[3][3] ){ |
| 699 |
|
|
| 762 |
|
// A[][] = A[][] * transpose(rot[][]) |
| 763 |
|
|
| 764 |
|
|
| 765 |
< |
// NOte for as yet unknown reason, we are setting the performing the |
| 765 |
> |
// NOte for as yet unknown reason, we are performing the |
| 766 |
|
// calculation as: |
| 767 |
|
// transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) |
| 768 |
|
|