ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Integrator.cpp (file contents):
Revision 601 by gezelter, Mon Jul 14 23:06:09 2003 UTC vs.
Revision 1221 by chrisfen, Wed Jun 2 14:56:18 2004 UTC

# Line 1 | Line 1
1   #include <iostream>
2 < #include <cstdlib>
3 < #include <cmath>
2 > #include <stdlib.h>
3 > #include <math.h>
4  
5   #ifdef IS_MPI
6   #include "mpiSimulation.hpp"
7   #include <unistd.h>
8   #endif //is_mpi
9  
10 + #ifdef PROFILE
11 + #include "mdProfile.hpp"
12 + #endif // profile
13 +
14   #include "Integrator.hpp"
15   #include "simError.h"
16  
17  
18 < Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){
19 <  
18 > template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19 >                                               ForceFields* the_ff){
20    info = theInfo;
21    myFF = the_ff;
22    isFirst = 1;
# Line 21 | Line 25 | Integrator::Integrator( SimInfo *theInfo, ForceFields*
25    nMols = info->n_mol;
26  
27    // give a little love back to the SimInfo object
24  
25  if( info->the_integrator != NULL ) delete info->the_integrator;
26  info->the_integrator = this;
28  
29 <  nAtoms = info->n_atoms;
29 >  if (info->the_integrator != NULL){
30 >    delete info->the_integrator;
31 >  }
32  
33 +  nAtoms = info->n_atoms;
34 +  integrableObjects = info->integrableObjects;
35 +
36    // check for constraints
37 <  
38 <  constrainedA    = NULL;
39 <  constrainedB    = NULL;
37 >
38 >  constrainedA = NULL;
39 >  constrainedB = NULL;
40    constrainedDsqr = NULL;
41 <  moving          = NULL;
42 <  moved           = NULL;
43 <  oldPos          = NULL;
44 <  
41 >  moving = NULL;
42 >  moved = NULL;
43 >  oldPos = NULL;
44 >
45    nConstrained = 0;
46  
47    checkConstraints();
48 +
49   }
50  
51 < Integrator::~Integrator() {
52 <  
46 <  if( nConstrained ){
51 > template<typename T> Integrator<T>::~Integrator(){
52 >  if (nConstrained){
53      delete[] constrainedA;
54      delete[] constrainedB;
55      delete[] constrainedDsqr;
# Line 51 | Line 57 | Integrator::~Integrator() {
57      delete[] moved;
58      delete[] oldPos;
59    }
54  
60   }
61  
62 < void Integrator::checkConstraints( void ){
58 <
59 <
62 > template<typename T> void Integrator<T>::checkConstraints(void){
63    isConstrained = 0;
64  
65 <  Constraint *temp_con;
66 <  Constraint *dummy_plug;
65 >  Constraint* temp_con;
66 >  Constraint* dummy_plug;
67    temp_con = new Constraint[info->n_SRI];
68    nConstrained = 0;
69    int constrained = 0;
70 <  
70 >
71    SRI** theArray;
72 <  for(int i = 0; i < nMols; i++){
73 <    
74 <    theArray = (SRI**) molecules[i].getMyBonds();
75 <    for(int j=0; j<molecules[i].getNBonds(); j++){
73 <      
72 >  for (int i = 0; i < nMols; i++){
73 >
74 >          theArray = (SRI * *) molecules[i].getMyBonds();
75 >    for (int j = 0; j < molecules[i].getNBonds(); j++){
76        constrained = theArray[j]->is_constrained();
77  
78 <      std::cerr << "Is the folowing bond constrained \n";
79 <      theArray[j]->printMe();
80 <      
81 <      if(constrained){
82 <        
81 <        std::cerr << "Yes\n";
78 >      if (constrained){
79 >        dummy_plug = theArray[j]->get_constraint();
80 >        temp_con[nConstrained].set_a(dummy_plug->get_a());
81 >        temp_con[nConstrained].set_b(dummy_plug->get_b());
82 >        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
83  
84 <        dummy_plug = theArray[j]->get_constraint();
85 <        temp_con[nConstrained].set_a( dummy_plug->get_a() );
86 <        temp_con[nConstrained].set_b( dummy_plug->get_b() );
86 <        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
87 <        
88 <        nConstrained++;
89 <        constrained = 0;
90 <      }
91 <      else std::cerr << "No.\n";
84 >        nConstrained++;
85 >        constrained = 0;
86 >      }
87      }
88  
89 <    theArray = (SRI**) molecules[i].getMyBends();
90 <    for(int j=0; j<molecules[i].getNBends(); j++){
96 <      
89 >    theArray = (SRI * *) molecules[i].getMyBends();
90 >    for (int j = 0; j < molecules[i].getNBends(); j++){
91        constrained = theArray[j]->is_constrained();
92 <      
93 <      if(constrained){
94 <        
95 <        dummy_plug = theArray[j]->get_constraint();
96 <        temp_con[nConstrained].set_a( dummy_plug->get_a() );
97 <        temp_con[nConstrained].set_b( dummy_plug->get_b() );
98 <        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
99 <        
100 <        nConstrained++;
107 <        constrained = 0;
92 >
93 >      if (constrained){
94 >        dummy_plug = theArray[j]->get_constraint();
95 >        temp_con[nConstrained].set_a(dummy_plug->get_a());
96 >        temp_con[nConstrained].set_b(dummy_plug->get_b());
97 >        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
98 >
99 >        nConstrained++;
100 >        constrained = 0;
101        }
102      }
103  
104 <    theArray = (SRI**) molecules[i].getMyTorsions();
105 <    for(int j=0; j<molecules[i].getNTorsions(); j++){
113 <      
104 >    theArray = (SRI * *) molecules[i].getMyTorsions();
105 >    for (int j = 0; j < molecules[i].getNTorsions(); j++){
106        constrained = theArray[j]->is_constrained();
107 <      
108 <      if(constrained){
109 <        
110 <        dummy_plug = theArray[j]->get_constraint();
111 <        temp_con[nConstrained].set_a( dummy_plug->get_a() );
112 <        temp_con[nConstrained].set_b( dummy_plug->get_b() );
113 <        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
114 <        
115 <        nConstrained++;
124 <        constrained = 0;
107 >
108 >      if (constrained){
109 >        dummy_plug = theArray[j]->get_constraint();
110 >        temp_con[nConstrained].set_a(dummy_plug->get_a());
111 >        temp_con[nConstrained].set_b(dummy_plug->get_b());
112 >        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
113 >
114 >        nConstrained++;
115 >        constrained = 0;
116        }
117      }
118    }
119  
120 <  if(nConstrained > 0){
121 <    
120 >
121 >  if (nConstrained > 0){
122      isConstrained = 1;
123  
124 <    if(constrainedA != NULL )    delete[] constrainedA;
125 <    if(constrainedB != NULL )    delete[] constrainedB;
126 <    if(constrainedDsqr != NULL ) delete[] constrainedDsqr;
124 >    if (constrainedA != NULL)
125 >      delete[] constrainedA;
126 >    if (constrainedB != NULL)
127 >      delete[] constrainedB;
128 >    if (constrainedDsqr != NULL)
129 >      delete[] constrainedDsqr;
130  
131 <    constrainedA =    new int[nConstrained];
132 <    constrainedB =    new int[nConstrained];
131 >    constrainedA = new int[nConstrained];
132 >    constrainedB = new int[nConstrained];
133      constrainedDsqr = new double[nConstrained];
134 <    
135 <    for( int i = 0; i < nConstrained; i++){
142 <      
134 >
135 >    for (int i = 0; i < nConstrained; i++){
136        constrainedA[i] = temp_con[i].get_a();
137        constrainedB[i] = temp_con[i].get_b();
138        constrainedDsqr[i] = temp_con[i].get_dsqr();
146
139      }
140  
141 <    
142 <    // save oldAtoms to check for lode balanceing later on.
143 <    
141 >
142 >    // save oldAtoms to check for lode balancing later on.
143 >
144      oldAtoms = nAtoms;
145 <    
145 >
146      moving = new int[nAtoms];
147 <    moved  = new int[nAtoms];
147 >    moved = new int[nAtoms];
148  
149 <    oldPos = new double[nAtoms*3];
149 >    oldPos = new double[nAtoms * 3];
150    }
151 <  
151 >
152    delete[] temp_con;
153   }
154  
155  
156 < void Integrator::integrate( void ){
156 > template<typename T> void Integrator<T>::integrate(void){
157  
158 <  int i, j;                         // loop counters
159 <
160 <  double runTime     = info->run_time;
169 <  double sampleTime  = info->sampleTime;
170 <  double statusTime  = info->statusTime;
158 >  double runTime = info->run_time;
159 >  double sampleTime = info->sampleTime;
160 >  double statusTime = info->statusTime;
161    double thermalTime = info->thermalTime;
162 +  double resetTime = info->resetTime;
163  
164 +  double difference;
165    double currSample;
166    double currThermal;
167    double currStatus;
168 <  double currTime;
168 >  double currReset;
169  
170    int calcPot, calcStress;
179  int isError;
171  
172 <  tStats   = new Thermo( info );
173 <  statOut  = new StatWriter( info );
174 <  dumpOut  = new DumpWriter( info );
172 >  tStats = new Thermo(info);
173 >  statOut = new StatWriter(info);
174 >  dumpOut = new DumpWriter(info);
175  
176    atoms = info->atoms;
186  DirectionalAtom* dAtom;
177  
178    dt = info->dt;
179    dt2 = 0.5 * dt;
180  
181 +  readyCheck();
182 +
183 +  // remove center of mass drift velocity (in case we passed in a configuration
184 +  // that was drifting
185 +  tStats->removeCOMdrift();
186 +
187 +  // initialize the retraints if necessary
188 +  if (info->useSolidThermInt && !info->useLiquidThermInt) {
189 +    myFF->initRestraints();
190 +  }
191 +
192    // initialize the forces before the first step
193  
194 <  myFF->doForces(1,1);
194 >  calcForce(1, 1);
195    
196 <  if( info->setTemp ){
197 <    
198 <    tStats->velocitize();
196 >  if (nConstrained){
197 >    preMove();
198 >    constrainA();
199 >    calcForce(1, 1);
200 >    constrainB();
201    }
202    
203 <  dumpOut->writeDump( 0.0 );
204 <  statOut->writeStat( 0.0 );
205 <  
203 >  if (info->setTemp){
204 >    thermalize();
205 >  }
206 >
207    calcPot     = 0;
208    calcStress  = 0;
209 <  currSample  = sampleTime;
210 <  currThermal = thermalTime;
211 <  currStatus  = statusTime;
212 <  currTime    = 0.0;;
209 >  currSample  = sampleTime + info->getTime();
210 >  currThermal = thermalTime+ info->getTime();
211 >  currStatus  = statusTime + info->getTime();
212 >  currReset   = resetTime  + info->getTime();
213  
214 +  dumpOut->writeDump(info->getTime());
215 +  statOut->writeStat(info->getTime());
216  
211  readyCheck();
217  
218   #ifdef IS_MPI
219 <  strcpy( checkPointMsg,
215 <          "The integrator is ready to go." );
219 >  strcpy(checkPointMsg, "The integrator is ready to go.");
220    MPIcheckPoint();
221   #endif // is_mpi
222  
223 <  while( currTime < runTime ){
224 <
225 <    if( (currTime+dt) >= currStatus ){
223 >  while (info->getTime() < runTime && !stopIntegrator()){
224 >    difference = info->getTime() + dt - currStatus;
225 >    if (difference > 0 || fabs(difference) < 1e-4 ){
226        calcPot = 1;
227        calcStress = 1;
228      }
229  
230 <    integrateStep( calcPot, calcStress );
231 <      
232 <    currTime += dt;
230 > #ifdef PROFILE
231 >    startProfile( pro1 );
232 > #endif
233 >    
234 >    integrateStep(calcPot, calcStress);
235  
236 <    if( info->setTemp ){
237 <      if( currTime >= currThermal ){
238 <        tStats->velocitize();
239 <        currThermal += thermalTime;
236 > #ifdef PROFILE
237 >    endProfile( pro1 );
238 >
239 >    startProfile( pro2 );
240 > #endif // profile
241 >
242 >    info->incrTime(dt);
243 >
244 >    if (info->setTemp){
245 >      if (info->getTime() >= currThermal){
246 >        thermalize();
247 >        currThermal += thermalTime;
248        }
249      }
250  
251 <    if( currTime >= currSample ){
252 <      dumpOut->writeDump( currTime );
251 >    if (info->getTime() >= currSample){
252 >      dumpOut->writeDump(info->getTime());
253        currSample += sampleTime;
254      }
255  
256 <    if( currTime >= currStatus ){
257 <      statOut->writeStat( currTime );
258 <      calcPot = 0;
256 >    if (info->getTime() >= currStatus){
257 >      statOut->writeStat(info->getTime());
258 >      calcPot = 0;
259        calcStress = 0;
260        currStatus += statusTime;
261 <    }
261 >    }
262  
263 +    if (info->resetIntegrator){
264 +      if (info->getTime() >= currReset){
265 +        this->resetIntegrator();
266 +        currReset += resetTime;
267 +      }
268 +    }
269 +    
270 + #ifdef PROFILE
271 +    endProfile( pro2 );
272 + #endif //profile
273 +
274   #ifdef IS_MPI
275 <    strcpy( checkPointMsg,
251 <            "successfully took a time step." );
275 >    strcpy(checkPointMsg, "successfully took a time step.");
276      MPIcheckPoint();
277   #endif // is_mpi
254
278    }
279  
280 <  dumpOut->writeFinal(currTime);
280 >  // dump out a file containing the omega values for the final configuration
281 >  if (info->useSolidThermInt && !info->useLiquidThermInt)
282 >    myFF->dumpzAngle();
283 >  
284  
285    delete dumpOut;
286    delete statOut;
287   }
288  
289 < void Integrator::integrateStep( int calcPot, int calcStress ){
290 <
265 <
266 <      
289 > template<typename T> void Integrator<T>::integrateStep(int calcPot,
290 >                                                       int calcStress){
291    // Position full step, and velocity half step
292  
293 + #ifdef PROFILE
294 +  startProfile(pro3);
295 + #endif //profile
296 +
297    preMove();
298 +
299 + #ifdef PROFILE
300 +  endProfile(pro3);
301 +
302 +  startProfile(pro4);
303 + #endif // profile
304 +
305    moveA();
271  if( nConstrained ) constrainA();
306  
307 + #ifdef PROFILE
308 +  endProfile(pro4);
309 +  
310 +  startProfile(pro5);
311 + #endif//profile
312 +
313 +
314 + #ifdef IS_MPI
315 +  strcpy(checkPointMsg, "Succesful moveA\n");
316 +  MPIcheckPoint();
317 + #endif // is_mpi
318 +
319    // calc forces
320 +  calcForce(calcPot, calcStress);
321  
322 <  myFF->doForces(calcPot,calcStress);
322 > #ifdef IS_MPI
323 >  strcpy(checkPointMsg, "Succesful doForces\n");
324 >  MPIcheckPoint();
325 > #endif // is_mpi
326  
327 + #ifdef PROFILE
328 +  endProfile( pro5 );
329 +
330 +  startProfile( pro6 );
331 + #endif //profile
332 +
333    // finish the velocity  half step
334 <  
334 >
335    moveB();
336 <  if( nConstrained ) constrainB();
337 <  
336 >
337 > #ifdef PROFILE
338 >  endProfile(pro6);
339 > #endif // profile
340 >
341 > #ifdef IS_MPI
342 >  strcpy(checkPointMsg, "Succesful moveB\n");
343 >  MPIcheckPoint();
344 > #endif // is_mpi
345   }
346  
347  
348 < void Integrator::moveA( void ){
349 <  
287 <  int i, j;
348 > template<typename T> void Integrator<T>::moveA(void){
349 >  size_t i, j;
350    DirectionalAtom* dAtom;
351    double Tb[3], ji[3];
290  double A[3][3], I[3][3];
291  double angle;
352    double vel[3], pos[3], frc[3];
353    double mass;
354 +  double omega;
355 +
356 +  for (i = 0; i < integrableObjects.size() ; i++){
357 +    integrableObjects[i]->getVel(vel);
358 +    integrableObjects[i]->getPos(pos);
359 +    integrableObjects[i]->getFrc(frc);
360 +    
361 +    mass = integrableObjects[i]->getMass();
362  
363 <  for( i=0; i<nAtoms; i++ ){
296 <
297 <    atoms[i]->getVel( vel );
298 <    atoms[i]->getPos( pos );
299 <    atoms[i]->getFrc( frc );
300 <
301 <    mass = atoms[i]->getMass();
302 <
303 <    for (j=0; j < 3; j++) {
363 >    for (j = 0; j < 3; j++){
364        // velocity half step
365 <      vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
365 >      vel[j] += (dt2 * frc[j] / mass) * eConvert;
366        // position whole step
367        pos[j] += dt * vel[j];
368      }
369  
370 <    atoms[i]->setVel( vel );
371 <    atoms[i]->setPos( pos );
370 >    integrableObjects[i]->setVel(vel);
371 >    integrableObjects[i]->setPos(pos);
372  
373 <    if( atoms[i]->isDirectional() ){
373 >    if (integrableObjects[i]->isDirectional()){
374  
315      dAtom = (DirectionalAtom *)atoms[i];
316          
375        // get and convert the torque to body frame
318      
319      dAtom->getTrq( Tb );
320      dAtom->lab2Body( Tb );
376  
377 +      integrableObjects[i]->getTrq(Tb);
378 +      integrableObjects[i]->lab2Body(Tb);
379 +
380        // get the angular momentum, and propagate a half step
381  
382 <      dAtom->getJ( ji );
382 >      integrableObjects[i]->getJ(ji);
383  
384 <      for (j=0; j < 3; j++)
384 >      for (j = 0; j < 3; j++)
385          ji[j] += (dt2 * Tb[j]) * eConvert;
328      
329      // use the angular velocities to propagate the rotation matrix a
330      // full time step
386  
387 <      dAtom->getA(A);
333 <      dAtom->getI(I);
334 <    
335 <      // rotate about the x-axis      
336 <      angle = dt2 * ji[0] / I[0][0];
337 <      this->rotate( 1, 2, angle, ji, A );
387 >      this->rotationPropagation( integrableObjects[i], ji );
388  
389 <      // rotate about the y-axis
390 <      angle = dt2 * ji[1] / I[1][1];
391 <      this->rotate( 2, 0, angle, ji, A );
342 <      
343 <      // rotate about the z-axis
344 <      angle = dt * ji[2] / I[2][2];
345 <      this->rotate( 0, 1, angle, ji, A);
346 <      
347 <      // rotate about the y-axis
348 <      angle = dt2 * ji[1] / I[1][1];
349 <      this->rotate( 2, 0, angle, ji, A );
350 <      
351 <       // rotate about the x-axis
352 <      angle = dt2 * ji[0] / I[0][0];
353 <      this->rotate( 1, 2, angle, ji, A );
354 <      
389 >      integrableObjects[i]->setJ(ji);
390 >    }
391 >  }
392  
393 <      dAtom->setJ( ji );
394 <      dAtom->setA( A  );
358 <          
359 <    }    
393 >  if (nConstrained){
394 >    constrainA();
395    }
396   }
397  
398  
399 < void Integrator::moveB( void ){
399 > template<typename T> void Integrator<T>::moveB(void){
400    int i, j;
366  DirectionalAtom* dAtom;
401    double Tb[3], ji[3];
402    double vel[3], frc[3];
403    double mass;
404  
405 <  for( i=0; i<nAtoms; i++ ){
406 <
407 <    atoms[i]->getVel( vel );
374 <    atoms[i]->getFrc( frc );
405 >  for (i = 0; i < integrableObjects.size(); i++){
406 >    integrableObjects[i]->getVel(vel);
407 >    integrableObjects[i]->getFrc(frc);
408  
409 <    mass = atoms[i]->getMass();
409 >    mass = integrableObjects[i]->getMass();
410  
411      // velocity half step
412 <    for (j=0; j < 3; j++)
413 <      vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
381 <    
382 <    atoms[i]->setVel( vel );
383 <
384 <    if( atoms[i]->isDirectional() ){
412 >    for (j = 0; j < 3; j++)
413 >      vel[j] += (dt2 * frc[j] / mass) * eConvert;
414  
415 <      dAtom = (DirectionalAtom *)atoms[i];
415 >    integrableObjects[i]->setVel(vel);
416  
417 <      // get and convert the torque to body frame      
417 >    if (integrableObjects[i]->isDirectional()){
418  
419 <      dAtom->getTrq( Tb );
391 <      dAtom->lab2Body( Tb );
419 >      // get and convert the torque to body frame
420  
421 +      integrableObjects[i]->getTrq(Tb);
422 +      integrableObjects[i]->lab2Body(Tb);
423 +
424        // get the angular momentum, and propagate a half step
425  
426 <      dAtom->getJ( ji );
426 >      integrableObjects[i]->getJ(ji);
427  
428 <      for (j=0; j < 3; j++)
428 >      for (j = 0; j < 3; j++)
429          ji[j] += (dt2 * Tb[j]) * eConvert;
399      
430  
431 <      dAtom->setJ( ji );
431 >
432 >      integrableObjects[i]->setJ(ji);
433      }
434    }
435 +
436 +  if (nConstrained){
437 +    constrainB();
438 +  }
439   }
440  
441 < void Integrator::preMove( void ){
441 > template<typename T> void Integrator<T>::preMove(void){
442    int i, j;
443    double pos[3];
444  
445 <  if( nConstrained ){
446 <
447 <    for(i=0; i < nAtoms; i++) {
413 <
414 <      atoms[i]->getPos( pos );
415 <
416 <      for (j = 0; j < 3; j++) {        
417 <        oldPos[3*i + j] = pos[j];
418 <      }
445 >  if (nConstrained){
446 >    for (i = 0; i < nAtoms; i++){
447 >      atoms[i]->getPos(pos);
448  
449 +      for (j = 0; j < 3; j++){
450 +        oldPos[3 * i + j] = pos[j];
451 +      }
452      }
453 <  }  
453 >  }
454   }
455  
456 < void Integrator::constrainA(){
457 <
426 <  int i,j,k;
456 > template<typename T> void Integrator<T>::constrainA(){
457 >  int i, j;
458    int done;
459    double posA[3], posB[3];
460    double velA[3], velB[3];
# Line 438 | Line 469 | void Integrator::constrainA(){
469    double gab;
470    int iteration;
471  
472 <  for( i=0; i<nAtoms; i++){    
472 >  for (i = 0; i < nAtoms; i++){
473      moving[i] = 0;
474 <    moved[i]  = 1;
474 >    moved[i] = 1;
475    }
476  
477    iteration = 0;
478    done = 0;
479 <  while( !done && (iteration < maxIteration )){
449 <
479 >  while (!done && (iteration < maxIteration)){
480      done = 1;
481 <    for(i=0; i<nConstrained; i++){
452 <
481 >    for (i = 0; i < nConstrained; i++){
482        a = constrainedA[i];
483        b = constrainedB[i];
455      
456      ax = (a*3) + 0;
457      ay = (a*3) + 1;
458      az = (a*3) + 2;
484  
485 <      bx = (b*3) + 0;
486 <      by = (b*3) + 1;
487 <      bz = (b*3) + 2;
485 >      ax = (a * 3) + 0;
486 >      ay = (a * 3) + 1;
487 >      az = (a * 3) + 2;
488  
489 <      if( moved[a] || moved[b] ){
490 <        
491 <        atoms[a]->getPos( posA );
492 <        atoms[b]->getPos( posB );
493 <        
494 <        for (j = 0; j < 3; j++ )
489 >      bx = (b * 3) + 0;
490 >      by = (b * 3) + 1;
491 >      bz = (b * 3) + 2;
492 >
493 >      if (moved[a] || moved[b]){
494 >        atoms[a]->getPos(posA);
495 >        atoms[b]->getPos(posB);
496 >
497 >        for (j = 0; j < 3; j++)
498            pab[j] = posA[j] - posB[j];
471        
472        //periodic boundary condition
499  
500 <        info->wrapVector( pab );
500 >        //periodic boundary condition
501  
502 <        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
502 >        info->wrapVector(pab);
503  
504 <        rabsq = constrainedDsqr[i];
479 <        diffsq = rabsq - pabsq;
504 >        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
505  
506 <        // the original rattle code from alan tidesley
507 <        if (fabs(diffsq) > (tol*rabsq*2)) {
483 <          rab[0] = oldPos[ax] - oldPos[bx];
484 <          rab[1] = oldPos[ay] - oldPos[by];
485 <          rab[2] = oldPos[az] - oldPos[bz];
506 >        rabsq = constrainedDsqr[i];
507 >        diffsq = rabsq - pabsq;
508  
509 <          info->wrapVector( rab );
509 >        // the original rattle code from alan tidesley
510 >        if (fabs(diffsq) > (tol * rabsq * 2)){
511 >          rab[0] = oldPos[ax] - oldPos[bx];
512 >          rab[1] = oldPos[ay] - oldPos[by];
513 >          rab[2] = oldPos[az] - oldPos[bz];
514  
515 <          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
515 >          info->wrapVector(rab);
516  
517 <          rpabsq = rpab * rpab;
517 >          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
518  
519 +          rpabsq = rpab * rpab;
520  
494          if (rpabsq < (rabsq * -diffsq)){
521  
522 +          if (rpabsq < (rabsq * -diffsq)){
523   #ifdef IS_MPI
524 <            a = atoms[a]->getGlobalIndex();
525 <            b = atoms[b]->getGlobalIndex();
524 >            a = atoms[a]->getGlobalIndex();
525 >            b = atoms[b]->getGlobalIndex();
526   #endif //is_mpi
527 <            sprintf( painCave.errMsg,
528 <                     "Constraint failure in constrainA at atom %d and %d.\n",
529 <                     a, b );
530 <            painCave.isFatal = 1;
531 <            simError();
532 <          }
527 >            sprintf(painCave.errMsg,
528 >                    "Constraint failure in constrainA at atom %d and %d.\n", a,
529 >                    b);
530 >            painCave.isFatal = 1;
531 >            simError();
532 >          }
533  
534 <          rma = 1.0 / atoms[a]->getMass();
535 <          rmb = 1.0 / atoms[b]->getMass();
534 >          rma = 1.0 / atoms[a]->getMass();
535 >          rmb = 1.0 / atoms[b]->getMass();
536  
537 <          gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab );
537 >          gab = diffsq / (2.0 * (rma + rmb) * rpab);
538  
539            dx = rab[0] * gab;
540            dy = rab[1] * gab;
541            dz = rab[2] * gab;
542  
543 <          posA[0] += rma * dx;
544 <          posA[1] += rma * dy;
545 <          posA[2] += rma * dz;
543 >          posA[0] += rma * dx;
544 >          posA[1] += rma * dy;
545 >          posA[2] += rma * dz;
546  
547 <          atoms[a]->setPos( posA );
547 >          atoms[a]->setPos(posA);
548  
549 <          posB[0] -= rmb * dx;
550 <          posB[1] -= rmb * dy;
551 <          posB[2] -= rmb * dz;
549 >          posB[0] -= rmb * dx;
550 >          posB[1] -= rmb * dy;
551 >          posB[2] -= rmb * dz;
552  
553 <          atoms[b]->setPos( posB );
553 >          atoms[b]->setPos(posB);
554  
555            dx = dx / dt;
556            dy = dy / dt;
557            dz = dz / dt;
558  
559 <          atoms[a]->getVel( velA );
559 >          atoms[a]->getVel(velA);
560  
561 <          velA[0] += rma * dx;
562 <          velA[1] += rma * dy;
563 <          velA[2] += rma * dz;
561 >          velA[0] += rma * dx;
562 >          velA[1] += rma * dy;
563 >          velA[2] += rma * dz;
564  
565 <          atoms[a]->setVel( velA );
565 >          atoms[a]->setVel(velA);
566  
567 <          atoms[b]->getVel( velB );
567 >          atoms[b]->getVel(velB);
568  
569 <          velB[0] -= rmb * dx;
570 <          velB[1] -= rmb * dy;
571 <          velB[2] -= rmb * dz;
569 >          velB[0] -= rmb * dx;
570 >          velB[1] -= rmb * dy;
571 >          velB[2] -= rmb * dz;
572  
573 <          atoms[b]->setVel( velB );
573 >          atoms[b]->setVel(velB);
574  
575 <          moving[a] = 1;
576 <          moving[b] = 1;
577 <          done = 0;
578 <        }
575 >          moving[a] = 1;
576 >          moving[b] = 1;
577 >          done = 0;
578 >        }
579        }
580      }
581 <    
582 <    for(i=0; i<nAtoms; i++){
556 <      
581 >
582 >    for (i = 0; i < nAtoms; i++){
583        moved[i] = moving[i];
584        moving[i] = 0;
585      }
# Line 561 | Line 587 | void Integrator::constrainA(){
587      iteration++;
588    }
589  
590 <  if( !done ){
591 <
592 <    sprintf( painCave.errMsg,
593 <             "Constraint failure in constrainA, too many iterations: %d\n",
568 <             iteration );
590 >  if (!done){
591 >    sprintf(painCave.errMsg,
592 >            "Constraint failure in constrainA, too many iterations: %d\n",
593 >            iteration);
594      painCave.isFatal = 1;
595      simError();
596    }
597  
598   }
599  
600 < void Integrator::constrainB( void ){
601 <  
577 <  int i,j,k;
600 > template<typename T> void Integrator<T>::constrainB(void){
601 >  int i, j;
602    int done;
603    double posA[3], posB[3];
604    double velA[3], velB[3];
# Line 583 | Line 607 | void Integrator::constrainB( void ){
607    int a, b, ax, ay, az, bx, by, bz;
608    double rma, rmb;
609    double dx, dy, dz;
610 <  double rabsq, pabsq, rvab;
587 <  double diffsq;
610 >  double rvab;
611    double gab;
612    int iteration;
613  
614 <  for(i=0; i<nAtoms; i++){
614 >  for (i = 0; i < nAtoms; i++){
615      moving[i] = 0;
616      moved[i] = 1;
617    }
618  
619    done = 0;
620    iteration = 0;
621 <  while( !done && (iteration < maxIteration ) ){
599 <
621 >  while (!done && (iteration < maxIteration)){
622      done = 1;
623  
624 <    for(i=0; i<nConstrained; i++){
603 <      
624 >    for (i = 0; i < nConstrained; i++){
625        a = constrainedA[i];
626        b = constrainedB[i];
627  
628 <      ax = (a*3) + 0;
629 <      ay = (a*3) + 1;
630 <      az = (a*3) + 2;
628 >      ax = (a * 3) + 0;
629 >      ay = (a * 3) + 1;
630 >      az = (a * 3) + 2;
631  
632 <      bx = (b*3) + 0;
633 <      by = (b*3) + 1;
634 <      bz = (b*3) + 2;
632 >      bx = (b * 3) + 0;
633 >      by = (b * 3) + 1;
634 >      bz = (b * 3) + 2;
635  
636 <      if( moved[a] || moved[b] ){
636 >      if (moved[a] || moved[b]){
637 >        atoms[a]->getVel(velA);
638 >        atoms[b]->getVel(velB);
639  
640 <        atoms[a]->getVel( velA );
641 <        atoms[b]->getVel( velB );
642 <          
620 <        vxab = velA[0] - velB[0];
621 <        vyab = velA[1] - velB[1];
622 <        vzab = velA[2] - velB[2];
640 >        vxab = velA[0] - velB[0];
641 >        vyab = velA[1] - velB[1];
642 >        vzab = velA[2] - velB[2];
643  
644 <        atoms[a]->getPos( posA );
645 <        atoms[b]->getPos( posB );
644 >        atoms[a]->getPos(posA);
645 >        atoms[b]->getPos(posB);
646  
647 <        for (j = 0; j < 3; j++)
647 >        for (j = 0; j < 3; j++)
648            rab[j] = posA[j] - posB[j];
629          
630        info->wrapVector( rab );
631        
632        rma = 1.0 / atoms[a]->getMass();
633        rmb = 1.0 / atoms[b]->getMass();
649  
650 <        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
636 <          
637 <        gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] );
650 >        info->wrapVector(rab);
651  
652 <        if (fabs(gab) > tol) {
653 <          
641 <          dx = rab[0] * gab;
642 <          dy = rab[1] * gab;
643 <          dz = rab[2] * gab;
644 <        
645 <          velA[0] += rma * dx;
646 <          velA[1] += rma * dy;
647 <          velA[2] += rma * dz;
652 >        rma = 1.0 / atoms[a]->getMass();
653 >        rmb = 1.0 / atoms[b]->getMass();
654  
655 <          atoms[a]->setVel( velA );
655 >        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
656  
657 <          velB[0] -= rmb * dx;
652 <          velB[1] -= rmb * dy;
653 <          velB[2] -= rmb * dz;
657 >        gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
658  
659 <          atoms[b]->setVel( velB );
660 <          
661 <          moving[a] = 1;
662 <          moving[b] = 1;
663 <          done = 0;
664 <        }
659 >        if (fabs(gab) > tol){
660 >          dx = rab[0] * gab;
661 >          dy = rab[1] * gab;
662 >          dz = rab[2] * gab;
663 >
664 >          velA[0] += rma * dx;
665 >          velA[1] += rma * dy;
666 >          velA[2] += rma * dz;
667 >
668 >          atoms[a]->setVel(velA);
669 >
670 >          velB[0] -= rmb * dx;
671 >          velB[1] -= rmb * dy;
672 >          velB[2] -= rmb * dz;
673 >
674 >          atoms[b]->setVel(velB);
675 >
676 >          moving[a] = 1;
677 >          moving[b] = 1;
678 >          done = 0;
679 >        }
680        }
681      }
682  
683 <    for(i=0; i<nAtoms; i++){
683 >    for (i = 0; i < nAtoms; i++){
684        moved[i] = moving[i];
685        moving[i] = 0;
686      }
687 <    
687 >
688      iteration++;
689    }
671  
672  if( !done ){
690  
691 <  
692 <    sprintf( painCave.errMsg,
693 <             "Constraint failure in constrainB, too many iterations: %d\n",
694 <             iteration );
691 >  if (!done){
692 >    sprintf(painCave.errMsg,
693 >            "Constraint failure in constrainB, too many iterations: %d\n",
694 >            iteration);
695      painCave.isFatal = 1;
696      simError();
697 <  }
681 <
697 >  }
698   }
699  
700 < void Integrator::rotate( int axes1, int axes2, double angle, double ji[3],
701 <                         double A[3][3] ){
700 > template<typename T> void Integrator<T>::rotationPropagation
701 > ( StuntDouble* sd, double ji[3] ){
702  
703 <  int i,j,k;
703 >  double angle;
704 >  double A[3][3], I[3][3];
705 >  int i, j, k;
706 >
707 >  // use the angular velocities to propagate the rotation matrix a
708 >  // full time step
709 >
710 >  sd->getA(A);
711 >  sd->getI(I);
712 >
713 >  if (sd->isLinear()) {
714 >    i = sd->linearAxis();
715 >    j = (i+1)%3;
716 >    k = (i+2)%3;
717 >    
718 >    angle = dt2 * ji[j] / I[j][j];
719 >    this->rotate( k, i, angle, ji, A );
720 >
721 >    angle = dt * ji[k] / I[k][k];
722 >    this->rotate( i, j, angle, ji, A);
723 >
724 >    angle = dt2 * ji[j] / I[j][j];
725 >    this->rotate( k, i, angle, ji, A );
726 >
727 >  } else {
728 >    // rotate about the x-axis
729 >    angle = dt2 * ji[0] / I[0][0];
730 >    this->rotate( 1, 2, angle, ji, A );
731 >    
732 >    // rotate about the y-axis
733 >    angle = dt2 * ji[1] / I[1][1];
734 >    this->rotate( 2, 0, angle, ji, A );
735 >    
736 >    // rotate about the z-axis
737 >    angle = dt * ji[2] / I[2][2];
738 >    sd->addZangle(angle);
739 >    this->rotate( 0, 1, angle, ji, A);
740 >    
741 >    // rotate about the y-axis
742 >    angle = dt2 * ji[1] / I[1][1];
743 >    this->rotate( 2, 0, angle, ji, A );
744 >    
745 >    // rotate about the x-axis
746 >    angle = dt2 * ji[0] / I[0][0];
747 >    this->rotate( 1, 2, angle, ji, A );
748 >    
749 >  }
750 >  sd->setA( A  );
751 > }
752 >
753 > template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
754 >                                                double angle, double ji[3],
755 >                                                double A[3][3]){
756 >  int i, j, k;
757    double sinAngle;
758    double cosAngle;
759    double angleSqr;
# Line 696 | Line 765 | void Integrator::rotate( int axes1, int axes2, double
765  
766    // initialize the tempA
767  
768 <  for(i=0; i<3; i++){
769 <    for(j=0; j<3; j++){
768 >  for (i = 0; i < 3; i++){
769 >    for (j = 0; j < 3; j++){
770        tempA[j][i] = A[i][j];
771      }
772    }
773  
774    // initialize the tempJ
775  
776 <  for( i=0; i<3; i++) tempJ[i] = ji[i];
777 <  
776 >  for (i = 0; i < 3; i++)
777 >    tempJ[i] = ji[i];
778 >
779    // initalize rot as a unit matrix
780  
781    rot[0][0] = 1.0;
# Line 715 | Line 785 | void Integrator::rotate( int axes1, int axes2, double
785    rot[1][0] = 0.0;
786    rot[1][1] = 1.0;
787    rot[1][2] = 0.0;
788 <  
788 >
789    rot[2][0] = 0.0;
790    rot[2][1] = 0.0;
791    rot[2][2] = 1.0;
792 <  
792 >
793    // use a small angle aproximation for sin and cosine
794  
795 <  angleSqr  = angle * angle;
795 >  angleSqr = angle * angle;
796    angleSqrOver4 = angleSqr / 4.0;
797    top = 1.0 - angleSqrOver4;
798    bottom = 1.0 + angleSqrOver4;
# Line 735 | Line 805 | void Integrator::rotate( int axes1, int axes2, double
805  
806    rot[axes1][axes2] = sinAngle;
807    rot[axes2][axes1] = -sinAngle;
808 <  
808 >
809    // rotate the momentum acoording to: ji[] = rot[][] * ji[]
810 <  
811 <  for(i=0; i<3; i++){
810 >
811 >  for (i = 0; i < 3; i++){
812      ji[i] = 0.0;
813 <    for(k=0; k<3; k++){
813 >    for (k = 0; k < 3; k++){
814        ji[i] += rot[i][k] * tempJ[k];
815      }
816    }
817  
818 <  // rotate the Rotation matrix acording to:
818 >  // rotate the Rotation matrix acording to:
819    //            A[][] = A[][] * transpose(rot[][])
820  
821  
# Line 753 | Line 823 | void Integrator::rotate( int axes1, int axes2, double
823    // calculation as:
824    //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
825  
826 <  for(i=0; i<3; i++){
827 <    for(j=0; j<3; j++){
826 >  for (i = 0; i < 3; i++){
827 >    for (j = 0; j < 3; j++){
828        A[j][i] = 0.0;
829 <      for(k=0; k<3; k++){
830 <        A[j][i] += tempA[i][k] * rot[j][k];
829 >      for (k = 0; k < 3; k++){
830 >        A[j][i] += tempA[i][k] * rot[j][k];
831        }
832      }
833    }
834   }
835 +
836 + template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
837 +  myFF->doForces(calcPot, calcStress);
838 + }
839 +
840 + template<typename T> void Integrator<T>::thermalize(){
841 +  tStats->velocitize();
842 + }
843 +
844 + template<typename T> double Integrator<T>::getConservedQuantity(void){
845 +  return tStats->getTotalE();
846 + }
847 + template<typename T> string Integrator<T>::getAdditionalParameters(void){
848 +  //By default, return a null string
849 +  //The reason we use string instead of char* is that if we use char*, we will
850 +  //return a pointer point to local variable which might cause problem
851 +  return string();
852 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines