ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Integrator.cpp (file contents):
Revision 677 by tim, Mon Aug 11 19:41:36 2003 UTC vs.
Revision 1144 by tim, Sat May 1 18:52:38 2004 UTC

# Line 1 | Line 1
1   #include <iostream>
2 < #include <cstdlib>
3 < #include <cmath>
2 > #include <stdlib.h>
3 > #include <math.h>
4  
5   #ifdef IS_MPI
6   #include "mpiSimulation.hpp"
7   #include <unistd.h>
8   #endif //is_mpi
9  
10 + #ifdef PROFILE
11 + #include "mdProfile.hpp"
12 + #endif // profile
13 +
14   #include "Integrator.hpp"
15   #include "simError.h"
16  
17  
18 < template<typename T> Integrator<T>::Integrator( SimInfo *theInfo, ForceFields* the_ff ) {
19 <  
18 > template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19 >                                               ForceFields* the_ff){
20    info = theInfo;
21    myFF = the_ff;
22    isFirst = 1;
# Line 21 | Line 25 | template<typename T> Integrator<T>::Integrator( SimInf
25    nMols = info->n_mol;
26  
27    // give a little love back to the SimInfo object
24  
25  if( info->the_integrator != NULL ) delete info->the_integrator;
26  info->the_integrator = this;
28  
29 +  if (info->the_integrator != NULL){
30 +    delete info->the_integrator;
31 +  }
32 +
33    nAtoms = info->n_atoms;
34 +  integrableObjects = info->integrableObjects;
35  
36    // check for constraints
37 <  
38 <  constrainedA    = NULL;
39 <  constrainedB    = NULL;
37 >
38 >  constrainedA = NULL;
39 >  constrainedB = NULL;
40    constrainedDsqr = NULL;
41 <  moving          = NULL;
42 <  moved           = NULL;
43 <  oldPos          = NULL;
44 <  
41 >  moving = NULL;
42 >  moved = NULL;
43 >  oldPos = NULL;
44 >
45    nConstrained = 0;
46  
47    checkConstraints();
48   }
49  
50 < template<typename T> Integrator<T>::~Integrator() {
51 <  
46 <  if( nConstrained ){
50 > template<typename T> Integrator<T>::~Integrator(){
51 >  if (nConstrained){
52      delete[] constrainedA;
53      delete[] constrainedB;
54      delete[] constrainedDsqr;
# Line 51 | Line 56 | template<typename T> Integrator<T>::~Integrator() {
56      delete[] moved;
57      delete[] oldPos;
58    }
54  
59   }
60  
61 < template<typename T> void Integrator<T>::checkConstraints( void ){
58 <
59 <
61 > template<typename T> void Integrator<T>::checkConstraints(void){
62    isConstrained = 0;
63  
64 <  Constraint *temp_con;
65 <  Constraint *dummy_plug;
64 >  Constraint* temp_con;
65 >  Constraint* dummy_plug;
66    temp_con = new Constraint[info->n_SRI];
67    nConstrained = 0;
68    int constrained = 0;
69 <  
69 >
70    SRI** theArray;
71 <  for(int i = 0; i < nMols; i++){
72 <    
73 <    theArray = (SRI**) molecules[i].getMyBonds();
74 <    for(int j=0; j<molecules[i].getNBonds(); j++){
73 <      
71 >  for (int i = 0; i < nMols; i++){
72 >
73 >          theArray = (SRI * *) molecules[i].getMyBonds();
74 >    for (int j = 0; j < molecules[i].getNBonds(); j++){
75        constrained = theArray[j]->is_constrained();
76  
77 <      if(constrained){
77 >      if (constrained){
78 >        dummy_plug = theArray[j]->get_constraint();
79 >        temp_con[nConstrained].set_a(dummy_plug->get_a());
80 >        temp_con[nConstrained].set_b(dummy_plug->get_b());
81 >        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
82  
83 <        dummy_plug = theArray[j]->get_constraint();
84 <        temp_con[nConstrained].set_a( dummy_plug->get_a() );
85 <        temp_con[nConstrained].set_b( dummy_plug->get_b() );
81 <        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
82 <        
83 <        nConstrained++;
84 <        constrained = 0;
85 <      }
83 >        nConstrained++;
84 >        constrained = 0;
85 >      }
86      }
87  
88 <    theArray = (SRI**) molecules[i].getMyBends();
89 <    for(int j=0; j<molecules[i].getNBends(); j++){
90 <      
88 >    theArray = (SRI * *) molecules[i].getMyBends();
89 >    for (int j = 0; j < molecules[i].getNBends(); j++){
90        constrained = theArray[j]->is_constrained();
91 <      
92 <      if(constrained){
93 <        
94 <        dummy_plug = theArray[j]->get_constraint();
95 <        temp_con[nConstrained].set_a( dummy_plug->get_a() );
96 <        temp_con[nConstrained].set_b( dummy_plug->get_b() );
97 <        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
98 <        
99 <        nConstrained++;
101 <        constrained = 0;
91 >
92 >      if (constrained){
93 >        dummy_plug = theArray[j]->get_constraint();
94 >        temp_con[nConstrained].set_a(dummy_plug->get_a());
95 >        temp_con[nConstrained].set_b(dummy_plug->get_b());
96 >        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
97 >
98 >        nConstrained++;
99 >        constrained = 0;
100        }
101      }
102  
103 <    theArray = (SRI**) molecules[i].getMyTorsions();
104 <    for(int j=0; j<molecules[i].getNTorsions(); j++){
107 <      
103 >    theArray = (SRI * *) molecules[i].getMyTorsions();
104 >    for (int j = 0; j < molecules[i].getNTorsions(); j++){
105        constrained = theArray[j]->is_constrained();
106 <      
107 <      if(constrained){
108 <        
109 <        dummy_plug = theArray[j]->get_constraint();
110 <        temp_con[nConstrained].set_a( dummy_plug->get_a() );
111 <        temp_con[nConstrained].set_b( dummy_plug->get_b() );
112 <        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
113 <        
114 <        nConstrained++;
118 <        constrained = 0;
106 >
107 >      if (constrained){
108 >        dummy_plug = theArray[j]->get_constraint();
109 >        temp_con[nConstrained].set_a(dummy_plug->get_a());
110 >        temp_con[nConstrained].set_b(dummy_plug->get_b());
111 >        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
112 >
113 >        nConstrained++;
114 >        constrained = 0;
115        }
116      }
117    }
118  
119 <  if(nConstrained > 0){
120 <    
119 >
120 >  if (nConstrained > 0){
121      isConstrained = 1;
122  
123 <    if(constrainedA != NULL )    delete[] constrainedA;
124 <    if(constrainedB != NULL )    delete[] constrainedB;
125 <    if(constrainedDsqr != NULL ) delete[] constrainedDsqr;
123 >    if (constrainedA != NULL)
124 >      delete[] constrainedA;
125 >    if (constrainedB != NULL)
126 >      delete[] constrainedB;
127 >    if (constrainedDsqr != NULL)
128 >      delete[] constrainedDsqr;
129  
130 <    constrainedA =    new int[nConstrained];
131 <    constrainedB =    new int[nConstrained];
130 >    constrainedA = new int[nConstrained];
131 >    constrainedB = new int[nConstrained];
132      constrainedDsqr = new double[nConstrained];
133 <    
134 <    for( int i = 0; i < nConstrained; i++){
136 <      
133 >
134 >    for (int i = 0; i < nConstrained; i++){
135        constrainedA[i] = temp_con[i].get_a();
136        constrainedB[i] = temp_con[i].get_b();
137        constrainedDsqr[i] = temp_con[i].get_dsqr();
140
138      }
139  
140 <    
141 <    // save oldAtoms to check for lode balanceing later on.
142 <    
140 >
141 >    // save oldAtoms to check for lode balancing later on.
142 >
143      oldAtoms = nAtoms;
144 <    
144 >
145      moving = new int[nAtoms];
146 <    moved  = new int[nAtoms];
146 >    moved = new int[nAtoms];
147  
148 <    oldPos = new double[nAtoms*3];
148 >    oldPos = new double[nAtoms * 3];
149    }
150 <  
150 >
151    delete[] temp_con;
152   }
153  
154  
155 < template<typename T> void Integrator<T>::integrate( void ){
155 > template<typename T> void Integrator<T>::integrate(void){
156  
157 <  int i, j;                         // loop counters
158 <
159 <  double runTime     = info->run_time;
163 <  double sampleTime  = info->sampleTime;
164 <  double statusTime  = info->statusTime;
157 >  double runTime = info->run_time;
158 >  double sampleTime = info->sampleTime;
159 >  double statusTime = info->statusTime;
160    double thermalTime = info->thermalTime;
161 +  double resetTime = info->resetTime;
162  
163 +
164    double currSample;
165    double currThermal;
166    double currStatus;
167 +  double currReset;
168  
169    int calcPot, calcStress;
172  int isError;
170  
171 <  tStats   = new Thermo( info );
172 <  statOut  = new StatWriter( info );
173 <  dumpOut  = new DumpWriter( info );
171 >  tStats = new Thermo(info);
172 >  statOut = new StatWriter(info);
173 >  dumpOut = new DumpWriter(info);
174  
175    atoms = info->atoms;
179  DirectionalAtom* dAtom;
176  
177    dt = info->dt;
178    dt2 = 0.5 * dt;
179  
180 +  readyCheck();
181 +
182 +  // remove center of mass drift velocity (in case we passed in a configuration
183 +  // that was drifting
184 +  tStats->removeCOMdrift();
185 +
186    // initialize the forces before the first step
187  
188    calcForce(1, 1);
189    
190 <  if( info->setTemp ){
191 <    
192 <    thermalize();
190 >  if (nConstrained){
191 >    preMove();
192 >    constrainA();
193 >    calcForce(1, 1);
194 >    constrainB();
195    }
196    
197 +  if (info->setTemp){
198 +    thermalize();
199 +  }
200 +
201    calcPot     = 0;
202    calcStress  = 0;
203 <  currSample  = sampleTime;
204 <  currThermal = thermalTime;
205 <  currStatus  = statusTime;
203 >  currSample  = sampleTime + info->getTime();
204 >  currThermal = thermalTime+ info->getTime();
205 >  currStatus  = statusTime + info->getTime();
206 >  currReset   = resetTime  + info->getTime();
207  
208 <  dumpOut->writeDump( info->getTime() );
209 <  statOut->writeStat( info->getTime() );
208 >  dumpOut->writeDump(info->getTime());
209 >  statOut->writeStat(info->getTime());
210  
202  readyCheck();
211  
212   #ifdef IS_MPI
213 <  strcpy( checkPointMsg,
206 <          "The integrator is ready to go." );
213 >  strcpy(checkPointMsg, "The integrator is ready to go.");
214    MPIcheckPoint();
215   #endif // is_mpi
216  
217 <  while( info->getTime() < runTime ){
218 <
212 <    if( (info->getTime()+dt) >= currStatus ){
217 >  while (info->getTime() < runTime && !stopIntegrator()){
218 >    if ((info->getTime() + dt) >= currStatus){
219        calcPot = 1;
220        calcStress = 1;
221      }
222  
223 <    integrateStep( calcPot, calcStress );
224 <      
223 > #ifdef PROFILE
224 >    startProfile( pro1 );
225 > #endif
226 >    
227 >    integrateStep(calcPot, calcStress);
228 >
229 > #ifdef PROFILE
230 >    endProfile( pro1 );
231 >
232 >    startProfile( pro2 );
233 > #endif // profile
234 >
235      info->incrTime(dt);
236  
237 <    if( info->setTemp ){
238 <      if( info->getTime() >= currThermal ){
239 <        thermalize();
240 <        currThermal += thermalTime;
237 >    if (info->setTemp){
238 >      if (info->getTime() >= currThermal){
239 >        thermalize();
240 >        currThermal += thermalTime;
241        }
242      }
243  
244 <    if( info->getTime() >= currSample ){
245 <      dumpOut->writeDump( info->getTime() );
244 >    if (info->getTime() >= currSample){
245 >      dumpOut->writeDump(info->getTime());
246        currSample += sampleTime;
247      }
248  
249 <    if( info->getTime() >= currStatus ){
250 <      statOut->writeStat( info->getTime() );
251 <      calcPot = 0;
249 >    if (info->getTime() >= currStatus){
250 >      statOut->writeStat(info->getTime());
251 >      calcPot = 0;
252        calcStress = 0;
253        currStatus += statusTime;
254 <    }
254 >    }
255  
256 +    if (info->resetIntegrator){
257 +      if (info->getTime() >= currReset){
258 +        this->resetIntegrator();
259 +        currReset += resetTime;
260 +      }
261 +    }
262 +    
263 + #ifdef PROFILE
264 +    endProfile( pro2 );
265 + #endif //profile
266 +
267   #ifdef IS_MPI
268 <    strcpy( checkPointMsg,
242 <            "successfully took a time step." );
268 >    strcpy(checkPointMsg, "successfully took a time step.");
269      MPIcheckPoint();
270   #endif // is_mpi
245
271    }
272  
248  dumpOut->writeFinal(info->getTime());
249
273    delete dumpOut;
274    delete statOut;
275   }
276  
277 < template<typename T> void Integrator<T>::integrateStep( int calcPot, int calcStress ){
278 <
256 <
257 <      
277 > template<typename T> void Integrator<T>::integrateStep(int calcPot,
278 >                                                       int calcStress){
279    // Position full step, and velocity half step
280  
281 + #ifdef PROFILE
282 +  startProfile(pro3);
283 + #endif //profile
284 +
285    preMove();
286 +
287 + #ifdef PROFILE
288 +  endProfile(pro3);
289 +
290 +  startProfile(pro4);
291 + #endif // profile
292 +
293    moveA();
262  if( nConstrained ) constrainA();
294  
295 + #ifdef PROFILE
296 +  endProfile(pro4);
297    
298 +  startProfile(pro5);
299 + #endif//profile
300 +
301 +
302   #ifdef IS_MPI
303 <  strcpy( checkPointMsg, "Succesful moveA\n" );
303 >  strcpy(checkPointMsg, "Succesful moveA\n");
304    MPIcheckPoint();
305   #endif // is_mpi
269  
306  
307 +
308    // calc forces
309  
310 <  calcForce(calcPot,calcStress);
310 >  calcForce(calcPot, calcStress);
311  
312   #ifdef IS_MPI
313 <  strcpy( checkPointMsg, "Succesful doForces\n" );
313 >  strcpy(checkPointMsg, "Succesful doForces\n");
314    MPIcheckPoint();
315   #endif // is_mpi
279  
316  
317 + #ifdef PROFILE
318 +  endProfile( pro5 );
319 +
320 +  startProfile( pro6 );
321 + #endif //profile
322 +
323    // finish the velocity  half step
324 <  
324 >
325    moveB();
326 <  if( nConstrained ) constrainB();
327 <  
326 >
327 > #ifdef PROFILE
328 >  endProfile(pro6);
329 > #endif // profile
330 >
331   #ifdef IS_MPI
332 <  strcpy( checkPointMsg, "Succesful moveB\n" );
332 >  strcpy(checkPointMsg, "Succesful moveB\n");
333    MPIcheckPoint();
334   #endif // is_mpi
290  
291
335   }
336  
337  
338 < template<typename T> void Integrator<T>::moveA( void ){
339 <  
297 <  int i, j;
338 > template<typename T> void Integrator<T>::moveA(void){
339 >  size_t i, j;
340    DirectionalAtom* dAtom;
341    double Tb[3], ji[3];
300  double A[3][3], I[3][3];
301  double angle;
342    double vel[3], pos[3], frc[3];
343    double mass;
344 +
345 +  for (i = 0; i < integrableObjects.size() ; i++){
346 +    integrableObjects[i]->getVel(vel);
347 +    integrableObjects[i]->getPos(pos);
348 +    integrableObjects[i]->getFrc(frc);
349  
350 <  for( i=0; i<nAtoms; i++ ){
350 >    std::cerr << "i =\t" << i << "\t" << frc[0] << "\t" << frc[1]<< "\t" << frc[2] << "\n";
351 >    
352 >    mass = integrableObjects[i]->getMass();
353  
354 <    atoms[i]->getVel( vel );
308 <    atoms[i]->getPos( pos );
309 <    atoms[i]->getFrc( frc );
310 <
311 <    mass = atoms[i]->getMass();
312 <
313 <    for (j=0; j < 3; j++) {
354 >    for (j = 0; j < 3; j++){
355        // velocity half step
356 <      vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
356 >      vel[j] += (dt2 * frc[j] / mass) * eConvert;
357        // position whole step
358        pos[j] += dt * vel[j];
359      }
360  
361 <    atoms[i]->setVel( vel );
362 <    atoms[i]->setPos( pos );
361 >    integrableObjects[i]->setVel(vel);
362 >    integrableObjects[i]->setPos(pos);
363  
364 <    if( atoms[i]->isDirectional() ){
364 >    if (integrableObjects[i]->isDirectional()){
365  
325      dAtom = (DirectionalAtom *)atoms[i];
326          
366        // get and convert the torque to body frame
328      
329      dAtom->getTrq( Tb );
330      dAtom->lab2Body( Tb );
367  
368 +      integrableObjects[i]->getTrq(Tb);
369 +      integrableObjects[i]->lab2Body(Tb);
370 +
371        // get the angular momentum, and propagate a half step
372  
373 <      dAtom->getJ( ji );
373 >      integrableObjects[i]->getJ(ji);
374  
375 <      for (j=0; j < 3; j++)
375 >      for (j = 0; j < 3; j++)
376          ji[j] += (dt2 * Tb[j]) * eConvert;
338      
339      // use the angular velocities to propagate the rotation matrix a
340      // full time step
377  
378 <      dAtom->getA(A);
343 <      dAtom->getI(I);
344 <    
345 <      // rotate about the x-axis      
346 <      angle = dt2 * ji[0] / I[0][0];
347 <      this->rotate( 1, 2, angle, ji, A );
378 >      this->rotationPropagation( integrableObjects[i], ji );
379  
380 <      // rotate about the y-axis
381 <      angle = dt2 * ji[1] / I[1][1];
382 <      this->rotate( 2, 0, angle, ji, A );
352 <      
353 <      // rotate about the z-axis
354 <      angle = dt * ji[2] / I[2][2];
355 <      this->rotate( 0, 1, angle, ji, A);
356 <      
357 <      // rotate about the y-axis
358 <      angle = dt2 * ji[1] / I[1][1];
359 <      this->rotate( 2, 0, angle, ji, A );
360 <      
361 <       // rotate about the x-axis
362 <      angle = dt2 * ji[0] / I[0][0];
363 <      this->rotate( 1, 2, angle, ji, A );
364 <      
380 >      integrableObjects[i]->setJ(ji);
381 >    }
382 >  }
383  
384 <      dAtom->setJ( ji );
385 <      dAtom->setA( A  );
368 <          
369 <    }    
384 >  if (nConstrained){
385 >    constrainA();
386    }
387   }
388  
389  
390 < template<typename T> void Integrator<T>::moveB( void ){
390 > template<typename T> void Integrator<T>::moveB(void){
391    int i, j;
376  DirectionalAtom* dAtom;
392    double Tb[3], ji[3];
393    double vel[3], frc[3];
394    double mass;
395  
396 <  for( i=0; i<nAtoms; i++ ){
397 <
398 <    atoms[i]->getVel( vel );
384 <    atoms[i]->getFrc( frc );
396 >  for (i = 0; i < integrableObjects.size(); i++){
397 >    integrableObjects[i]->getVel(vel);
398 >    integrableObjects[i]->getFrc(frc);
399  
400 <    mass = atoms[i]->getMass();
400 >    mass = integrableObjects[i]->getMass();
401  
402      // velocity half step
403 <    for (j=0; j < 3; j++)
404 <      vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
391 <    
392 <    atoms[i]->setVel( vel );
393 <
394 <    if( atoms[i]->isDirectional() ){
403 >    for (j = 0; j < 3; j++)
404 >      vel[j] += (dt2 * frc[j] / mass) * eConvert;
405  
406 <      dAtom = (DirectionalAtom *)atoms[i];
406 >    integrableObjects[i]->setVel(vel);
407  
408 <      // get and convert the torque to body frame      
408 >    if (integrableObjects[i]->isDirectional()){
409  
410 <      dAtom->getTrq( Tb );
401 <      dAtom->lab2Body( Tb );
410 >      // get and convert the torque to body frame
411  
412 +      integrableObjects[i]->getTrq(Tb);
413 +      integrableObjects[i]->lab2Body(Tb);
414 +
415        // get the angular momentum, and propagate a half step
416  
417 <      dAtom->getJ( ji );
417 >      integrableObjects[i]->getJ(ji);
418  
419 <      for (j=0; j < 3; j++)
419 >      for (j = 0; j < 3; j++)
420          ji[j] += (dt2 * Tb[j]) * eConvert;
409      
421  
422 <      dAtom->setJ( ji );
422 >
423 >      integrableObjects[i]->setJ(ji);
424      }
425    }
426 +
427 +  if (nConstrained){
428 +    constrainB();
429 +  }
430   }
431  
432 < template<typename T> void Integrator<T>::preMove( void ){
432 > template<typename T> void Integrator<T>::preMove(void){
433    int i, j;
434    double pos[3];
435  
436 <  if( nConstrained ){
436 >  if (nConstrained){
437 >    for (i = 0; i < nAtoms; i++){
438 >      atoms[i]->getPos(pos);
439  
440 <    for(i=0; i < nAtoms; i++) {
441 <
424 <      atoms[i]->getPos( pos );
425 <
426 <      for (j = 0; j < 3; j++) {        
427 <        oldPos[3*i + j] = pos[j];
440 >      for (j = 0; j < 3; j++){
441 >        oldPos[3 * i + j] = pos[j];
442        }
429
443      }
444 <  }  
444 >  }
445   }
446  
447   template<typename T> void Integrator<T>::constrainA(){
448 <
436 <  int i,j,k;
448 >  int i, j;
449    int done;
450    double posA[3], posB[3];
451    double velA[3], velB[3];
# Line 448 | Line 460 | template<typename T> void Integrator<T>::constrainA(){
460    double gab;
461    int iteration;
462  
463 <  for( i=0; i<nAtoms; i++){    
463 >  for (i = 0; i < nAtoms; i++){
464      moving[i] = 0;
465 <    moved[i]  = 1;
465 >    moved[i] = 1;
466    }
467  
468    iteration = 0;
469    done = 0;
470 <  while( !done && (iteration < maxIteration )){
459 <
470 >  while (!done && (iteration < maxIteration)){
471      done = 1;
472 <    for(i=0; i<nConstrained; i++){
462 <
472 >    for (i = 0; i < nConstrained; i++){
473        a = constrainedA[i];
474        b = constrainedB[i];
465      
466      ax = (a*3) + 0;
467      ay = (a*3) + 1;
468      az = (a*3) + 2;
475  
476 <      bx = (b*3) + 0;
477 <      by = (b*3) + 1;
478 <      bz = (b*3) + 2;
476 >      ax = (a * 3) + 0;
477 >      ay = (a * 3) + 1;
478 >      az = (a * 3) + 2;
479  
480 <      if( moved[a] || moved[b] ){
481 <        
482 <        atoms[a]->getPos( posA );
483 <        atoms[b]->getPos( posB );
484 <        
485 <        for (j = 0; j < 3; j++ )
480 >      bx = (b * 3) + 0;
481 >      by = (b * 3) + 1;
482 >      bz = (b * 3) + 2;
483 >
484 >      if (moved[a] || moved[b]){
485 >        atoms[a]->getPos(posA);
486 >        atoms[b]->getPos(posB);
487 >
488 >        for (j = 0; j < 3; j++)
489            pab[j] = posA[j] - posB[j];
481        
482        //periodic boundary condition
490  
491 <        info->wrapVector( pab );
491 >        //periodic boundary condition
492  
493 <        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
493 >        info->wrapVector(pab);
494  
495 <        rabsq = constrainedDsqr[i];
489 <        diffsq = rabsq - pabsq;
495 >        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
496  
497 <        // the original rattle code from alan tidesley
498 <        if (fabs(diffsq) > (tol*rabsq*2)) {
493 <          rab[0] = oldPos[ax] - oldPos[bx];
494 <          rab[1] = oldPos[ay] - oldPos[by];
495 <          rab[2] = oldPos[az] - oldPos[bz];
497 >        rabsq = constrainedDsqr[i];
498 >        diffsq = rabsq - pabsq;
499  
500 <          info->wrapVector( rab );
500 >        // the original rattle code from alan tidesley
501 >        if (fabs(diffsq) > (tol * rabsq * 2)){
502 >          rab[0] = oldPos[ax] - oldPos[bx];
503 >          rab[1] = oldPos[ay] - oldPos[by];
504 >          rab[2] = oldPos[az] - oldPos[bz];
505  
506 <          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
506 >          info->wrapVector(rab);
507  
508 <          rpabsq = rpab * rpab;
508 >          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
509  
510 +          rpabsq = rpab * rpab;
511  
504          if (rpabsq < (rabsq * -diffsq)){
512  
513 +          if (rpabsq < (rabsq * -diffsq)){
514   #ifdef IS_MPI
515 <            a = atoms[a]->getGlobalIndex();
516 <            b = atoms[b]->getGlobalIndex();
515 >            a = atoms[a]->getGlobalIndex();
516 >            b = atoms[b]->getGlobalIndex();
517   #endif //is_mpi
518 <            sprintf( painCave.errMsg,
519 <                     "Constraint failure in constrainA at atom %d and %d.\n",
520 <                     a, b );
521 <            painCave.isFatal = 1;
522 <            simError();
523 <          }
518 >            sprintf(painCave.errMsg,
519 >                    "Constraint failure in constrainA at atom %d and %d.\n", a,
520 >                    b);
521 >            painCave.isFatal = 1;
522 >            simError();
523 >          }
524  
525 <          rma = 1.0 / atoms[a]->getMass();
526 <          rmb = 1.0 / atoms[b]->getMass();
525 >          rma = 1.0 / atoms[a]->getMass();
526 >          rmb = 1.0 / atoms[b]->getMass();
527  
528 <          gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab );
528 >          gab = diffsq / (2.0 * (rma + rmb) * rpab);
529  
530            dx = rab[0] * gab;
531            dy = rab[1] * gab;
532            dz = rab[2] * gab;
533  
534 <          posA[0] += rma * dx;
535 <          posA[1] += rma * dy;
536 <          posA[2] += rma * dz;
534 >          posA[0] += rma * dx;
535 >          posA[1] += rma * dy;
536 >          posA[2] += rma * dz;
537  
538 <          atoms[a]->setPos( posA );
538 >          atoms[a]->setPos(posA);
539  
540 <          posB[0] -= rmb * dx;
541 <          posB[1] -= rmb * dy;
542 <          posB[2] -= rmb * dz;
540 >          posB[0] -= rmb * dx;
541 >          posB[1] -= rmb * dy;
542 >          posB[2] -= rmb * dz;
543  
544 <          atoms[b]->setPos( posB );
544 >          atoms[b]->setPos(posB);
545  
546            dx = dx / dt;
547            dy = dy / dt;
548            dz = dz / dt;
549  
550 <          atoms[a]->getVel( velA );
550 >          atoms[a]->getVel(velA);
551  
552 <          velA[0] += rma * dx;
553 <          velA[1] += rma * dy;
554 <          velA[2] += rma * dz;
552 >          velA[0] += rma * dx;
553 >          velA[1] += rma * dy;
554 >          velA[2] += rma * dz;
555  
556 <          atoms[a]->setVel( velA );
556 >          atoms[a]->setVel(velA);
557  
558 <          atoms[b]->getVel( velB );
558 >          atoms[b]->getVel(velB);
559  
560 <          velB[0] -= rmb * dx;
561 <          velB[1] -= rmb * dy;
562 <          velB[2] -= rmb * dz;
560 >          velB[0] -= rmb * dx;
561 >          velB[1] -= rmb * dy;
562 >          velB[2] -= rmb * dz;
563  
564 <          atoms[b]->setVel( velB );
564 >          atoms[b]->setVel(velB);
565  
566 <          moving[a] = 1;
567 <          moving[b] = 1;
568 <          done = 0;
569 <        }
566 >          moving[a] = 1;
567 >          moving[b] = 1;
568 >          done = 0;
569 >        }
570        }
571      }
572 <    
573 <    for(i=0; i<nAtoms; i++){
566 <      
572 >
573 >    for (i = 0; i < nAtoms; i++){
574        moved[i] = moving[i];
575        moving[i] = 0;
576      }
# Line 571 | Line 578 | template<typename T> void Integrator<T>::constrainA(){
578      iteration++;
579    }
580  
581 <  if( !done ){
582 <
583 <    sprintf( painCave.errMsg,
584 <             "Constraint failure in constrainA, too many iterations: %d\n",
578 <             iteration );
581 >  if (!done){
582 >    sprintf(painCave.errMsg,
583 >            "Constraint failure in constrainA, too many iterations: %d\n",
584 >            iteration);
585      painCave.isFatal = 1;
586      simError();
587    }
588  
589   }
590  
591 < template<typename T> void Integrator<T>::constrainB( void ){
592 <  
587 <  int i,j,k;
591 > template<typename T> void Integrator<T>::constrainB(void){
592 >  int i, j;
593    int done;
594    double posA[3], posB[3];
595    double velA[3], velB[3];
# Line 593 | Line 598 | template<typename T> void Integrator<T>::constrainB( v
598    int a, b, ax, ay, az, bx, by, bz;
599    double rma, rmb;
600    double dx, dy, dz;
601 <  double rabsq, pabsq, rvab;
597 <  double diffsq;
601 >  double rvab;
602    double gab;
603    int iteration;
604  
605 <  for(i=0; i<nAtoms; i++){
605 >  for (i = 0; i < nAtoms; i++){
606      moving[i] = 0;
607      moved[i] = 1;
608    }
609  
610    done = 0;
611    iteration = 0;
612 <  while( !done && (iteration < maxIteration ) ){
609 <
612 >  while (!done && (iteration < maxIteration)){
613      done = 1;
614  
615 <    for(i=0; i<nConstrained; i++){
613 <      
615 >    for (i = 0; i < nConstrained; i++){
616        a = constrainedA[i];
617        b = constrainedB[i];
618  
619 <      ax = (a*3) + 0;
620 <      ay = (a*3) + 1;
621 <      az = (a*3) + 2;
619 >      ax = (a * 3) + 0;
620 >      ay = (a * 3) + 1;
621 >      az = (a * 3) + 2;
622  
623 <      bx = (b*3) + 0;
624 <      by = (b*3) + 1;
625 <      bz = (b*3) + 2;
623 >      bx = (b * 3) + 0;
624 >      by = (b * 3) + 1;
625 >      bz = (b * 3) + 2;
626  
627 <      if( moved[a] || moved[b] ){
627 >      if (moved[a] || moved[b]){
628 >        atoms[a]->getVel(velA);
629 >        atoms[b]->getVel(velB);
630  
631 <        atoms[a]->getVel( velA );
632 <        atoms[b]->getVel( velB );
633 <          
630 <        vxab = velA[0] - velB[0];
631 <        vyab = velA[1] - velB[1];
632 <        vzab = velA[2] - velB[2];
631 >        vxab = velA[0] - velB[0];
632 >        vyab = velA[1] - velB[1];
633 >        vzab = velA[2] - velB[2];
634  
635 <        atoms[a]->getPos( posA );
636 <        atoms[b]->getPos( posB );
635 >        atoms[a]->getPos(posA);
636 >        atoms[b]->getPos(posB);
637  
638 <        for (j = 0; j < 3; j++)
638 >        for (j = 0; j < 3; j++)
639            rab[j] = posA[j] - posB[j];
639          
640        info->wrapVector( rab );
641        
642        rma = 1.0 / atoms[a]->getMass();
643        rmb = 1.0 / atoms[b]->getMass();
640  
641 <        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
642 <          
643 <        gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] );
641 >        info->wrapVector(rab);
642 >
643 >        rma = 1.0 / atoms[a]->getMass();
644 >        rmb = 1.0 / atoms[b]->getMass();
645  
646 <        if (fabs(gab) > tol) {
650 <          
651 <          dx = rab[0] * gab;
652 <          dy = rab[1] * gab;
653 <          dz = rab[2] * gab;
654 <        
655 <          velA[0] += rma * dx;
656 <          velA[1] += rma * dy;
657 <          velA[2] += rma * dz;
646 >        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
647  
648 <          atoms[a]->setVel( velA );
648 >        gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
649  
650 <          velB[0] -= rmb * dx;
651 <          velB[1] -= rmb * dy;
652 <          velB[2] -= rmb * dz;
650 >        if (fabs(gab) > tol){
651 >          dx = rab[0] * gab;
652 >          dy = rab[1] * gab;
653 >          dz = rab[2] * gab;
654  
655 <          atoms[b]->setVel( velB );
656 <          
657 <          moving[a] = 1;
658 <          moving[b] = 1;
659 <          done = 0;
660 <        }
655 >          velA[0] += rma * dx;
656 >          velA[1] += rma * dy;
657 >          velA[2] += rma * dz;
658 >
659 >          atoms[a]->setVel(velA);
660 >
661 >          velB[0] -= rmb * dx;
662 >          velB[1] -= rmb * dy;
663 >          velB[2] -= rmb * dz;
664 >
665 >          atoms[b]->setVel(velB);
666 >
667 >          moving[a] = 1;
668 >          moving[b] = 1;
669 >          done = 0;
670 >        }
671        }
672      }
673  
674 <    for(i=0; i<nAtoms; i++){
674 >    for (i = 0; i < nAtoms; i++){
675        moved[i] = moving[i];
676        moving[i] = 0;
677      }
678 <    
678 >
679      iteration++;
680    }
681  
682  if( !done ){
681  
682 <  
683 <    sprintf( painCave.errMsg,
684 <             "Constraint failure in constrainB, too many iterations: %d\n",
685 <             iteration );
682 >  if (!done){
683 >    sprintf(painCave.errMsg,
684 >            "Constraint failure in constrainB, too many iterations: %d\n",
685 >            iteration);
686      painCave.isFatal = 1;
687      simError();
688 <  }
691 <
688 >  }
689   }
690  
691 < template<typename T> void Integrator<T>::rotate( int axes1, int axes2, double angle, double ji[3],
692 <                         double A[3][3] ){
691 > template<typename T> void Integrator<T>::rotationPropagation
692 > ( StuntDouble* sd, double ji[3] ){
693  
694 <  int i,j,k;
694 >  double angle;
695 >  double A[3][3], I[3][3];
696 >  int i, j, k;
697 >
698 >  // use the angular velocities to propagate the rotation matrix a
699 >  // full time step
700 >
701 >  sd->getA(A);
702 >  sd->getI(I);
703 >
704 >  if (sd->isLinear()) {
705 >    i = sd->linearAxis();
706 >    j = (i+1)%3;
707 >    k = (i+2)%3;
708 >    
709 >    angle = dt2 * ji[j] / I[j][j];
710 >    this->rotate( k, i, angle, ji, A );
711 >
712 >    angle = dt * ji[k] / I[k][k];
713 >    this->rotate( i, j, angle, ji, A);
714 >
715 >    angle = dt2 * ji[j] / I[j][j];
716 >    this->rotate( k, i, angle, ji, A );
717 >
718 >  } else {
719 >    // rotate about the x-axis
720 >    angle = dt2 * ji[0] / I[0][0];
721 >    this->rotate( 1, 2, angle, ji, A );
722 >    
723 >    // rotate about the y-axis
724 >    angle = dt2 * ji[1] / I[1][1];
725 >    this->rotate( 2, 0, angle, ji, A );
726 >    
727 >    // rotate about the z-axis
728 >    angle = dt * ji[2] / I[2][2];
729 >    this->rotate( 0, 1, angle, ji, A);
730 >    
731 >    // rotate about the y-axis
732 >    angle = dt2 * ji[1] / I[1][1];
733 >    this->rotate( 2, 0, angle, ji, A );
734 >    
735 >    // rotate about the x-axis
736 >    angle = dt2 * ji[0] / I[0][0];
737 >    this->rotate( 1, 2, angle, ji, A );
738 >    
739 >  }
740 >  sd->setA( A  );
741 > }
742 >
743 > template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
744 >                                                double angle, double ji[3],
745 >                                                double A[3][3]){
746 >  int i, j, k;
747    double sinAngle;
748    double cosAngle;
749    double angleSqr;
# Line 706 | Line 755 | template<typename T> void Integrator<T>::rotate( int a
755  
756    // initialize the tempA
757  
758 <  for(i=0; i<3; i++){
759 <    for(j=0; j<3; j++){
758 >  for (i = 0; i < 3; i++){
759 >    for (j = 0; j < 3; j++){
760        tempA[j][i] = A[i][j];
761      }
762    }
763  
764    // initialize the tempJ
765  
766 <  for( i=0; i<3; i++) tempJ[i] = ji[i];
767 <  
766 >  for (i = 0; i < 3; i++)
767 >    tempJ[i] = ji[i];
768 >
769    // initalize rot as a unit matrix
770  
771    rot[0][0] = 1.0;
# Line 725 | Line 775 | template<typename T> void Integrator<T>::rotate( int a
775    rot[1][0] = 0.0;
776    rot[1][1] = 1.0;
777    rot[1][2] = 0.0;
778 <  
778 >
779    rot[2][0] = 0.0;
780    rot[2][1] = 0.0;
781    rot[2][2] = 1.0;
782 <  
782 >
783    // use a small angle aproximation for sin and cosine
784  
785 <  angleSqr  = angle * angle;
785 >  angleSqr = angle * angle;
786    angleSqrOver4 = angleSqr / 4.0;
787    top = 1.0 - angleSqrOver4;
788    bottom = 1.0 + angleSqrOver4;
# Line 745 | Line 795 | template<typename T> void Integrator<T>::rotate( int a
795  
796    rot[axes1][axes2] = sinAngle;
797    rot[axes2][axes1] = -sinAngle;
798 <  
798 >
799    // rotate the momentum acoording to: ji[] = rot[][] * ji[]
800 <  
801 <  for(i=0; i<3; i++){
800 >
801 >  for (i = 0; i < 3; i++){
802      ji[i] = 0.0;
803 <    for(k=0; k<3; k++){
803 >    for (k = 0; k < 3; k++){
804        ji[i] += rot[i][k] * tempJ[k];
805      }
806    }
807  
808 <  // rotate the Rotation matrix acording to:
808 >  // rotate the Rotation matrix acording to:
809    //            A[][] = A[][] * transpose(rot[][])
810  
811  
# Line 763 | Line 813 | template<typename T> void Integrator<T>::rotate( int a
813    // calculation as:
814    //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
815  
816 <  for(i=0; i<3; i++){
817 <    for(j=0; j<3; j++){
816 >  for (i = 0; i < 3; i++){
817 >    for (j = 0; j < 3; j++){
818        A[j][i] = 0.0;
819 <      for(k=0; k<3; k++){
820 <        A[j][i] += tempA[i][k] * rot[j][k];
819 >      for (k = 0; k < 3; k++){
820 >        A[j][i] += tempA[i][k] * rot[j][k];
821        }
822      }
823    }
824   }
825  
826 < template<typename T> void Integrator<T>::calcForce( int calcPot, int calcStress ){
827 <   myFF->doForces(calcPot,calcStress);
778 <  
826 > template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
827 >  myFF->doForces(calcPot, calcStress);
828   }
829  
830   template<typename T> void Integrator<T>::thermalize(){
831 <  tStats->velocitize();  
831 >  tStats->velocitize();
832   }
833 +
834 + template<typename T> double Integrator<T>::getConservedQuantity(void){
835 +  return tStats->getTotalE();
836 + }
837 + template<typename T> string Integrator<T>::getAdditionalParameters(void){
838 +  //By default, return a null string
839 +  //The reason we use string instead of char* is that if we use char*, we will
840 +  //return a pointer point to local variable which might cause problem
841 +  return string();
842 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines