| 1 |
|
#include <iostream> |
| 2 |
< |
#include <cstdlib> |
| 3 |
< |
#include <cmath> |
| 2 |
> |
#include <stdlib.h> |
| 3 |
> |
#include <math.h> |
| 4 |
|
|
| 5 |
|
#ifdef IS_MPI |
| 6 |
|
#include "mpiSimulation.hpp" |
| 7 |
|
#include <unistd.h> |
| 8 |
|
#endif //is_mpi |
| 9 |
|
|
| 10 |
+ |
#ifdef PROFILE |
| 11 |
+ |
#include "mdProfile.hpp" |
| 12 |
+ |
#endif // profile |
| 13 |
+ |
|
| 14 |
|
#include "Integrator.hpp" |
| 15 |
|
#include "simError.h" |
| 16 |
|
|
| 29 |
|
if (info->the_integrator != NULL){ |
| 30 |
|
delete info->the_integrator; |
| 31 |
|
} |
| 28 |
– |
info->the_integrator = this; |
| 32 |
|
|
| 33 |
|
nAtoms = info->n_atoms; |
| 34 |
+ |
integrableObjects = info->integrableObjects; |
| 35 |
|
|
| 36 |
|
// check for constraints |
| 37 |
|
|
| 69 |
|
|
| 70 |
|
SRI** theArray; |
| 71 |
|
for (int i = 0; i < nMols; i++){ |
| 72 |
< |
theArray = (SRI * *) molecules[i].getMyBonds(); |
| 72 |
> |
|
| 73 |
> |
theArray = (SRI * *) molecules[i].getMyBonds(); |
| 74 |
|
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
| 75 |
|
constrained = theArray[j]->is_constrained(); |
| 76 |
|
|
| 116 |
|
} |
| 117 |
|
} |
| 118 |
|
|
| 119 |
+ |
|
| 120 |
|
if (nConstrained > 0){ |
| 121 |
|
isConstrained = 1; |
| 122 |
|
|
| 138 |
|
} |
| 139 |
|
|
| 140 |
|
|
| 141 |
< |
// save oldAtoms to check for lode balanceing later on. |
| 141 |
> |
// save oldAtoms to check for lode balancing later on. |
| 142 |
|
|
| 143 |
|
oldAtoms = nAtoms; |
| 144 |
|
|
| 153 |
|
|
| 154 |
|
|
| 155 |
|
template<typename T> void Integrator<T>::integrate(void){ |
| 150 |
– |
int i, j; // loop counters |
| 156 |
|
|
| 157 |
|
double runTime = info->run_time; |
| 158 |
|
double sampleTime = info->sampleTime; |
| 165 |
|
double currThermal; |
| 166 |
|
double currStatus; |
| 167 |
|
double currReset; |
| 168 |
< |
|
| 168 |
> |
|
| 169 |
|
int calcPot, calcStress; |
| 165 |
– |
int isError; |
| 170 |
|
|
| 171 |
|
tStats = new Thermo(info); |
| 172 |
|
statOut = new StatWriter(info); |
| 173 |
|
dumpOut = new DumpWriter(info); |
| 174 |
|
|
| 175 |
|
atoms = info->atoms; |
| 172 |
– |
DirectionalAtom* dAtom; |
| 176 |
|
|
| 177 |
|
dt = info->dt; |
| 178 |
|
dt2 = 0.5 * dt; |
| 179 |
|
|
| 180 |
+ |
readyCheck(); |
| 181 |
+ |
|
| 182 |
+ |
// remove center of mass drift velocity (in case we passed in a configuration |
| 183 |
+ |
// that was drifting |
| 184 |
+ |
tStats->removeCOMdrift(); |
| 185 |
+ |
|
| 186 |
|
// initialize the forces before the first step |
| 187 |
|
|
| 188 |
|
calcForce(1, 1); |
| 189 |
+ |
|
| 190 |
+ |
if (nConstrained){ |
| 191 |
+ |
preMove(); |
| 192 |
+ |
constrainA(); |
| 193 |
+ |
calcForce(1, 1); |
| 194 |
+ |
constrainB(); |
| 195 |
+ |
} |
| 196 |
|
|
| 197 |
|
if (info->setTemp){ |
| 198 |
|
thermalize(); |
| 208 |
|
dumpOut->writeDump(info->getTime()); |
| 209 |
|
statOut->writeStat(info->getTime()); |
| 210 |
|
|
| 195 |
– |
readyCheck(); |
| 211 |
|
|
| 212 |
|
#ifdef IS_MPI |
| 213 |
|
strcpy(checkPointMsg, "The integrator is ready to go."); |
| 214 |
|
MPIcheckPoint(); |
| 215 |
|
#endif // is_mpi |
| 216 |
|
|
| 217 |
< |
while (info->getTime() < runTime){ |
| 217 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
| 218 |
|
if ((info->getTime() + dt) >= currStatus){ |
| 219 |
|
calcPot = 1; |
| 220 |
|
calcStress = 1; |
| 221 |
|
} |
| 222 |
|
|
| 223 |
+ |
#ifdef PROFILE |
| 224 |
+ |
startProfile( pro1 ); |
| 225 |
+ |
#endif |
| 226 |
+ |
|
| 227 |
|
integrateStep(calcPot, calcStress); |
| 228 |
|
|
| 229 |
+ |
#ifdef PROFILE |
| 230 |
+ |
endProfile( pro1 ); |
| 231 |
+ |
|
| 232 |
+ |
startProfile( pro2 ); |
| 233 |
+ |
#endif // profile |
| 234 |
+ |
|
| 235 |
|
info->incrTime(dt); |
| 236 |
|
|
| 237 |
|
if (info->setTemp){ |
| 247 |
|
} |
| 248 |
|
|
| 249 |
|
if (info->getTime() >= currStatus){ |
| 250 |
< |
statOut->writeStat(info->getTime()); |
| 251 |
< |
calcPot = 0; |
| 250 |
> |
statOut->writeStat(info->getTime()); |
| 251 |
> |
calcPot = 0; |
| 252 |
|
calcStress = 0; |
| 253 |
|
currStatus += statusTime; |
| 254 |
< |
} |
| 254 |
> |
} |
| 255 |
|
|
| 256 |
|
if (info->resetIntegrator){ |
| 257 |
|
if (info->getTime() >= currReset){ |
| 259 |
|
currReset += resetTime; |
| 260 |
|
} |
| 261 |
|
} |
| 262 |
+ |
|
| 263 |
+ |
#ifdef PROFILE |
| 264 |
+ |
endProfile( pro2 ); |
| 265 |
+ |
#endif //profile |
| 266 |
|
|
| 267 |
|
#ifdef IS_MPI |
| 268 |
|
strcpy(checkPointMsg, "successfully took a time step."); |
| 270 |
|
#endif // is_mpi |
| 271 |
|
} |
| 272 |
|
|
| 244 |
– |
dumpOut->writeFinal(info->getTime()); |
| 245 |
– |
|
| 273 |
|
delete dumpOut; |
| 274 |
|
delete statOut; |
| 275 |
|
} |
| 277 |
|
template<typename T> void Integrator<T>::integrateStep(int calcPot, |
| 278 |
|
int calcStress){ |
| 279 |
|
// Position full step, and velocity half step |
| 280 |
+ |
|
| 281 |
+ |
#ifdef PROFILE |
| 282 |
+ |
startProfile(pro3); |
| 283 |
+ |
#endif //profile |
| 284 |
+ |
|
| 285 |
|
preMove(); |
| 286 |
|
|
| 287 |
< |
moveA(); |
| 287 |
> |
#ifdef PROFILE |
| 288 |
> |
endProfile(pro3); |
| 289 |
|
|
| 290 |
+ |
startProfile(pro4); |
| 291 |
+ |
#endif // profile |
| 292 |
|
|
| 293 |
+ |
moveA(); |
| 294 |
|
|
| 295 |
+ |
#ifdef PROFILE |
| 296 |
+ |
endProfile(pro4); |
| 297 |
+ |
|
| 298 |
+ |
startProfile(pro5); |
| 299 |
+ |
#endif//profile |
| 300 |
|
|
| 301 |
+ |
|
| 302 |
|
#ifdef IS_MPI |
| 303 |
|
strcpy(checkPointMsg, "Succesful moveA\n"); |
| 304 |
|
MPIcheckPoint(); |
| 314 |
|
MPIcheckPoint(); |
| 315 |
|
#endif // is_mpi |
| 316 |
|
|
| 317 |
+ |
#ifdef PROFILE |
| 318 |
+ |
endProfile( pro5 ); |
| 319 |
|
|
| 320 |
+ |
startProfile( pro6 ); |
| 321 |
+ |
#endif //profile |
| 322 |
+ |
|
| 323 |
|
// finish the velocity half step |
| 324 |
|
|
| 325 |
|
moveB(); |
| 326 |
|
|
| 327 |
+ |
#ifdef PROFILE |
| 328 |
+ |
endProfile(pro6); |
| 329 |
+ |
#endif // profile |
| 330 |
|
|
| 281 |
– |
|
| 331 |
|
#ifdef IS_MPI |
| 332 |
|
strcpy(checkPointMsg, "Succesful moveB\n"); |
| 333 |
|
MPIcheckPoint(); |
| 336 |
|
|
| 337 |
|
|
| 338 |
|
template<typename T> void Integrator<T>::moveA(void){ |
| 339 |
< |
int i, j; |
| 339 |
> |
size_t i, j; |
| 340 |
|
DirectionalAtom* dAtom; |
| 341 |
|
double Tb[3], ji[3]; |
| 293 |
– |
double A[3][3], I[3][3]; |
| 294 |
– |
double angle; |
| 342 |
|
double vel[3], pos[3], frc[3]; |
| 343 |
|
double mass; |
| 344 |
+ |
|
| 345 |
+ |
for (i = 0; i < integrableObjects.size() ; i++){ |
| 346 |
+ |
integrableObjects[i]->getVel(vel); |
| 347 |
+ |
integrableObjects[i]->getPos(pos); |
| 348 |
+ |
integrableObjects[i]->getFrc(frc); |
| 349 |
+ |
|
| 350 |
+ |
mass = integrableObjects[i]->getMass(); |
| 351 |
|
|
| 298 |
– |
for (i = 0; i < nAtoms; i++){ |
| 299 |
– |
atoms[i]->getVel(vel); |
| 300 |
– |
atoms[i]->getPos(pos); |
| 301 |
– |
atoms[i]->getFrc(frc); |
| 302 |
– |
|
| 303 |
– |
mass = atoms[i]->getMass(); |
| 304 |
– |
|
| 352 |
|
for (j = 0; j < 3; j++){ |
| 353 |
|
// velocity half step |
| 354 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
| 356 |
|
pos[j] += dt * vel[j]; |
| 357 |
|
} |
| 358 |
|
|
| 359 |
< |
atoms[i]->setVel(vel); |
| 360 |
< |
atoms[i]->setPos(pos); |
| 359 |
> |
integrableObjects[i]->setVel(vel); |
| 360 |
> |
integrableObjects[i]->setPos(pos); |
| 361 |
|
|
| 362 |
< |
if (atoms[i]->isDirectional()){ |
| 316 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
| 362 |
> |
if (integrableObjects[i]->isDirectional()){ |
| 363 |
|
|
| 364 |
|
// get and convert the torque to body frame |
| 365 |
|
|
| 366 |
< |
dAtom->getTrq(Tb); |
| 367 |
< |
dAtom->lab2Body(Tb); |
| 366 |
> |
integrableObjects[i]->getTrq(Tb); |
| 367 |
> |
integrableObjects[i]->lab2Body(Tb); |
| 368 |
|
|
| 369 |
|
// get the angular momentum, and propagate a half step |
| 370 |
|
|
| 371 |
< |
dAtom->getJ(ji); |
| 371 |
> |
integrableObjects[i]->getJ(ji); |
| 372 |
|
|
| 373 |
|
for (j = 0; j < 3; j++) |
| 374 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
| 375 |
|
|
| 376 |
< |
// use the angular velocities to propagate the rotation matrix a |
| 331 |
< |
// full time step |
| 332 |
< |
|
| 333 |
< |
dAtom->getA(A); |
| 334 |
< |
dAtom->getI(I); |
| 376 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
| 377 |
|
|
| 378 |
< |
// rotate about the x-axis |
| 337 |
< |
angle = dt2 * ji[0] / I[0][0]; |
| 338 |
< |
this->rotate(1, 2, angle, ji, A); |
| 339 |
< |
|
| 340 |
< |
// rotate about the y-axis |
| 341 |
< |
angle = dt2 * ji[1] / I[1][1]; |
| 342 |
< |
this->rotate(2, 0, angle, ji, A); |
| 343 |
< |
|
| 344 |
< |
// rotate about the z-axis |
| 345 |
< |
angle = dt * ji[2] / I[2][2]; |
| 346 |
< |
this->rotate(0, 1, angle, ji, A); |
| 347 |
< |
|
| 348 |
< |
// rotate about the y-axis |
| 349 |
< |
angle = dt2 * ji[1] / I[1][1]; |
| 350 |
< |
this->rotate(2, 0, angle, ji, A); |
| 351 |
< |
|
| 352 |
< |
// rotate about the x-axis |
| 353 |
< |
angle = dt2 * ji[0] / I[0][0]; |
| 354 |
< |
this->rotate(1, 2, angle, ji, A); |
| 355 |
< |
|
| 356 |
< |
dAtom->setJ(ji); |
| 357 |
< |
dAtom->setA(A); |
| 378 |
> |
integrableObjects[i]->setJ(ji); |
| 379 |
|
} |
| 380 |
|
} |
| 381 |
|
|
| 387 |
|
|
| 388 |
|
template<typename T> void Integrator<T>::moveB(void){ |
| 389 |
|
int i, j; |
| 369 |
– |
DirectionalAtom* dAtom; |
| 390 |
|
double Tb[3], ji[3]; |
| 391 |
|
double vel[3], frc[3]; |
| 392 |
|
double mass; |
| 393 |
|
|
| 394 |
< |
for (i = 0; i < nAtoms; i++){ |
| 395 |
< |
atoms[i]->getVel(vel); |
| 396 |
< |
atoms[i]->getFrc(frc); |
| 394 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
| 395 |
> |
integrableObjects[i]->getVel(vel); |
| 396 |
> |
integrableObjects[i]->getFrc(frc); |
| 397 |
|
|
| 398 |
< |
mass = atoms[i]->getMass(); |
| 398 |
> |
mass = integrableObjects[i]->getMass(); |
| 399 |
|
|
| 400 |
|
// velocity half step |
| 401 |
|
for (j = 0; j < 3; j++) |
| 402 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
| 403 |
|
|
| 404 |
< |
atoms[i]->setVel(vel); |
| 404 |
> |
integrableObjects[i]->setVel(vel); |
| 405 |
|
|
| 406 |
< |
if (atoms[i]->isDirectional()){ |
| 387 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
| 406 |
> |
if (integrableObjects[i]->isDirectional()){ |
| 407 |
|
|
| 408 |
< |
// get and convert the torque to body frame |
| 408 |
> |
// get and convert the torque to body frame |
| 409 |
|
|
| 410 |
< |
dAtom->getTrq(Tb); |
| 411 |
< |
dAtom->lab2Body(Tb); |
| 410 |
> |
integrableObjects[i]->getTrq(Tb); |
| 411 |
> |
integrableObjects[i]->lab2Body(Tb); |
| 412 |
|
|
| 413 |
|
// get the angular momentum, and propagate a half step |
| 414 |
|
|
| 415 |
< |
dAtom->getJ(ji); |
| 415 |
> |
integrableObjects[i]->getJ(ji); |
| 416 |
|
|
| 417 |
|
for (j = 0; j < 3; j++) |
| 418 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
| 419 |
|
|
| 420 |
|
|
| 421 |
< |
dAtom->setJ(ji); |
| 421 |
> |
integrableObjects[i]->setJ(ji); |
| 422 |
|
} |
| 423 |
|
} |
| 424 |
|
|
| 443 |
|
} |
| 444 |
|
|
| 445 |
|
template<typename T> void Integrator<T>::constrainA(){ |
| 446 |
< |
int i, j, k; |
| 446 |
> |
int i, j; |
| 447 |
|
int done; |
| 448 |
|
double posA[3], posB[3]; |
| 449 |
|
double velA[3], velB[3]; |
| 587 |
|
} |
| 588 |
|
|
| 589 |
|
template<typename T> void Integrator<T>::constrainB(void){ |
| 590 |
< |
int i, j, k; |
| 590 |
> |
int i, j; |
| 591 |
|
int done; |
| 592 |
|
double posA[3], posB[3]; |
| 593 |
|
double velA[3], velB[3]; |
| 596 |
|
int a, b, ax, ay, az, bx, by, bz; |
| 597 |
|
double rma, rmb; |
| 598 |
|
double dx, dy, dz; |
| 599 |
< |
double rabsq, pabsq, rvab; |
| 581 |
< |
double diffsq; |
| 599 |
> |
double rvab; |
| 600 |
|
double gab; |
| 601 |
|
int iteration; |
| 602 |
|
|
| 683 |
|
iteration); |
| 684 |
|
painCave.isFatal = 1; |
| 685 |
|
simError(); |
| 686 |
+ |
} |
| 687 |
+ |
} |
| 688 |
+ |
|
| 689 |
+ |
template<typename T> void Integrator<T>::rotationPropagation |
| 690 |
+ |
( StuntDouble* sd, double ji[3] ){ |
| 691 |
+ |
|
| 692 |
+ |
double angle; |
| 693 |
+ |
double A[3][3], I[3][3]; |
| 694 |
+ |
int i, j, k; |
| 695 |
+ |
|
| 696 |
+ |
// use the angular velocities to propagate the rotation matrix a |
| 697 |
+ |
// full time step |
| 698 |
+ |
|
| 699 |
+ |
sd->getA(A); |
| 700 |
+ |
sd->getI(I); |
| 701 |
+ |
|
| 702 |
+ |
if (sd->isLinear()) { |
| 703 |
+ |
i = sd->linearAxis(); |
| 704 |
+ |
j = (i+1)%3; |
| 705 |
+ |
k = (i+2)%3; |
| 706 |
+ |
|
| 707 |
+ |
angle = dt2 * ji[j] / I[j][j]; |
| 708 |
+ |
this->rotate( k, i, angle, ji, A ); |
| 709 |
+ |
|
| 710 |
+ |
angle = dt * ji[k] / I[k][k]; |
| 711 |
+ |
this->rotate( i, j, angle, ji, A); |
| 712 |
+ |
|
| 713 |
+ |
angle = dt2 * ji[j] / I[j][j]; |
| 714 |
+ |
this->rotate( k, i, angle, ji, A ); |
| 715 |
+ |
|
| 716 |
+ |
} else { |
| 717 |
+ |
// rotate about the x-axis |
| 718 |
+ |
angle = dt2 * ji[0] / I[0][0]; |
| 719 |
+ |
this->rotate( 1, 2, angle, ji, A ); |
| 720 |
+ |
|
| 721 |
+ |
// rotate about the y-axis |
| 722 |
+ |
angle = dt2 * ji[1] / I[1][1]; |
| 723 |
+ |
this->rotate( 2, 0, angle, ji, A ); |
| 724 |
+ |
|
| 725 |
+ |
// rotate about the z-axis |
| 726 |
+ |
angle = dt * ji[2] / I[2][2]; |
| 727 |
+ |
this->rotate( 0, 1, angle, ji, A); |
| 728 |
+ |
|
| 729 |
+ |
// rotate about the y-axis |
| 730 |
+ |
angle = dt2 * ji[1] / I[1][1]; |
| 731 |
+ |
this->rotate( 2, 0, angle, ji, A ); |
| 732 |
+ |
|
| 733 |
+ |
// rotate about the x-axis |
| 734 |
+ |
angle = dt2 * ji[0] / I[0][0]; |
| 735 |
+ |
this->rotate( 1, 2, angle, ji, A ); |
| 736 |
+ |
|
| 737 |
|
} |
| 738 |
+ |
sd->setA( A ); |
| 739 |
|
} |
| 740 |
|
|
| 741 |
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
| 803 |
|
} |
| 804 |
|
} |
| 805 |
|
|
| 806 |
< |
// rotate the Rotation matrix acording to: |
| 806 |
> |
// rotate the Rotation matrix acording to: |
| 807 |
|
// A[][] = A[][] * transpose(rot[][]) |
| 808 |
|
|
| 809 |
|
|
| 832 |
|
template<typename T> double Integrator<T>::getConservedQuantity(void){ |
| 833 |
|
return tStats->getTotalE(); |
| 834 |
|
} |
| 835 |
+ |
template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
| 836 |
+ |
//By default, return a null string |
| 837 |
+ |
//The reason we use string instead of char* is that if we use char*, we will |
| 838 |
+ |
//return a pointer point to local variable which might cause problem |
| 839 |
+ |
return string(); |
| 840 |
+ |
} |