ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Integrator.cpp (file contents):
Revision 558 by mmeineke, Thu Jun 19 19:21:23 2003 UTC vs.
Revision 929 by tim, Tue Jan 13 15:46:49 2004 UTC

# Line 1 | Line 1
1   #include <iostream>
2 < #include <cstdlib>
2 > #include <stdlib.h>
3 > #include <math.h>
4  
5   #ifdef IS_MPI
6   #include "mpiSimulation.hpp"
7   #include <unistd.h>
8   #endif //is_mpi
9  
10 + #ifdef PROFILE
11 + #include "mdProfile.hpp"
12 + #endif // profile
13 +
14   #include "Integrator.hpp"
15   #include "simError.h"
16  
17  
18 < Integrator::Integrator( SimInfo* theInfo, ForceFields* the_ff ){
19 <  
18 > template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19 >                                               ForceFields* the_ff){
20    info = theInfo;
21    myFF = the_ff;
22    isFirst = 1;
# Line 20 | Line 25 | Integrator::Integrator( SimInfo* theInfo, ForceFields*
25    nMols = info->n_mol;
26  
27    // give a little love back to the SimInfo object
23  
24  if( info->the_integrator != NULL ) delete info->the_integrator;
25  info->the_integrator = this;
28  
29 +  if (info->the_integrator != NULL){
30 +    delete info->the_integrator;
31 +  }
32 +
33    nAtoms = info->n_atoms;
34  
35    // check for constraints
36 <  
37 <  constrainedA    = NULL;
38 <  constrainedB    = NULL;
36 >
37 >  constrainedA = NULL;
38 >  constrainedB = NULL;
39    constrainedDsqr = NULL;
40 <  moving          = NULL;
41 <  moved           = NULL;
42 <  prePos          = NULL;
43 <  
40 >  moving = NULL;
41 >  moved = NULL;
42 >  oldPos = NULL;
43 >
44    nConstrained = 0;
45  
46    checkConstraints();
47   }
48  
49 < Integrator::~Integrator() {
50 <  
45 <  if( nConstrained ){
49 > template<typename T> Integrator<T>::~Integrator(){
50 >  if (nConstrained){
51      delete[] constrainedA;
52      delete[] constrainedB;
53      delete[] constrainedDsqr;
54      delete[] moving;
55      delete[] moved;
56 <    delete[] prePos;
52 < k
56 >    delete[] oldPos;
57    }
54  
58   }
59  
60 < void Integrator::checkConstraints( void ){
58 <
59 <
60 > template<typename T> void Integrator<T>::checkConstraints(void){
61    isConstrained = 0;
62  
63 <  Constraint *temp_con;
64 <  Constraint *dummy_plug;
63 >  Constraint* temp_con;
64 >  Constraint* dummy_plug;
65    temp_con = new Constraint[info->n_SRI];
66    nConstrained = 0;
67    int constrained = 0;
68 <  
68 >
69    SRI** theArray;
70 <  for(int i = 0; i < nMols; i++){
71 <    
72 <    theArray = (SRI**) molecules[i].getMyBonds();
72 <    for(int j=0; j<molecules[i].getNBonds(); j++){
73 <      
70 >  for (int i = 0; i < nMols; i++){
71 >    theArray = (SRI * *) molecules[i].getMyBonds();
72 >    for (int j = 0; j < molecules[i].getNBonds(); j++){
73        constrained = theArray[j]->is_constrained();
74 <      
75 <      if(constrained){
76 <        
77 <        dummy_plug = theArray[j]->get_constraint();
78 <        temp_con[nConstrained].set_a( dummy_plug->get_a() );
79 <        temp_con[nConstrained].set_b( dummy_plug->get_b() );
80 <        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
81 <        
82 <        nConstrained++;
84 <        constrained = 0;
74 >
75 >      if (constrained){
76 >        dummy_plug = theArray[j]->get_constraint();
77 >        temp_con[nConstrained].set_a(dummy_plug->get_a());
78 >        temp_con[nConstrained].set_b(dummy_plug->get_b());
79 >        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
80 >
81 >        nConstrained++;
82 >        constrained = 0;
83        }
84      }
85  
86 <    theArray = (SRI**) molecules[i].getMyBends();
87 <    for(int j=0; j<molecules[i].getNBends(); j++){
90 <      
86 >    theArray = (SRI * *) molecules[i].getMyBends();
87 >    for (int j = 0; j < molecules[i].getNBends(); j++){
88        constrained = theArray[j]->is_constrained();
89 <      
90 <      if(constrained){
91 <        
92 <        dummy_plug = theArray[j]->get_constraint();
93 <        temp_con[nConstrained].set_a( dummy_plug->get_a() );
94 <        temp_con[nConstrained].set_b( dummy_plug->get_b() );
95 <        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
96 <        
97 <        nConstrained++;
101 <        constrained = 0;
89 >
90 >      if (constrained){
91 >        dummy_plug = theArray[j]->get_constraint();
92 >        temp_con[nConstrained].set_a(dummy_plug->get_a());
93 >        temp_con[nConstrained].set_b(dummy_plug->get_b());
94 >        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
95 >
96 >        nConstrained++;
97 >        constrained = 0;
98        }
99      }
100  
101 <    theArray = (SRI**) molecules[i].getMyTorsions();
102 <    for(int j=0; j<molecules[i].getNTorsions(); j++){
107 <      
101 >    theArray = (SRI * *) molecules[i].getMyTorsions();
102 >    for (int j = 0; j < molecules[i].getNTorsions(); j++){
103        constrained = theArray[j]->is_constrained();
104 <      
105 <      if(constrained){
106 <        
107 <        dummy_plug = theArray[j]->get_constraint();
108 <        temp_con[nConstrained].set_a( dummy_plug->get_a() );
109 <        temp_con[nConstrained].set_b( dummy_plug->get_b() );
110 <        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() );
111 <        
112 <        nConstrained++;
118 <        constrained = 0;
104 >
105 >      if (constrained){
106 >        dummy_plug = theArray[j]->get_constraint();
107 >        temp_con[nConstrained].set_a(dummy_plug->get_a());
108 >        temp_con[nConstrained].set_b(dummy_plug->get_b());
109 >        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
110 >
111 >        nConstrained++;
112 >        constrained = 0;
113        }
114      }
115    }
116  
117 <  if(nConstrained > 0){
124 <    
117 >  if (nConstrained > 0){
118      isConstrained = 1;
119  
120 <    if(constrainedA != NULL )    delete[] constrainedA;
121 <    if(constrainedB != NULL )    delete[] constrainedB;
122 <    if(constrainedDsqr != NULL ) delete[] constrainedDsqr;
120 >    if (constrainedA != NULL)
121 >      delete[] constrainedA;
122 >    if (constrainedB != NULL)
123 >      delete[] constrainedB;
124 >    if (constrainedDsqr != NULL)
125 >      delete[] constrainedDsqr;
126  
127 <    constrainedA =    new int[nConstrained];
128 <    constrainedB =    new int[nConstrained];
127 >    constrainedA = new int[nConstrained];
128 >    constrainedB = new int[nConstrained];
129      constrainedDsqr = new double[nConstrained];
130 <    
131 <    for( int i = 0; i < nConstrained; i++){
136 <      
130 >
131 >    for (int i = 0; i < nConstrained; i++){
132        constrainedA[i] = temp_con[i].get_a();
133        constrainedB[i] = temp_con[i].get_b();
134        constrainedDsqr[i] = temp_con[i].get_dsqr();
135      }
136  
137 <    
137 >
138      // save oldAtoms to check for lode balanceing later on.
139 <    
139 >
140      oldAtoms = nAtoms;
141 <    
141 >
142      moving = new int[nAtoms];
143 <    moved  = new int[nAtoms];
143 >    moved = new int[nAtoms];
144  
145 <    prePos = new double[nAtoms*3];
145 >    oldPos = new double[nAtoms * 3];
146    }
147 <  
147 >
148    delete[] temp_con;
149   }
150  
151  
152 < void Integrator::integrate( void ){
152 > template<typename T> void Integrator<T>::integrate(void){
153  
154 <  int i, j;                         // loop counters
155 <  double kE = 0.0;                  // the kinetic energy  
156 <  double rot_kE;
162 <  double trans_kE;
163 <  int tl;                        // the time loop conter
164 <  double dt2;                       // half the dt
165 <
166 <  double vx, vy, vz;    // the velocities
167 <  double vx2, vy2, vz2; // the square of the velocities
168 <  double rx, ry, rz;    // the postitions
169 <  
170 <  double ji[3];   // the body frame angular momentum
171 <  double jx2, jy2, jz2; // the square of the angular momentums
172 <  double Tb[3];   // torque in the body frame
173 <  double angle;   // the angle through which to rotate the rotation matrix
174 <  double A[3][3]; // the rotation matrix
175 <  double press[9];
176 <
177 <  double dt          = info->dt;
178 <  double runTime     = info->run_time;
179 <  double sampleTime  = info->sampleTime;
180 <  double statusTime  = info->statusTime;
154 >  double runTime = info->run_time;
155 >  double sampleTime = info->sampleTime;
156 >  double statusTime = info->statusTime;
157    double thermalTime = info->thermalTime;
158 +  double resetTime = info->resetTime;
159  
160 +
161    double currSample;
162    double currThermal;
163    double currStatus;
164 <  double currTime;
164 >  double currReset;
165  
166    int calcPot, calcStress;
189  int isError;
167  
168 <  tStats   = new Thermo( info );
169 <  e_out    = new StatWriter( info );
170 <  dump_out = new DumpWriter( info );
168 >  tStats = new Thermo(info);
169 >  statOut = new StatWriter(info);
170 >  dumpOut = new DumpWriter(info);
171  
172 <  Atom** atoms = info->atoms;
173 <  DirectionalAtom* dAtom;
172 >  atoms = info->atoms;
173 >
174 >  dt = info->dt;
175    dt2 = 0.5 * dt;
176  
177 +  readyCheck();
178 +
179    // initialize the forces before the first step
180  
181 <  myFF->doForces(1,1);
182 <  
183 <  if( info->setTemp ){
184 <    
185 <    tStats->velocitize();
181 >  calcForce(1, 1);
182 >
183 >  if (nConstrained){
184 >    preMove();
185 >    constrainA();
186 >    calcForce(1, 1);
187 >    constrainB();
188    }
189    
190 <  dump_out->writeDump( 0.0 );
191 <  e_out->writeStat( 0.0 );
192 <  
190 >  if (info->setTemp){
191 >    thermalize();
192 >  }
193 >
194    calcPot     = 0;
195    calcStress  = 0;
196 <  currSample  = sampleTime;
197 <  currThermal = thermalTime;
198 <  currStatus  = statusTime;
199 <  currTime    = 0.0;;
196 >  currSample  = sampleTime + info->getTime();
197 >  currThermal = thermalTime+ info->getTime();
198 >  currStatus  = statusTime + info->getTime();
199 >  currReset   = resetTime  + info->getTime();
200  
201 <  while( currTime < runTime ){
201 >  dumpOut->writeDump(info->getTime());
202 >  statOut->writeStat(info->getTime());
203  
204 <    if( (currTime+dt) >= currStatus ){
204 >
205 > #ifdef IS_MPI
206 >  strcpy(checkPointMsg, "The integrator is ready to go.");
207 >  MPIcheckPoint();
208 > #endif // is_mpi
209 >
210 >  while (info->getTime() < runTime){
211 >    if ((info->getTime() + dt) >= currStatus){
212        calcPot = 1;
213        calcStress = 1;
214      }
215 +
216 + #ifdef PROFILE
217 +    startProfile( pro1 );
218 + #endif
219      
220 <    integrateStep( calcPot, calcStress );
226 <      
227 <    currTime += dt;
220 >    integrateStep(calcPot, calcStress);
221  
222 <    if( info->setTemp ){
223 <      if( currTime >= currThermal ){
224 <        tStats->velocitize();
225 <        currThermal += thermalTime;
222 > #ifdef PROFILE
223 >    endProfile( pro1 );
224 >
225 >    startProfile( pro2 );
226 > #endif // profile
227 >
228 >    info->incrTime(dt);
229 >
230 >    if (info->setTemp){
231 >      if (info->getTime() >= currThermal){
232 >        thermalize();
233 >        currThermal += thermalTime;
234        }
235      }
236  
237 <    if( currTime >= currSample ){
238 <      dump_out->writeDump( currTime );
237 >    if (info->getTime() >= currSample){
238 >      dumpOut->writeDump(info->getTime());
239        currSample += sampleTime;
240      }
241  
242 <    if( currTime >= currStatus ){
243 <      e_out->writeStat( time * dt );
244 <      calcPot = 0;
242 >    if (info->getTime() >= currStatus){
243 >      statOut->writeStat(info->getTime());
244 >      calcPot = 0;
245        calcStress = 0;
246        currStatus += statusTime;
247 <    }
247 <  }
247 >    }
248  
249 <  dump_out->writeFinal();
249 >    if (info->resetIntegrator){
250 >      if (info->getTime() >= currReset){
251 >        this->resetIntegrator();
252 >        currReset += resetTime;
253 >      }
254 >    }
255 >    
256 > #ifdef PROFILE
257 >    endProfile( pro2 );
258 > #endif //profile
259  
260 <  delete dump_out;
261 <  delete e_out;
260 > #ifdef IS_MPI
261 >    strcpy(checkPointMsg, "successfully took a time step.");
262 >    MPIcheckPoint();
263 > #endif // is_mpi
264 >  }
265 >
266 >  delete dumpOut;
267 >  delete statOut;
268   }
269  
270 < void Integrator::integrateStep( int calcPot, int calcStress ){
271 <
270 > template<typename T> void Integrator<T>::integrateStep(int calcPot,
271 >                                                       int calcStress){
272    // Position full step, and velocity half step
273  
274 <  //preMove();
274 > #ifdef PROFILE
275 >  startProfile(pro3);
276 > #endif //profile
277 >
278 >  preMove();
279 >
280 > #ifdef PROFILE
281 >  endProfile(pro3);
282 >
283 >  startProfile(pro4);
284 > #endif // profile
285 >
286    moveA();
261  if( nConstrained ) constrainA();
287  
288 + #ifdef PROFILE
289 +  endProfile(pro4);
290 +  
291 +  startProfile(pro5);
292 + #endif//profile
293 +
294 +
295 + #ifdef IS_MPI
296 +  strcpy(checkPointMsg, "Succesful moveA\n");
297 +  MPIcheckPoint();
298 + #endif // is_mpi
299 +
300 +
301    // calc forces
302  
303 <  myFF->doForces(calcPot,calcStress);
303 >  calcForce(calcPot, calcStress);
304  
305 + #ifdef IS_MPI
306 +  strcpy(checkPointMsg, "Succesful doForces\n");
307 +  MPIcheckPoint();
308 + #endif // is_mpi
309 +
310 + #ifdef PROFILE
311 +  endProfile( pro5 );
312 +
313 +  startProfile( pro6 );
314 + #endif //profile
315 +
316    // finish the velocity  half step
317 <  
317 >
318    moveB();
319 <  if( nConstrained ) constrainB();
320 <  
319 >
320 > #ifdef PROFILE
321 >  endProfile(pro6);
322 > #endif // profile
323 >
324 > #ifdef IS_MPI
325 >  strcpy(checkPointMsg, "Succesful moveB\n");
326 >  MPIcheckPoint();
327 > #endif // is_mpi
328   }
329  
330  
331 < void Integrator::moveA( void ){
332 <  
277 <  int i,j,k;
278 <  int atomIndex, aMatIndex;
331 > template<typename T> void Integrator<T>::moveA(void){
332 >  int i, j;
333    DirectionalAtom* dAtom;
334 <  double Tb[3];
335 <  double ji[3];
334 >  double Tb[3], ji[3];
335 >  double vel[3], pos[3], frc[3];
336 >  double mass;
337  
338 <  for( i=0; i<nAtoms; i++ ){
339 <    atomIndex = i * 3;
340 <    aMatIndex = i * 9;
341 <    
287 <    // velocity half step
288 <    for( j=atomIndex; j<(atomIndex+3); j++ )
289 <      vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert;
338 >  for (i = 0; i < nAtoms; i++){
339 >    atoms[i]->getVel(vel);
340 >    atoms[i]->getPos(pos);
341 >    atoms[i]->getFrc(frc);
342  
343 <    // position whole step    
344 <    for( j=atomIndex; j<(atomIndex+3); j++ )
343 >    mass = atoms[i]->getMass();
344 >
345 >    for (j = 0; j < 3; j++){
346 >      // velocity half step
347 >      vel[j] += (dt2 * frc[j] / mass) * eConvert;
348 >      // position whole step
349        pos[j] += dt * vel[j];
350 +    }
351  
352 <  
353 <    if( atoms[i]->isDirectional() ){
352 >    atoms[i]->setVel(vel);
353 >    atoms[i]->setPos(pos);
354  
355 <      dAtom = (DirectionalAtom *)atoms[i];
356 <          
355 >    if (atoms[i]->isDirectional()){
356 >      dAtom = (DirectionalAtom *) atoms[i];
357 >
358        // get and convert the torque to body frame
359 <      
360 <      Tb[0] = dAtom->getTx();
361 <      Tb[1] = dAtom->getTy();
362 <      Tb[2] = dAtom->getTz();
305 <      
306 <      dAtom->lab2Body( Tb );
307 <      
359 >
360 >      dAtom->getTrq(Tb);
361 >      dAtom->lab2Body(Tb);
362 >
363        // get the angular momentum, and propagate a half step
364 <      
365 <      ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert;
366 <      ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert;
367 <      ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert;
368 <      
369 <      // use the angular velocities to propagate the rotation matrix a
370 <      // full time step
371 <      
372 <      // rotate about the x-axis      
318 <      angle = dt2 * ji[0] / dAtom->getIxx();
319 <      this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] );
320 <      
321 <      // rotate about the y-axis
322 <      angle = dt2 * ji[1] / dAtom->getIyy();
323 <      this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] );
324 <      
325 <      // rotate about the z-axis
326 <      angle = dt * ji[2] / dAtom->getIzz();
327 <      this->rotate( 0, 1, angle, ji, &aMat[aMatIndex] );
328 <      
329 <      // rotate about the y-axis
330 <      angle = dt2 * ji[1] / dAtom->getIyy();
331 <      this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] );
332 <      
333 <       // rotate about the x-axis
334 <      angle = dt2 * ji[0] / dAtom->getIxx();
335 <      this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] );
336 <      
337 <      dAtom->setJx( ji[0] );
338 <      dAtom->setJy( ji[1] );
339 <      dAtom->setJz( ji[2] );
364 >
365 >      dAtom->getJ(ji);
366 >
367 >      for (j = 0; j < 3; j++)
368 >        ji[j] += (dt2 * Tb[j]) * eConvert;
369 >
370 >      this->rotationPropagation( dAtom, ji );
371 >
372 >      dAtom->setJ(ji);
373      }
341    
374    }
375 +
376 +  if (nConstrained){
377 +    constrainA();
378 +  }
379   }
380  
381  
382 < void Integrator::moveB( void ){
383 <  int i,j,k;
348 <  int atomIndex;
382 > template<typename T> void Integrator<T>::moveB(void){
383 >  int i, j;
384    DirectionalAtom* dAtom;
385 <  double Tb[3];
386 <  double ji[3];
385 >  double Tb[3], ji[3];
386 >  double vel[3], frc[3];
387 >  double mass;
388  
389 <  for( i=0; i<nAtoms; i++ ){
390 <    atomIndex = i * 3;
389 >  for (i = 0; i < nAtoms; i++){
390 >    atoms[i]->getVel(vel);
391 >    atoms[i]->getFrc(frc);
392  
393 +    mass = atoms[i]->getMass();
394 +
395      // velocity half step
396 <    for( j=atomIndex; j<(atomIndex+3); j++ )
397 <      vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert;
396 >    for (j = 0; j < 3; j++)
397 >      vel[j] += (dt2 * frc[j] / mass) * eConvert;
398  
399 <    if( atoms[i]->isDirectional() ){
400 <      
401 <      dAtom = (DirectionalAtom *)atoms[i];
402 <      
399 >    atoms[i]->setVel(vel);
400 >
401 >    if (atoms[i]->isDirectional()){
402 >      dAtom = (DirectionalAtom *) atoms[i];
403 >
404        // get and convert the torque to body frame
405 <      
406 <      Tb[0] = dAtom->getTx();
407 <      Tb[1] = dAtom->getTy();
408 <      Tb[2] = dAtom->getTz();
409 <      
410 <      dAtom->lab2Body( Tb );
411 <      
412 <      // get the angular momentum, and complete the angular momentum
413 <      // half step
414 <      
415 <      ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert;
416 <      ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert;
417 <      ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert;
378 <      
379 <      jx2 = ji[0] * ji[0];
380 <      jy2 = ji[1] * ji[1];
381 <      jz2 = ji[2] * ji[2];
382 <      
383 <      dAtom->setJx( ji[0] );
384 <      dAtom->setJy( ji[1] );
385 <      dAtom->setJz( ji[2] );
405 >
406 >      dAtom->getTrq(Tb);
407 >      dAtom->lab2Body(Tb);
408 >
409 >      // get the angular momentum, and propagate a half step
410 >
411 >      dAtom->getJ(ji);
412 >
413 >      for (j = 0; j < 3; j++)
414 >        ji[j] += (dt2 * Tb[j]) * eConvert;
415 >
416 >
417 >      dAtom->setJ(ji);
418      }
419    }
420  
421 +  if (nConstrained){
422 +    constrainB();
423 +  }
424   }
425  
426 < void Integrator::preMove( void ){
427 <  int i;
426 > template<typename T> void Integrator<T>::preMove(void){
427 >  int i, j;
428 >  double pos[3];
429  
430 <  if( nConstrained ){
431 <    if( oldAtoms != nAtoms ){
432 <      
433 <      // save oldAtoms to check for lode balanceing later on.
434 <      
435 <      oldAtoms = nAtoms;
436 <      
401 <      delete[] moving;
402 <      delete[] moved;
403 <      delete[] oldPos;
404 <      
405 <      moving = new int[nAtoms];
406 <      moved  = new int[nAtoms];
407 <      
408 <      oldPos = new double[nAtoms*3];
430 >  if (nConstrained){
431 >    for (i = 0; i < nAtoms; i++){
432 >      atoms[i]->getPos(pos);
433 >
434 >      for (j = 0; j < 3; j++){
435 >        oldPos[3 * i + j] = pos[j];
436 >      }
437      }
410  
411    for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i];
438    }
439 < }  
439 > }
440  
441 < void Integrator::constrainA(){
442 <
417 <  int i,j,k;
441 > template<typename T> void Integrator<T>::constrainA(){
442 >  int i, j;
443    int done;
444 <  double pxab, pyab, pzab;
445 <  double rxab, ryab, rzab;
446 <  int a, b;
444 >  double posA[3], posB[3];
445 >  double velA[3], velB[3];
446 >  double pab[3];
447 >  double rab[3];
448 >  int a, b, ax, ay, az, bx, by, bz;
449    double rma, rmb;
450    double dx, dy, dz;
451 +  double rpab;
452    double rabsq, pabsq, rpabsq;
453    double diffsq;
454    double gab;
455    int iteration;
456  
457 <
430 <  
431 <  for( i=0; i<nAtoms; i++){
432 <    
457 >  for (i = 0; i < nAtoms; i++){
458      moving[i] = 0;
459 <    moved[i]  = 1;
459 >    moved[i] = 1;
460    }
461 <  
437 <  
461 >
462    iteration = 0;
463    done = 0;
464 <  while( !done && (iteration < maxIteration )){
441 <
464 >  while (!done && (iteration < maxIteration)){
465      done = 1;
466 <    for(i=0; i<nConstrained; i++){
444 <
466 >    for (i = 0; i < nConstrained; i++){
467        a = constrainedA[i];
468        b = constrainedB[i];
447    
448      if( moved[a] || moved[b] ){
449        
450        pxab = pos[3*a+0] - pos[3*b+0];
451        pyab = pos[3*a+1] - pos[3*b+1];
452        pzab = pos[3*a+2] - pos[3*b+2];
469  
470 <        //periodic boundary condition
471 <        pxab = pxab - info->box_x * copysign(1, pxab)
472 <          * int(pxab / info->box_x + 0.5);
457 <        pyab = pyab - info->box_y * copysign(1, pyab)
458 <          * int(pyab / info->box_y + 0.5);
459 <        pzab = pzab - info->box_z * copysign(1, pzab)
460 <          * int(pzab / info->box_z + 0.5);
461 <      
462 <        pabsq = pxab * pxab + pyab * pyab + pzab * pzab;
463 <        rabsq = constraintedDsqr[i];
464 <        diffsq = pabsq - rabsq;
470 >      ax = (a * 3) + 0;
471 >      ay = (a * 3) + 1;
472 >      az = (a * 3) + 2;
473  
474 <        // the original rattle code from alan tidesley
475 <        if (fabs(diffsq) > tol*rabsq*2) {
476 <          rxab = oldPos[3*a+0] - oldPos[3*b+0];
469 <          ryab = oldPos[3*a+1] - oldPos[3*b+1];
470 <          rzab = oldPos[3*a+2] - oldPos[3*b+2];
471 <
472 <          rxab = rxab - info->box_x * copysign(1, rxab)
473 <            * int(rxab / info->box_x + 0.5);
474 <          ryab = ryab - info->box_y * copysign(1, ryab)
475 <            * int(ryab / info->box_y + 0.5);
476 <          rzab = rzab - info->box_z * copysign(1, rzab)
477 <            * int(rzab / info->box_z + 0.5);
474 >      bx = (b * 3) + 0;
475 >      by = (b * 3) + 1;
476 >      bz = (b * 3) + 2;
477  
478 <          rpab = rxab * pxab + ryab * pyab + rzab * pzab;
479 <          rpabsq = rpab * rpab;
478 >      if (moved[a] || moved[b]){
479 >        atoms[a]->getPos(posA);
480 >        atoms[b]->getPos(posB);
481  
482 +        for (j = 0; j < 3; j++)
483 +          pab[j] = posA[j] - posB[j];
484  
485 <          if (rpabsq < (rabsq * -diffsq)){
485 >        //periodic boundary condition
486 >
487 >        info->wrapVector(pab);
488 >
489 >        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
490 >
491 >        rabsq = constrainedDsqr[i];
492 >        diffsq = rabsq - pabsq;
493 >
494 >        // the original rattle code from alan tidesley
495 >        if (fabs(diffsq) > (tol * rabsq * 2)){
496 >          rab[0] = oldPos[ax] - oldPos[bx];
497 >          rab[1] = oldPos[ay] - oldPos[by];
498 >          rab[2] = oldPos[az] - oldPos[bz];
499 >
500 >          info->wrapVector(rab);
501 >
502 >          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
503 >
504 >          rpabsq = rpab * rpab;
505 >
506 >
507 >          if (rpabsq < (rabsq * -diffsq)){
508   #ifdef IS_MPI
509 <            a = atoms[a]->getGlobalIndex();
510 <            b = atoms[b]->getGlobalIndex();
509 >            a = atoms[a]->getGlobalIndex();
510 >            b = atoms[b]->getGlobalIndex();
511   #endif //is_mpi
512 <            sprintf( painCave.errMsg,
513 <                     "Constraint failure in constrainA at atom %d and %d\n.",
514 <                     a, b );
515 <            painCave.isFatal = 1;
516 <            simError();
517 <          }
512 >            sprintf(painCave.errMsg,
513 >                    "Constraint failure in constrainA at atom %d and %d.\n", a,
514 >                    b);
515 >            painCave.isFatal = 1;
516 >            simError();
517 >          }
518  
519 <          rma = 1.0 / atoms[a]->getMass();
520 <          rmb = 1.0 / atoms[b]->getMass();
497 <          
498 <          gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab );
499 <          dx = rxab * gab;
500 <          dy = ryab * gab;
501 <          dz = rzab * gab;
519 >          rma = 1.0 / atoms[a]->getMass();
520 >          rmb = 1.0 / atoms[b]->getMass();
521  
522 <          pos[3*a+0] += rma * dx;
504 <          pos[3*a+1] += rma * dy;
505 <          pos[3*a+2] += rma * dz;
522 >          gab = diffsq / (2.0 * (rma + rmb) * rpab);
523  
524 <          pos[3*b+0] -= rmb * dx;
525 <          pos[3*b+1] -= rmb * dy;
526 <          pos[3*b+2] -= rmb * dz;
524 >          dx = rab[0] * gab;
525 >          dy = rab[1] * gab;
526 >          dz = rab[2] * gab;
527  
528 +          posA[0] += rma * dx;
529 +          posA[1] += rma * dy;
530 +          posA[2] += rma * dz;
531 +
532 +          atoms[a]->setPos(posA);
533 +
534 +          posB[0] -= rmb * dx;
535 +          posB[1] -= rmb * dy;
536 +          posB[2] -= rmb * dz;
537 +
538 +          atoms[b]->setPos(posB);
539 +
540            dx = dx / dt;
541            dy = dy / dt;
542            dz = dz / dt;
543  
544 <          vel[3*a+0] += rma * dx;
516 <          vel[3*a+1] += rma * dy;
517 <          vel[3*a+2] += rma * dz;
544 >          atoms[a]->getVel(velA);
545  
546 <          vel[3*b+0] -= rmb * dx;
547 <          vel[3*b+1] -= rmb * dy;
548 <          vel[3*b+2] -= rmb * dz;
546 >          velA[0] += rma * dx;
547 >          velA[1] += rma * dy;
548 >          velA[2] += rma * dz;
549  
550 <          moving[a] = 1;
551 <          moving[b] = 1;
552 <          done = 0;
553 <        }
550 >          atoms[a]->setVel(velA);
551 >
552 >          atoms[b]->getVel(velB);
553 >
554 >          velB[0] -= rmb * dx;
555 >          velB[1] -= rmb * dy;
556 >          velB[2] -= rmb * dz;
557 >
558 >          atoms[b]->setVel(velB);
559 >
560 >          moving[a] = 1;
561 >          moving[b] = 1;
562 >          done = 0;
563 >        }
564        }
565      }
566 <    
567 <    for(i=0; i<nAtoms; i++){
531 <      
566 >
567 >    for (i = 0; i < nAtoms; i++){
568        moved[i] = moving[i];
569        moving[i] = 0;
570      }
# Line 536 | Line 572 | void Integrator::constrainA(){
572      iteration++;
573    }
574  
575 <  if( !done ){
576 <
577 <    sprintf( painCae.errMsg,
578 <             "Constraint failure in constrainA, too many iterations: %d\n",
543 <             iterations );
575 >  if (!done){
576 >    sprintf(painCave.errMsg,
577 >            "Constraint failure in constrainA, too many iterations: %d\n",
578 >            iteration);
579      painCave.isFatal = 1;
580      simError();
581    }
582  
583   }
584  
585 < void Integrator::constrainB( void ){
586 <  
552 <  int i,j,k;
585 > template<typename T> void Integrator<T>::constrainB(void){
586 >  int i, j;
587    int done;
588 +  double posA[3], posB[3];
589 +  double velA[3], velB[3];
590    double vxab, vyab, vzab;
591 <  double rxab, ryab, rzab;
592 <  int a, b;
591 >  double rab[3];
592 >  int a, b, ax, ay, az, bx, by, bz;
593    double rma, rmb;
594    double dx, dy, dz;
595 <  double rabsq, pabsq, rvab;
560 <  double diffsq;
595 >  double rvab;
596    double gab;
597    int iteration;
598  
599 <  for(i=0; i<nAtom; i++){
599 >  for (i = 0; i < nAtoms; i++){
600      moving[i] = 0;
601      moved[i] = 1;
602    }
603  
604    done = 0;
605 <  while( !done && (iteration < maxIteration ) ){
605 >  iteration = 0;
606 >  while (!done && (iteration < maxIteration)){
607 >    done = 1;
608  
609 <    for(i=0; i<nConstrained; i++){
573 <      
609 >    for (i = 0; i < nConstrained; i++){
610        a = constrainedA[i];
611        b = constrainedB[i];
612  
613 <      if( moved[a] || moved[b] ){
614 <        
615 <        vxab = vel[3*a+0] - vel[3*b+0];
580 <        vyab = vel[3*a+1] - vel[3*b+1];
581 <        vzab = vel[3*a+2] - vel[3*b+2];
613 >      ax = (a * 3) + 0;
614 >      ay = (a * 3) + 1;
615 >      az = (a * 3) + 2;
616  
617 <        rxab = pos[3*a+0] - pos[3*b+0];q
618 <        ryab = pos[3*a+1] - pos[3*b+1];
619 <        rzab = pos[3*a+2] - pos[3*b+2];
586 <        
587 <        rxab = rxab - info->box_x * copysign(1, rxab)
588 <          * int(rxab / info->box_x + 0.5);
589 <        ryab = ryab - info->box_y * copysign(1, ryab)
590 <          * int(ryab / info->box_y + 0.5);
591 <        rzab = rzab - info->box_z * copysign(1, rzab)
592 <          * int(rzab / info->box_z + 0.5);
617 >      bx = (b * 3) + 0;
618 >      by = (b * 3) + 1;
619 >      bz = (b * 3) + 2;
620  
621 <        rma = 1.0 / atoms[a]->getMass();
622 <        rmb = 1.0 / atoms[b]->getMass();
621 >      if (moved[a] || moved[b]){
622 >        atoms[a]->getVel(velA);
623 >        atoms[b]->getVel(velB);
624  
625 <        rvab = rxab * vxab + ryab * vyab + rzab * vzab;
626 <          
627 <        gab = -rvab / ( ( rma + rmb ) * constraintsDsqr[i] );
625 >        vxab = velA[0] - velB[0];
626 >        vyab = velA[1] - velB[1];
627 >        vzab = velA[2] - velB[2];
628  
629 <        if (fabs(gab) > tol) {
630 <          
603 <          dx = rxab * gab;
604 <          dy = ryab * gab;
605 <          dz = rzab * gab;
606 <          
607 <          vel[3*a+0] += rma * dx;
608 <          vel[3*a+1] += rma * dy;
609 <          vel[3*a+2] += rma * dz;
629 >        atoms[a]->getPos(posA);
630 >        atoms[b]->getPos(posB);
631  
632 <          vel[3*b+0] -= rmb * dx;
633 <          vel[3*b+1] -= rmb * dy;
634 <          vel[3*b+2] -= rmb * dz;
635 <          
636 <          moving[a] = 1;
637 <          moving[b] = 1;
638 <          done = 0;
639 <        }
632 >        for (j = 0; j < 3; j++)
633 >          rab[j] = posA[j] - posB[j];
634 >
635 >        info->wrapVector(rab);
636 >
637 >        rma = 1.0 / atoms[a]->getMass();
638 >        rmb = 1.0 / atoms[b]->getMass();
639 >
640 >        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
641 >
642 >        gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
643 >
644 >        if (fabs(gab) > tol){
645 >          dx = rab[0] * gab;
646 >          dy = rab[1] * gab;
647 >          dz = rab[2] * gab;
648 >
649 >          velA[0] += rma * dx;
650 >          velA[1] += rma * dy;
651 >          velA[2] += rma * dz;
652 >
653 >          atoms[a]->setVel(velA);
654 >
655 >          velB[0] -= rmb * dx;
656 >          velB[1] -= rmb * dy;
657 >          velB[2] -= rmb * dz;
658 >
659 >          atoms[b]->setVel(velB);
660 >
661 >          moving[a] = 1;
662 >          moving[b] = 1;
663 >          done = 0;
664 >        }
665        }
666      }
667  
668 <    for(i=0; i<nAtoms; i++){
668 >    for (i = 0; i < nAtoms; i++){
669        moved[i] = moving[i];
670        moving[i] = 0;
671      }
672 <    
672 >
673      iteration++;
674    }
675  
676 <  if( !done ){
677 <
678 <  
679 <    sprintf( painCae.errMsg,
634 <             "Constraint failure in constrainB, too many iterations: %d\n",
635 <             iterations );
676 >  if (!done){
677 >    sprintf(painCave.errMsg,
678 >            "Constraint failure in constrainB, too many iterations: %d\n",
679 >            iteration);
680      painCave.isFatal = 1;
681      simError();
682 <  }
639 <
682 >  }
683   }
684  
685 + template<typename T> void Integrator<T>::rotationPropagation
686 + ( DirectionalAtom* dAtom, double ji[3] ){
687  
688 +  double angle;
689 +  double A[3][3], I[3][3];
690  
691 +  // use the angular velocities to propagate the rotation matrix a
692 +  // full time step
693  
694 +  dAtom->getA(A);
695 +  dAtom->getI(I);
696  
697 +  // rotate about the x-axis
698 +  angle = dt2 * ji[0] / I[0][0];
699 +  this->rotate( 1, 2, angle, ji, A );
700  
701 +  // rotate about the y-axis
702 +  angle = dt2 * ji[1] / I[1][1];
703 +  this->rotate( 2, 0, angle, ji, A );
704  
705 < void Integrator::rotate( int axes1, int axes2, double angle, double ji[3],
706 <                         double A[3][3] ){
705 >  // rotate about the z-axis
706 >  angle = dt * ji[2] / I[2][2];
707 >  this->rotate( 0, 1, angle, ji, A);
708  
709 <  int i,j,k;
709 >  // rotate about the y-axis
710 >  angle = dt2 * ji[1] / I[1][1];
711 >  this->rotate( 2, 0, angle, ji, A );
712 >
713 >  // rotate about the x-axis
714 >  angle = dt2 * ji[0] / I[0][0];
715 >  this->rotate( 1, 2, angle, ji, A );
716 >
717 >  dAtom->setA( A  );
718 > }
719 >
720 > template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
721 >                                                double angle, double ji[3],
722 >                                                double A[3][3]){
723 >  int i, j, k;
724    double sinAngle;
725    double cosAngle;
726    double angleSqr;
# Line 660 | Line 732 | void Integrator::rotate( int axes1, int axes2, double
732  
733    // initialize the tempA
734  
735 <  for(i=0; i<3; i++){
736 <    for(j=0; j<3; j++){
735 >  for (i = 0; i < 3; i++){
736 >    for (j = 0; j < 3; j++){
737        tempA[j][i] = A[i][j];
738      }
739    }
740  
741    // initialize the tempJ
742  
743 <  for( i=0; i<3; i++) tempJ[i] = ji[i];
744 <  
743 >  for (i = 0; i < 3; i++)
744 >    tempJ[i] = ji[i];
745 >
746    // initalize rot as a unit matrix
747  
748    rot[0][0] = 1.0;
# Line 679 | Line 752 | void Integrator::rotate( int axes1, int axes2, double
752    rot[1][0] = 0.0;
753    rot[1][1] = 1.0;
754    rot[1][2] = 0.0;
755 <  
755 >
756    rot[2][0] = 0.0;
757    rot[2][1] = 0.0;
758    rot[2][2] = 1.0;
759 <  
759 >
760    // use a small angle aproximation for sin and cosine
761  
762 <  angleSqr  = angle * angle;
762 >  angleSqr = angle * angle;
763    angleSqrOver4 = angleSqr / 4.0;
764    top = 1.0 - angleSqrOver4;
765    bottom = 1.0 + angleSqrOver4;
# Line 699 | Line 772 | void Integrator::rotate( int axes1, int axes2, double
772  
773    rot[axes1][axes2] = sinAngle;
774    rot[axes2][axes1] = -sinAngle;
775 <  
775 >
776    // rotate the momentum acoording to: ji[] = rot[][] * ji[]
777 <  
778 <  for(i=0; i<3; i++){
777 >
778 >  for (i = 0; i < 3; i++){
779      ji[i] = 0.0;
780 <    for(k=0; k<3; k++){
780 >    for (k = 0; k < 3; k++){
781        ji[i] += rot[i][k] * tempJ[k];
782      }
783    }
784  
785 <  // rotate the Rotation matrix acording to:
785 >  // rotate the Rotation matrix acording to:
786    //            A[][] = A[][] * transpose(rot[][])
787  
788  
789 <  // NOte for as yet unknown reason, we are setting the performing the
789 >  // NOte for as yet unknown reason, we are performing the
790    // calculation as:
791    //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
792  
793 <  for(i=0; i<3; i++){
794 <    for(j=0; j<3; j++){
793 >  for (i = 0; i < 3; i++){
794 >    for (j = 0; j < 3; j++){
795        A[j][i] = 0.0;
796 <      for(k=0; k<3; k++){
797 <        A[j][i] += tempA[i][k] * rot[j][k];
796 >      for (k = 0; k < 3; k++){
797 >        A[j][i] += tempA[i][k] * rot[j][k];
798        }
799      }
800    }
801   }
802 +
803 + template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
804 +  myFF->doForces(calcPot, calcStress);
805 + }
806 +
807 + template<typename T> void Integrator<T>::thermalize(){
808 +  tStats->velocitize();
809 + }
810 +
811 + template<typename T> double Integrator<T>::getConservedQuantity(void){
812 +  return tStats->getTotalE();
813 + }
814 + template<typename T> string Integrator<T>::getAdditionalParameters(void){
815 +  //By default, return a null string
816 +  //The reason we use string instead of char* is that if we use char*, we will
817 +  //return a pointer point to local variable which might cause problem
818 +  return string();
819 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines