ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
Revision: 1118
Committed: Mon Apr 19 03:52:27 2004 UTC (20 years, 2 months ago) by tim
File size: 17935 byte(s)
Log Message:
new implement of quickLate using visitor and composite pattern

File Contents

# Content
1 #include <iostream>
2 #include <stdlib.h>
3 #include <math.h>
4
5 #ifdef IS_MPI
6 #include "mpiSimulation.hpp"
7 #include <unistd.h>
8 #endif //is_mpi
9
10 #ifdef PROFILE
11 #include "mdProfile.hpp"
12 #endif // profile
13
14 #include "Integrator.hpp"
15 #include "simError.h"
16
17
18 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
19 ForceFields* the_ff){
20 info = theInfo;
21 myFF = the_ff;
22 isFirst = 1;
23
24 molecules = info->molecules;
25 nMols = info->n_mol;
26
27 // give a little love back to the SimInfo object
28
29 if (info->the_integrator != NULL){
30 delete info->the_integrator;
31 }
32
33 nAtoms = info->n_atoms;
34 integrableObjects = info->integrableObjects;
35
36 // check for constraints
37
38 constrainedA = NULL;
39 constrainedB = NULL;
40 constrainedDsqr = NULL;
41 moving = NULL;
42 moved = NULL;
43 oldPos = NULL;
44
45 nConstrained = 0;
46
47 checkConstraints();
48 }
49
50 template<typename T> Integrator<T>::~Integrator(){
51 if (nConstrained){
52 delete[] constrainedA;
53 delete[] constrainedB;
54 delete[] constrainedDsqr;
55 delete[] moving;
56 delete[] moved;
57 delete[] oldPos;
58 }
59 }
60
61 template<typename T> void Integrator<T>::checkConstraints(void){
62 isConstrained = 0;
63
64 Constraint* temp_con;
65 Constraint* dummy_plug;
66 temp_con = new Constraint[info->n_SRI];
67 nConstrained = 0;
68 int constrained = 0;
69
70 SRI** theArray;
71 for (int i = 0; i < nMols; i++){
72
73 theArray = (SRI * *) molecules[i].getMyBonds();
74 for (int j = 0; j < molecules[i].getNBonds(); j++){
75 constrained = theArray[j]->is_constrained();
76
77 if (constrained){
78 dummy_plug = theArray[j]->get_constraint();
79 temp_con[nConstrained].set_a(dummy_plug->get_a());
80 temp_con[nConstrained].set_b(dummy_plug->get_b());
81 temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
82
83 nConstrained++;
84 constrained = 0;
85 }
86 }
87
88 theArray = (SRI * *) molecules[i].getMyBends();
89 for (int j = 0; j < molecules[i].getNBends(); j++){
90 constrained = theArray[j]->is_constrained();
91
92 if (constrained){
93 dummy_plug = theArray[j]->get_constraint();
94 temp_con[nConstrained].set_a(dummy_plug->get_a());
95 temp_con[nConstrained].set_b(dummy_plug->get_b());
96 temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
97
98 nConstrained++;
99 constrained = 0;
100 }
101 }
102
103 theArray = (SRI * *) molecules[i].getMyTorsions();
104 for (int j = 0; j < molecules[i].getNTorsions(); j++){
105 constrained = theArray[j]->is_constrained();
106
107 if (constrained){
108 dummy_plug = theArray[j]->get_constraint();
109 temp_con[nConstrained].set_a(dummy_plug->get_a());
110 temp_con[nConstrained].set_b(dummy_plug->get_b());
111 temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
112
113 nConstrained++;
114 constrained = 0;
115 }
116 }
117 }
118
119
120 if (nConstrained > 0){
121 isConstrained = 1;
122
123 if (constrainedA != NULL)
124 delete[] constrainedA;
125 if (constrainedB != NULL)
126 delete[] constrainedB;
127 if (constrainedDsqr != NULL)
128 delete[] constrainedDsqr;
129
130 constrainedA = new int[nConstrained];
131 constrainedB = new int[nConstrained];
132 constrainedDsqr = new double[nConstrained];
133
134 for (int i = 0; i < nConstrained; i++){
135 constrainedA[i] = temp_con[i].get_a();
136 constrainedB[i] = temp_con[i].get_b();
137 constrainedDsqr[i] = temp_con[i].get_dsqr();
138 }
139
140
141 // save oldAtoms to check for lode balancing later on.
142
143 oldAtoms = nAtoms;
144
145 moving = new int[nAtoms];
146 moved = new int[nAtoms];
147
148 oldPos = new double[nAtoms * 3];
149 }
150
151 delete[] temp_con;
152 }
153
154
155 template<typename T> void Integrator<T>::integrate(void){
156
157 double runTime = info->run_time;
158 double sampleTime = info->sampleTime;
159 double statusTime = info->statusTime;
160 double thermalTime = info->thermalTime;
161 double resetTime = info->resetTime;
162
163
164 double currSample;
165 double currThermal;
166 double currStatus;
167 double currReset;
168
169 int calcPot, calcStress;
170
171 tStats = new Thermo(info);
172 statOut = new StatWriter(info);
173 dumpOut = new DumpWriter(info);
174
175 atoms = info->atoms;
176
177 dt = info->dt;
178 dt2 = 0.5 * dt;
179
180 readyCheck();
181
182 // initialize the forces before the first step
183
184 calcForce(1, 1);
185
186 if (nConstrained){
187 preMove();
188 constrainA();
189 calcForce(1, 1);
190 constrainB();
191 }
192
193 if (info->setTemp){
194 thermalize();
195 }
196
197 calcPot = 0;
198 calcStress = 0;
199 currSample = sampleTime + info->getTime();
200 currThermal = thermalTime+ info->getTime();
201 currStatus = statusTime + info->getTime();
202 currReset = resetTime + info->getTime();
203
204 dumpOut->writeDump(info->getTime());
205 statOut->writeStat(info->getTime());
206
207
208 #ifdef IS_MPI
209 strcpy(checkPointMsg, "The integrator is ready to go.");
210 MPIcheckPoint();
211 #endif // is_mpi
212
213 while (info->getTime() < runTime && !stopIntegrator()){
214 if ((info->getTime() + dt) >= currStatus){
215 calcPot = 1;
216 calcStress = 1;
217 }
218
219 #ifdef PROFILE
220 startProfile( pro1 );
221 #endif
222
223 integrateStep(calcPot, calcStress);
224
225 #ifdef PROFILE
226 endProfile( pro1 );
227
228 startProfile( pro2 );
229 #endif // profile
230
231 info->incrTime(dt);
232
233 if (info->setTemp){
234 if (info->getTime() >= currThermal){
235 thermalize();
236 currThermal += thermalTime;
237 }
238 }
239
240 if (info->getTime() >= currSample){
241 dumpOut->writeDump(info->getTime());
242 currSample += sampleTime;
243 }
244
245 if (info->getTime() >= currStatus){
246 statOut->writeStat(info->getTime());
247 calcPot = 0;
248 calcStress = 0;
249 currStatus += statusTime;
250 }
251
252 if (info->resetIntegrator){
253 if (info->getTime() >= currReset){
254 this->resetIntegrator();
255 currReset += resetTime;
256 }
257 }
258
259 #ifdef PROFILE
260 endProfile( pro2 );
261 #endif //profile
262
263 #ifdef IS_MPI
264 strcpy(checkPointMsg, "successfully took a time step.");
265 MPIcheckPoint();
266 #endif // is_mpi
267 }
268
269 delete dumpOut;
270 delete statOut;
271 }
272
273 template<typename T> void Integrator<T>::integrateStep(int calcPot,
274 int calcStress){
275 // Position full step, and velocity half step
276
277 #ifdef PROFILE
278 startProfile(pro3);
279 #endif //profile
280
281 preMove();
282
283 #ifdef PROFILE
284 endProfile(pro3);
285
286 startProfile(pro4);
287 #endif // profile
288
289 moveA();
290
291 #ifdef PROFILE
292 endProfile(pro4);
293
294 startProfile(pro5);
295 #endif//profile
296
297
298 #ifdef IS_MPI
299 strcpy(checkPointMsg, "Succesful moveA\n");
300 MPIcheckPoint();
301 #endif // is_mpi
302
303
304 // calc forces
305
306 calcForce(calcPot, calcStress);
307
308 #ifdef IS_MPI
309 strcpy(checkPointMsg, "Succesful doForces\n");
310 MPIcheckPoint();
311 #endif // is_mpi
312
313 #ifdef PROFILE
314 endProfile( pro5 );
315
316 startProfile( pro6 );
317 #endif //profile
318
319 // finish the velocity half step
320
321 moveB();
322
323 #ifdef PROFILE
324 endProfile(pro6);
325 #endif // profile
326
327 #ifdef IS_MPI
328 strcpy(checkPointMsg, "Succesful moveB\n");
329 MPIcheckPoint();
330 #endif // is_mpi
331 }
332
333
334 template<typename T> void Integrator<T>::moveA(void){
335 size_t i, j;
336 DirectionalAtom* dAtom;
337 double Tb[3], ji[3];
338 double vel[3], pos[3], frc[3];
339 double mass;
340
341 for (i = 0; i < integrableObjects.size() ; i++){
342 integrableObjects[i]->getVel(vel);
343 integrableObjects[i]->getPos(pos);
344 integrableObjects[i]->getFrc(frc);
345
346 mass = integrableObjects[i]->getMass();
347
348 for (j = 0; j < 3; j++){
349 // velocity half step
350 vel[j] += (dt2 * frc[j] / mass) * eConvert;
351 // position whole step
352 pos[j] += dt * vel[j];
353 }
354
355 integrableObjects[i]->setVel(vel);
356 integrableObjects[i]->setPos(pos);
357
358 if (integrableObjects[i]->isDirectional()){
359
360 // get and convert the torque to body frame
361
362 integrableObjects[i]->getTrq(Tb);
363 integrableObjects[i]->lab2Body(Tb);
364
365 // get the angular momentum, and propagate a half step
366
367 integrableObjects[i]->getJ(ji);
368
369 for (j = 0; j < 3; j++)
370 ji[j] += (dt2 * Tb[j]) * eConvert;
371
372 this->rotationPropagation( integrableObjects[i], ji );
373
374 integrableObjects[i]->setJ(ji);
375 }
376 }
377
378 if (nConstrained){
379 constrainA();
380 }
381 }
382
383
384 template<typename T> void Integrator<T>::moveB(void){
385 int i, j;
386 double Tb[3], ji[3];
387 double vel[3], frc[3];
388 double mass;
389
390 for (i = 0; i < integrableObjects.size(); i++){
391 integrableObjects[i]->getVel(vel);
392 integrableObjects[i]->getFrc(frc);
393
394 mass = integrableObjects[i]->getMass();
395
396 // velocity half step
397 for (j = 0; j < 3; j++)
398 vel[j] += (dt2 * frc[j] / mass) * eConvert;
399
400 integrableObjects[i]->setVel(vel);
401
402 if (integrableObjects[i]->isDirectional()){
403
404 // get and convert the torque to body frame
405
406 integrableObjects[i]->getTrq(Tb);
407 integrableObjects[i]->lab2Body(Tb);
408
409 // get the angular momentum, and propagate a half step
410
411 integrableObjects[i]->getJ(ji);
412
413 for (j = 0; j < 3; j++)
414 ji[j] += (dt2 * Tb[j]) * eConvert;
415
416
417 integrableObjects[i]->setJ(ji);
418 }
419 }
420
421 if (nConstrained){
422 constrainB();
423 }
424 }
425
426 template<typename T> void Integrator<T>::preMove(void){
427 int i, j;
428 double pos[3];
429
430 if (nConstrained){
431 for (i = 0; i < nAtoms; i++){
432 atoms[i]->getPos(pos);
433
434 for (j = 0; j < 3; j++){
435 oldPos[3 * i + j] = pos[j];
436 }
437 }
438 }
439 }
440
441 template<typename T> void Integrator<T>::constrainA(){
442 int i, j;
443 int done;
444 double posA[3], posB[3];
445 double velA[3], velB[3];
446 double pab[3];
447 double rab[3];
448 int a, b, ax, ay, az, bx, by, bz;
449 double rma, rmb;
450 double dx, dy, dz;
451 double rpab;
452 double rabsq, pabsq, rpabsq;
453 double diffsq;
454 double gab;
455 int iteration;
456
457 for (i = 0; i < nAtoms; i++){
458 moving[i] = 0;
459 moved[i] = 1;
460 }
461
462 iteration = 0;
463 done = 0;
464 while (!done && (iteration < maxIteration)){
465 done = 1;
466 for (i = 0; i < nConstrained; i++){
467 a = constrainedA[i];
468 b = constrainedB[i];
469
470 ax = (a * 3) + 0;
471 ay = (a * 3) + 1;
472 az = (a * 3) + 2;
473
474 bx = (b * 3) + 0;
475 by = (b * 3) + 1;
476 bz = (b * 3) + 2;
477
478 if (moved[a] || moved[b]){
479 atoms[a]->getPos(posA);
480 atoms[b]->getPos(posB);
481
482 for (j = 0; j < 3; j++)
483 pab[j] = posA[j] - posB[j];
484
485 //periodic boundary condition
486
487 info->wrapVector(pab);
488
489 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
490
491 rabsq = constrainedDsqr[i];
492 diffsq = rabsq - pabsq;
493
494 // the original rattle code from alan tidesley
495 if (fabs(diffsq) > (tol * rabsq * 2)){
496 rab[0] = oldPos[ax] - oldPos[bx];
497 rab[1] = oldPos[ay] - oldPos[by];
498 rab[2] = oldPos[az] - oldPos[bz];
499
500 info->wrapVector(rab);
501
502 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
503
504 rpabsq = rpab * rpab;
505
506
507 if (rpabsq < (rabsq * -diffsq)){
508 #ifdef IS_MPI
509 a = atoms[a]->getGlobalIndex();
510 b = atoms[b]->getGlobalIndex();
511 #endif //is_mpi
512 sprintf(painCave.errMsg,
513 "Constraint failure in constrainA at atom %d and %d.\n", a,
514 b);
515 painCave.isFatal = 1;
516 simError();
517 }
518
519 rma = 1.0 / atoms[a]->getMass();
520 rmb = 1.0 / atoms[b]->getMass();
521
522 gab = diffsq / (2.0 * (rma + rmb) * rpab);
523
524 dx = rab[0] * gab;
525 dy = rab[1] * gab;
526 dz = rab[2] * gab;
527
528 posA[0] += rma * dx;
529 posA[1] += rma * dy;
530 posA[2] += rma * dz;
531
532 atoms[a]->setPos(posA);
533
534 posB[0] -= rmb * dx;
535 posB[1] -= rmb * dy;
536 posB[2] -= rmb * dz;
537
538 atoms[b]->setPos(posB);
539
540 dx = dx / dt;
541 dy = dy / dt;
542 dz = dz / dt;
543
544 atoms[a]->getVel(velA);
545
546 velA[0] += rma * dx;
547 velA[1] += rma * dy;
548 velA[2] += rma * dz;
549
550 atoms[a]->setVel(velA);
551
552 atoms[b]->getVel(velB);
553
554 velB[0] -= rmb * dx;
555 velB[1] -= rmb * dy;
556 velB[2] -= rmb * dz;
557
558 atoms[b]->setVel(velB);
559
560 moving[a] = 1;
561 moving[b] = 1;
562 done = 0;
563 }
564 }
565 }
566
567 for (i = 0; i < nAtoms; i++){
568 moved[i] = moving[i];
569 moving[i] = 0;
570 }
571
572 iteration++;
573 }
574
575 if (!done){
576 sprintf(painCave.errMsg,
577 "Constraint failure in constrainA, too many iterations: %d\n",
578 iteration);
579 painCave.isFatal = 1;
580 simError();
581 }
582
583 }
584
585 template<typename T> void Integrator<T>::constrainB(void){
586 int i, j;
587 int done;
588 double posA[3], posB[3];
589 double velA[3], velB[3];
590 double vxab, vyab, vzab;
591 double rab[3];
592 int a, b, ax, ay, az, bx, by, bz;
593 double rma, rmb;
594 double dx, dy, dz;
595 double rvab;
596 double gab;
597 int iteration;
598
599 for (i = 0; i < nAtoms; i++){
600 moving[i] = 0;
601 moved[i] = 1;
602 }
603
604 done = 0;
605 iteration = 0;
606 while (!done && (iteration < maxIteration)){
607 done = 1;
608
609 for (i = 0; i < nConstrained; i++){
610 a = constrainedA[i];
611 b = constrainedB[i];
612
613 ax = (a * 3) + 0;
614 ay = (a * 3) + 1;
615 az = (a * 3) + 2;
616
617 bx = (b * 3) + 0;
618 by = (b * 3) + 1;
619 bz = (b * 3) + 2;
620
621 if (moved[a] || moved[b]){
622 atoms[a]->getVel(velA);
623 atoms[b]->getVel(velB);
624
625 vxab = velA[0] - velB[0];
626 vyab = velA[1] - velB[1];
627 vzab = velA[2] - velB[2];
628
629 atoms[a]->getPos(posA);
630 atoms[b]->getPos(posB);
631
632 for (j = 0; j < 3; j++)
633 rab[j] = posA[j] - posB[j];
634
635 info->wrapVector(rab);
636
637 rma = 1.0 / atoms[a]->getMass();
638 rmb = 1.0 / atoms[b]->getMass();
639
640 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
641
642 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
643
644 if (fabs(gab) > tol){
645 dx = rab[0] * gab;
646 dy = rab[1] * gab;
647 dz = rab[2] * gab;
648
649 velA[0] += rma * dx;
650 velA[1] += rma * dy;
651 velA[2] += rma * dz;
652
653 atoms[a]->setVel(velA);
654
655 velB[0] -= rmb * dx;
656 velB[1] -= rmb * dy;
657 velB[2] -= rmb * dz;
658
659 atoms[b]->setVel(velB);
660
661 moving[a] = 1;
662 moving[b] = 1;
663 done = 0;
664 }
665 }
666 }
667
668 for (i = 0; i < nAtoms; i++){
669 moved[i] = moving[i];
670 moving[i] = 0;
671 }
672
673 iteration++;
674 }
675
676 if (!done){
677 sprintf(painCave.errMsg,
678 "Constraint failure in constrainB, too many iterations: %d\n",
679 iteration);
680 painCave.isFatal = 1;
681 simError();
682 }
683 }
684
685 template<typename T> void Integrator<T>::rotationPropagation
686 ( StuntDouble* sd, double ji[3] ){
687
688 double angle;
689 double A[3][3], I[3][3];
690 int i, j, k;
691
692 // use the angular velocities to propagate the rotation matrix a
693 // full time step
694
695 sd->getA(A);
696 sd->getI(I);
697
698 if (sd->isLinear()) {
699 i = sd->linearAxis();
700 j = (i+1)%3;
701 k = (i+2)%3;
702
703 angle = dt2 * ji[j] / I[j][j];
704 this->rotate( k, i, angle, ji, A );
705
706 angle = dt * ji[k] / I[k][k];
707 this->rotate( i, j, angle, ji, A);
708
709 angle = dt2 * ji[j] / I[j][j];
710 this->rotate( k, i, angle, ji, A );
711
712 } else {
713 // rotate about the x-axis
714 angle = dt2 * ji[0] / I[0][0];
715 this->rotate( 1, 2, angle, ji, A );
716
717 // rotate about the y-axis
718 angle = dt2 * ji[1] / I[1][1];
719 this->rotate( 2, 0, angle, ji, A );
720
721 // rotate about the z-axis
722 angle = dt * ji[2] / I[2][2];
723 this->rotate( 0, 1, angle, ji, A);
724
725 // rotate about the y-axis
726 angle = dt2 * ji[1] / I[1][1];
727 this->rotate( 2, 0, angle, ji, A );
728
729 // rotate about the x-axis
730 angle = dt2 * ji[0] / I[0][0];
731 this->rotate( 1, 2, angle, ji, A );
732
733 }
734 sd->setA( A );
735 }
736
737 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
738 double angle, double ji[3],
739 double A[3][3]){
740 int i, j, k;
741 double sinAngle;
742 double cosAngle;
743 double angleSqr;
744 double angleSqrOver4;
745 double top, bottom;
746 double rot[3][3];
747 double tempA[3][3];
748 double tempJ[3];
749
750 // initialize the tempA
751
752 for (i = 0; i < 3; i++){
753 for (j = 0; j < 3; j++){
754 tempA[j][i] = A[i][j];
755 }
756 }
757
758 // initialize the tempJ
759
760 for (i = 0; i < 3; i++)
761 tempJ[i] = ji[i];
762
763 // initalize rot as a unit matrix
764
765 rot[0][0] = 1.0;
766 rot[0][1] = 0.0;
767 rot[0][2] = 0.0;
768
769 rot[1][0] = 0.0;
770 rot[1][1] = 1.0;
771 rot[1][2] = 0.0;
772
773 rot[2][0] = 0.0;
774 rot[2][1] = 0.0;
775 rot[2][2] = 1.0;
776
777 // use a small angle aproximation for sin and cosine
778
779 angleSqr = angle * angle;
780 angleSqrOver4 = angleSqr / 4.0;
781 top = 1.0 - angleSqrOver4;
782 bottom = 1.0 + angleSqrOver4;
783
784 cosAngle = top / bottom;
785 sinAngle = angle / bottom;
786
787 rot[axes1][axes1] = cosAngle;
788 rot[axes2][axes2] = cosAngle;
789
790 rot[axes1][axes2] = sinAngle;
791 rot[axes2][axes1] = -sinAngle;
792
793 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
794
795 for (i = 0; i < 3; i++){
796 ji[i] = 0.0;
797 for (k = 0; k < 3; k++){
798 ji[i] += rot[i][k] * tempJ[k];
799 }
800 }
801
802 // rotate the Rotation matrix acording to:
803 // A[][] = A[][] * transpose(rot[][])
804
805
806 // NOte for as yet unknown reason, we are performing the
807 // calculation as:
808 // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
809
810 for (i = 0; i < 3; i++){
811 for (j = 0; j < 3; j++){
812 A[j][i] = 0.0;
813 for (k = 0; k < 3; k++){
814 A[j][i] += tempA[i][k] * rot[j][k];
815 }
816 }
817 }
818 }
819
820 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
821 myFF->doForces(calcPot, calcStress);
822 }
823
824 template<typename T> void Integrator<T>::thermalize(){
825 tStats->velocitize();
826 }
827
828 template<typename T> double Integrator<T>::getConservedQuantity(void){
829 return tStats->getTotalE();
830 }
831 template<typename T> string Integrator<T>::getAdditionalParameters(void){
832 //By default, return a null string
833 //The reason we use string instead of char* is that if we use char*, we will
834 //return a pointer point to local variable which might cause problem
835 return string();
836 }