| 1 |
#include <iostream> |
| 2 |
#include <stdlib.h> |
| 3 |
#include <math.h> |
| 4 |
|
| 5 |
#ifdef IS_MPI |
| 6 |
#include "mpiSimulation.hpp" |
| 7 |
#include <unistd.h> |
| 8 |
#endif //is_mpi |
| 9 |
|
| 10 |
#ifdef PROFILE |
| 11 |
#include "mdProfile.hpp" |
| 12 |
#endif // profile |
| 13 |
|
| 14 |
#include "Integrator.hpp" |
| 15 |
#include "simError.h" |
| 16 |
|
| 17 |
|
| 18 |
template<typename T> Integrator<T>::Integrator(SimInfo* theInfo, |
| 19 |
ForceFields* the_ff){ |
| 20 |
info = theInfo; |
| 21 |
myFF = the_ff; |
| 22 |
isFirst = 1; |
| 23 |
|
| 24 |
molecules = info->molecules; |
| 25 |
nMols = info->n_mol; |
| 26 |
|
| 27 |
// give a little love back to the SimInfo object |
| 28 |
|
| 29 |
if (info->the_integrator != NULL){ |
| 30 |
delete info->the_integrator; |
| 31 |
} |
| 32 |
|
| 33 |
nAtoms = info->n_atoms; |
| 34 |
integrableObjects = info->integrableObjects; |
| 35 |
|
| 36 |
// check for constraints |
| 37 |
|
| 38 |
constrainedA = NULL; |
| 39 |
constrainedB = NULL; |
| 40 |
constrainedDsqr = NULL; |
| 41 |
moving = NULL; |
| 42 |
moved = NULL; |
| 43 |
oldPos = NULL; |
| 44 |
|
| 45 |
nConstrained = 0; |
| 46 |
|
| 47 |
checkConstraints(); |
| 48 |
} |
| 49 |
|
| 50 |
template<typename T> Integrator<T>::~Integrator(){ |
| 51 |
if (nConstrained){ |
| 52 |
delete[] constrainedA; |
| 53 |
delete[] constrainedB; |
| 54 |
delete[] constrainedDsqr; |
| 55 |
delete[] moving; |
| 56 |
delete[] moved; |
| 57 |
delete[] oldPos; |
| 58 |
} |
| 59 |
} |
| 60 |
|
| 61 |
template<typename T> void Integrator<T>::checkConstraints(void){ |
| 62 |
isConstrained = 0; |
| 63 |
|
| 64 |
Constraint* temp_con; |
| 65 |
Constraint* dummy_plug; |
| 66 |
temp_con = new Constraint[info->n_SRI]; |
| 67 |
nConstrained = 0; |
| 68 |
int constrained = 0; |
| 69 |
|
| 70 |
SRI** theArray; |
| 71 |
for (int i = 0; i < nMols; i++){ |
| 72 |
|
| 73 |
theArray = (SRI * *) molecules[i].getMyBonds(); |
| 74 |
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
| 75 |
constrained = theArray[j]->is_constrained(); |
| 76 |
|
| 77 |
if (constrained){ |
| 78 |
dummy_plug = theArray[j]->get_constraint(); |
| 79 |
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
| 80 |
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
| 81 |
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
| 82 |
|
| 83 |
nConstrained++; |
| 84 |
constrained = 0; |
| 85 |
} |
| 86 |
} |
| 87 |
|
| 88 |
theArray = (SRI * *) molecules[i].getMyBends(); |
| 89 |
for (int j = 0; j < molecules[i].getNBends(); j++){ |
| 90 |
constrained = theArray[j]->is_constrained(); |
| 91 |
|
| 92 |
if (constrained){ |
| 93 |
dummy_plug = theArray[j]->get_constraint(); |
| 94 |
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
| 95 |
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
| 96 |
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
| 97 |
|
| 98 |
nConstrained++; |
| 99 |
constrained = 0; |
| 100 |
} |
| 101 |
} |
| 102 |
|
| 103 |
theArray = (SRI * *) molecules[i].getMyTorsions(); |
| 104 |
for (int j = 0; j < molecules[i].getNTorsions(); j++){ |
| 105 |
constrained = theArray[j]->is_constrained(); |
| 106 |
|
| 107 |
if (constrained){ |
| 108 |
dummy_plug = theArray[j]->get_constraint(); |
| 109 |
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
| 110 |
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
| 111 |
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
| 112 |
|
| 113 |
nConstrained++; |
| 114 |
constrained = 0; |
| 115 |
} |
| 116 |
} |
| 117 |
} |
| 118 |
|
| 119 |
|
| 120 |
if (nConstrained > 0){ |
| 121 |
isConstrained = 1; |
| 122 |
|
| 123 |
if (constrainedA != NULL) |
| 124 |
delete[] constrainedA; |
| 125 |
if (constrainedB != NULL) |
| 126 |
delete[] constrainedB; |
| 127 |
if (constrainedDsqr != NULL) |
| 128 |
delete[] constrainedDsqr; |
| 129 |
|
| 130 |
constrainedA = new int[nConstrained]; |
| 131 |
constrainedB = new int[nConstrained]; |
| 132 |
constrainedDsqr = new double[nConstrained]; |
| 133 |
|
| 134 |
for (int i = 0; i < nConstrained; i++){ |
| 135 |
constrainedA[i] = temp_con[i].get_a(); |
| 136 |
constrainedB[i] = temp_con[i].get_b(); |
| 137 |
constrainedDsqr[i] = temp_con[i].get_dsqr(); |
| 138 |
} |
| 139 |
|
| 140 |
|
| 141 |
// save oldAtoms to check for lode balancing later on. |
| 142 |
|
| 143 |
oldAtoms = nAtoms; |
| 144 |
|
| 145 |
moving = new int[nAtoms]; |
| 146 |
moved = new int[nAtoms]; |
| 147 |
|
| 148 |
oldPos = new double[nAtoms * 3]; |
| 149 |
} |
| 150 |
|
| 151 |
delete[] temp_con; |
| 152 |
} |
| 153 |
|
| 154 |
|
| 155 |
template<typename T> void Integrator<T>::integrate(void){ |
| 156 |
|
| 157 |
double runTime = info->run_time; |
| 158 |
double sampleTime = info->sampleTime; |
| 159 |
double statusTime = info->statusTime; |
| 160 |
double thermalTime = info->thermalTime; |
| 161 |
double resetTime = info->resetTime; |
| 162 |
|
| 163 |
|
| 164 |
double currSample; |
| 165 |
double currThermal; |
| 166 |
double currStatus; |
| 167 |
double currReset; |
| 168 |
|
| 169 |
int calcPot, calcStress; |
| 170 |
|
| 171 |
tStats = new Thermo(info); |
| 172 |
statOut = new StatWriter(info); |
| 173 |
dumpOut = new DumpWriter(info); |
| 174 |
|
| 175 |
atoms = info->atoms; |
| 176 |
|
| 177 |
dt = info->dt; |
| 178 |
dt2 = 0.5 * dt; |
| 179 |
|
| 180 |
readyCheck(); |
| 181 |
|
| 182 |
// remove center of mass drift velocity (in case we passed in a configuration |
| 183 |
// that was drifting |
| 184 |
tStats->removeCOMdrift(); |
| 185 |
|
| 186 |
// initialize the forces before the first step |
| 187 |
|
| 188 |
calcForce(1, 1); |
| 189 |
|
| 190 |
if (nConstrained){ |
| 191 |
preMove(); |
| 192 |
constrainA(); |
| 193 |
calcForce(1, 1); |
| 194 |
constrainB(); |
| 195 |
} |
| 196 |
|
| 197 |
if (info->setTemp){ |
| 198 |
thermalize(); |
| 199 |
} |
| 200 |
|
| 201 |
calcPot = 0; |
| 202 |
calcStress = 0; |
| 203 |
currSample = sampleTime + info->getTime(); |
| 204 |
currThermal = thermalTime+ info->getTime(); |
| 205 |
currStatus = statusTime + info->getTime(); |
| 206 |
currReset = resetTime + info->getTime(); |
| 207 |
|
| 208 |
dumpOut->writeDump(info->getTime()); |
| 209 |
statOut->writeStat(info->getTime()); |
| 210 |
|
| 211 |
|
| 212 |
#ifdef IS_MPI |
| 213 |
strcpy(checkPointMsg, "The integrator is ready to go."); |
| 214 |
MPIcheckPoint(); |
| 215 |
#endif // is_mpi |
| 216 |
|
| 217 |
while (info->getTime() < runTime && !stopIntegrator()){ |
| 218 |
if ((info->getTime() + dt) >= currStatus){ |
| 219 |
calcPot = 1; |
| 220 |
calcStress = 1; |
| 221 |
} |
| 222 |
|
| 223 |
#ifdef PROFILE |
| 224 |
startProfile( pro1 ); |
| 225 |
#endif |
| 226 |
|
| 227 |
integrateStep(calcPot, calcStress); |
| 228 |
|
| 229 |
#ifdef PROFILE |
| 230 |
endProfile( pro1 ); |
| 231 |
|
| 232 |
startProfile( pro2 ); |
| 233 |
#endif // profile |
| 234 |
|
| 235 |
info->incrTime(dt); |
| 236 |
|
| 237 |
if (info->setTemp){ |
| 238 |
if (info->getTime() >= currThermal){ |
| 239 |
thermalize(); |
| 240 |
currThermal += thermalTime; |
| 241 |
} |
| 242 |
} |
| 243 |
|
| 244 |
if (info->getTime() >= currSample){ |
| 245 |
dumpOut->writeDump(info->getTime()); |
| 246 |
currSample += sampleTime; |
| 247 |
} |
| 248 |
|
| 249 |
if (info->getTime() >= currStatus){ |
| 250 |
statOut->writeStat(info->getTime()); |
| 251 |
calcPot = 0; |
| 252 |
calcStress = 0; |
| 253 |
currStatus += statusTime; |
| 254 |
} |
| 255 |
|
| 256 |
if (info->resetIntegrator){ |
| 257 |
if (info->getTime() >= currReset){ |
| 258 |
this->resetIntegrator(); |
| 259 |
currReset += resetTime; |
| 260 |
} |
| 261 |
} |
| 262 |
|
| 263 |
#ifdef PROFILE |
| 264 |
endProfile( pro2 ); |
| 265 |
#endif //profile |
| 266 |
|
| 267 |
#ifdef IS_MPI |
| 268 |
strcpy(checkPointMsg, "successfully took a time step."); |
| 269 |
MPIcheckPoint(); |
| 270 |
#endif // is_mpi |
| 271 |
} |
| 272 |
|
| 273 |
delete dumpOut; |
| 274 |
delete statOut; |
| 275 |
} |
| 276 |
|
| 277 |
template<typename T> void Integrator<T>::integrateStep(int calcPot, |
| 278 |
int calcStress){ |
| 279 |
// Position full step, and velocity half step |
| 280 |
|
| 281 |
#ifdef PROFILE |
| 282 |
startProfile(pro3); |
| 283 |
#endif //profile |
| 284 |
|
| 285 |
preMove(); |
| 286 |
|
| 287 |
#ifdef PROFILE |
| 288 |
endProfile(pro3); |
| 289 |
|
| 290 |
startProfile(pro4); |
| 291 |
#endif // profile |
| 292 |
|
| 293 |
moveA(); |
| 294 |
|
| 295 |
#ifdef PROFILE |
| 296 |
endProfile(pro4); |
| 297 |
|
| 298 |
startProfile(pro5); |
| 299 |
#endif//profile |
| 300 |
|
| 301 |
|
| 302 |
#ifdef IS_MPI |
| 303 |
strcpy(checkPointMsg, "Succesful moveA\n"); |
| 304 |
MPIcheckPoint(); |
| 305 |
#endif // is_mpi |
| 306 |
|
| 307 |
|
| 308 |
// calc forces |
| 309 |
|
| 310 |
calcForce(calcPot, calcStress); |
| 311 |
|
| 312 |
#ifdef IS_MPI |
| 313 |
strcpy(checkPointMsg, "Succesful doForces\n"); |
| 314 |
MPIcheckPoint(); |
| 315 |
#endif // is_mpi |
| 316 |
|
| 317 |
#ifdef PROFILE |
| 318 |
endProfile( pro5 ); |
| 319 |
|
| 320 |
startProfile( pro6 ); |
| 321 |
#endif //profile |
| 322 |
|
| 323 |
// finish the velocity half step |
| 324 |
|
| 325 |
moveB(); |
| 326 |
|
| 327 |
#ifdef PROFILE |
| 328 |
endProfile(pro6); |
| 329 |
#endif // profile |
| 330 |
|
| 331 |
#ifdef IS_MPI |
| 332 |
strcpy(checkPointMsg, "Succesful moveB\n"); |
| 333 |
MPIcheckPoint(); |
| 334 |
#endif // is_mpi |
| 335 |
} |
| 336 |
|
| 337 |
|
| 338 |
template<typename T> void Integrator<T>::moveA(void){ |
| 339 |
size_t i, j; |
| 340 |
DirectionalAtom* dAtom; |
| 341 |
double Tb[3], ji[3]; |
| 342 |
double vel[3], pos[3], frc[3]; |
| 343 |
double mass; |
| 344 |
|
| 345 |
for (i = 0; i < integrableObjects.size() ; i++){ |
| 346 |
integrableObjects[i]->getVel(vel); |
| 347 |
integrableObjects[i]->getPos(pos); |
| 348 |
integrableObjects[i]->getFrc(frc); |
| 349 |
|
| 350 |
std::cerr << "i =\t" << i << "\t" << frc[0] << "\t" << frc[1]<< "\t" << frc[2] << "\n"; |
| 351 |
|
| 352 |
mass = integrableObjects[i]->getMass(); |
| 353 |
|
| 354 |
for (j = 0; j < 3; j++){ |
| 355 |
// velocity half step |
| 356 |
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
| 357 |
// position whole step |
| 358 |
pos[j] += dt * vel[j]; |
| 359 |
} |
| 360 |
|
| 361 |
integrableObjects[i]->setVel(vel); |
| 362 |
integrableObjects[i]->setPos(pos); |
| 363 |
|
| 364 |
if (integrableObjects[i]->isDirectional()){ |
| 365 |
|
| 366 |
// get and convert the torque to body frame |
| 367 |
|
| 368 |
integrableObjects[i]->getTrq(Tb); |
| 369 |
integrableObjects[i]->lab2Body(Tb); |
| 370 |
|
| 371 |
// get the angular momentum, and propagate a half step |
| 372 |
|
| 373 |
integrableObjects[i]->getJ(ji); |
| 374 |
|
| 375 |
for (j = 0; j < 3; j++) |
| 376 |
ji[j] += (dt2 * Tb[j]) * eConvert; |
| 377 |
|
| 378 |
this->rotationPropagation( integrableObjects[i], ji ); |
| 379 |
|
| 380 |
integrableObjects[i]->setJ(ji); |
| 381 |
} |
| 382 |
} |
| 383 |
|
| 384 |
if (nConstrained){ |
| 385 |
constrainA(); |
| 386 |
} |
| 387 |
} |
| 388 |
|
| 389 |
|
| 390 |
template<typename T> void Integrator<T>::moveB(void){ |
| 391 |
int i, j; |
| 392 |
double Tb[3], ji[3]; |
| 393 |
double vel[3], frc[3]; |
| 394 |
double mass; |
| 395 |
|
| 396 |
for (i = 0; i < integrableObjects.size(); i++){ |
| 397 |
integrableObjects[i]->getVel(vel); |
| 398 |
integrableObjects[i]->getFrc(frc); |
| 399 |
|
| 400 |
mass = integrableObjects[i]->getMass(); |
| 401 |
|
| 402 |
// velocity half step |
| 403 |
for (j = 0; j < 3; j++) |
| 404 |
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
| 405 |
|
| 406 |
integrableObjects[i]->setVel(vel); |
| 407 |
|
| 408 |
if (integrableObjects[i]->isDirectional()){ |
| 409 |
|
| 410 |
// get and convert the torque to body frame |
| 411 |
|
| 412 |
integrableObjects[i]->getTrq(Tb); |
| 413 |
integrableObjects[i]->lab2Body(Tb); |
| 414 |
|
| 415 |
// get the angular momentum, and propagate a half step |
| 416 |
|
| 417 |
integrableObjects[i]->getJ(ji); |
| 418 |
|
| 419 |
for (j = 0; j < 3; j++) |
| 420 |
ji[j] += (dt2 * Tb[j]) * eConvert; |
| 421 |
|
| 422 |
|
| 423 |
integrableObjects[i]->setJ(ji); |
| 424 |
} |
| 425 |
} |
| 426 |
|
| 427 |
if (nConstrained){ |
| 428 |
constrainB(); |
| 429 |
} |
| 430 |
} |
| 431 |
|
| 432 |
template<typename T> void Integrator<T>::preMove(void){ |
| 433 |
int i, j; |
| 434 |
double pos[3]; |
| 435 |
|
| 436 |
if (nConstrained){ |
| 437 |
for (i = 0; i < nAtoms; i++){ |
| 438 |
atoms[i]->getPos(pos); |
| 439 |
|
| 440 |
for (j = 0; j < 3; j++){ |
| 441 |
oldPos[3 * i + j] = pos[j]; |
| 442 |
} |
| 443 |
} |
| 444 |
} |
| 445 |
} |
| 446 |
|
| 447 |
template<typename T> void Integrator<T>::constrainA(){ |
| 448 |
int i, j; |
| 449 |
int done; |
| 450 |
double posA[3], posB[3]; |
| 451 |
double velA[3], velB[3]; |
| 452 |
double pab[3]; |
| 453 |
double rab[3]; |
| 454 |
int a, b, ax, ay, az, bx, by, bz; |
| 455 |
double rma, rmb; |
| 456 |
double dx, dy, dz; |
| 457 |
double rpab; |
| 458 |
double rabsq, pabsq, rpabsq; |
| 459 |
double diffsq; |
| 460 |
double gab; |
| 461 |
int iteration; |
| 462 |
|
| 463 |
for (i = 0; i < nAtoms; i++){ |
| 464 |
moving[i] = 0; |
| 465 |
moved[i] = 1; |
| 466 |
} |
| 467 |
|
| 468 |
iteration = 0; |
| 469 |
done = 0; |
| 470 |
while (!done && (iteration < maxIteration)){ |
| 471 |
done = 1; |
| 472 |
for (i = 0; i < nConstrained; i++){ |
| 473 |
a = constrainedA[i]; |
| 474 |
b = constrainedB[i]; |
| 475 |
|
| 476 |
ax = (a * 3) + 0; |
| 477 |
ay = (a * 3) + 1; |
| 478 |
az = (a * 3) + 2; |
| 479 |
|
| 480 |
bx = (b * 3) + 0; |
| 481 |
by = (b * 3) + 1; |
| 482 |
bz = (b * 3) + 2; |
| 483 |
|
| 484 |
if (moved[a] || moved[b]){ |
| 485 |
atoms[a]->getPos(posA); |
| 486 |
atoms[b]->getPos(posB); |
| 487 |
|
| 488 |
for (j = 0; j < 3; j++) |
| 489 |
pab[j] = posA[j] - posB[j]; |
| 490 |
|
| 491 |
//periodic boundary condition |
| 492 |
|
| 493 |
info->wrapVector(pab); |
| 494 |
|
| 495 |
pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
| 496 |
|
| 497 |
rabsq = constrainedDsqr[i]; |
| 498 |
diffsq = rabsq - pabsq; |
| 499 |
|
| 500 |
// the original rattle code from alan tidesley |
| 501 |
if (fabs(diffsq) > (tol * rabsq * 2)){ |
| 502 |
rab[0] = oldPos[ax] - oldPos[bx]; |
| 503 |
rab[1] = oldPos[ay] - oldPos[by]; |
| 504 |
rab[2] = oldPos[az] - oldPos[bz]; |
| 505 |
|
| 506 |
info->wrapVector(rab); |
| 507 |
|
| 508 |
rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
| 509 |
|
| 510 |
rpabsq = rpab * rpab; |
| 511 |
|
| 512 |
|
| 513 |
if (rpabsq < (rabsq * -diffsq)){ |
| 514 |
#ifdef IS_MPI |
| 515 |
a = atoms[a]->getGlobalIndex(); |
| 516 |
b = atoms[b]->getGlobalIndex(); |
| 517 |
#endif //is_mpi |
| 518 |
sprintf(painCave.errMsg, |
| 519 |
"Constraint failure in constrainA at atom %d and %d.\n", a, |
| 520 |
b); |
| 521 |
painCave.isFatal = 1; |
| 522 |
simError(); |
| 523 |
} |
| 524 |
|
| 525 |
rma = 1.0 / atoms[a]->getMass(); |
| 526 |
rmb = 1.0 / atoms[b]->getMass(); |
| 527 |
|
| 528 |
gab = diffsq / (2.0 * (rma + rmb) * rpab); |
| 529 |
|
| 530 |
dx = rab[0] * gab; |
| 531 |
dy = rab[1] * gab; |
| 532 |
dz = rab[2] * gab; |
| 533 |
|
| 534 |
posA[0] += rma * dx; |
| 535 |
posA[1] += rma * dy; |
| 536 |
posA[2] += rma * dz; |
| 537 |
|
| 538 |
atoms[a]->setPos(posA); |
| 539 |
|
| 540 |
posB[0] -= rmb * dx; |
| 541 |
posB[1] -= rmb * dy; |
| 542 |
posB[2] -= rmb * dz; |
| 543 |
|
| 544 |
atoms[b]->setPos(posB); |
| 545 |
|
| 546 |
dx = dx / dt; |
| 547 |
dy = dy / dt; |
| 548 |
dz = dz / dt; |
| 549 |
|
| 550 |
atoms[a]->getVel(velA); |
| 551 |
|
| 552 |
velA[0] += rma * dx; |
| 553 |
velA[1] += rma * dy; |
| 554 |
velA[2] += rma * dz; |
| 555 |
|
| 556 |
atoms[a]->setVel(velA); |
| 557 |
|
| 558 |
atoms[b]->getVel(velB); |
| 559 |
|
| 560 |
velB[0] -= rmb * dx; |
| 561 |
velB[1] -= rmb * dy; |
| 562 |
velB[2] -= rmb * dz; |
| 563 |
|
| 564 |
atoms[b]->setVel(velB); |
| 565 |
|
| 566 |
moving[a] = 1; |
| 567 |
moving[b] = 1; |
| 568 |
done = 0; |
| 569 |
} |
| 570 |
} |
| 571 |
} |
| 572 |
|
| 573 |
for (i = 0; i < nAtoms; i++){ |
| 574 |
moved[i] = moving[i]; |
| 575 |
moving[i] = 0; |
| 576 |
} |
| 577 |
|
| 578 |
iteration++; |
| 579 |
} |
| 580 |
|
| 581 |
if (!done){ |
| 582 |
sprintf(painCave.errMsg, |
| 583 |
"Constraint failure in constrainA, too many iterations: %d\n", |
| 584 |
iteration); |
| 585 |
painCave.isFatal = 1; |
| 586 |
simError(); |
| 587 |
} |
| 588 |
|
| 589 |
} |
| 590 |
|
| 591 |
template<typename T> void Integrator<T>::constrainB(void){ |
| 592 |
int i, j; |
| 593 |
int done; |
| 594 |
double posA[3], posB[3]; |
| 595 |
double velA[3], velB[3]; |
| 596 |
double vxab, vyab, vzab; |
| 597 |
double rab[3]; |
| 598 |
int a, b, ax, ay, az, bx, by, bz; |
| 599 |
double rma, rmb; |
| 600 |
double dx, dy, dz; |
| 601 |
double rvab; |
| 602 |
double gab; |
| 603 |
int iteration; |
| 604 |
|
| 605 |
for (i = 0; i < nAtoms; i++){ |
| 606 |
moving[i] = 0; |
| 607 |
moved[i] = 1; |
| 608 |
} |
| 609 |
|
| 610 |
done = 0; |
| 611 |
iteration = 0; |
| 612 |
while (!done && (iteration < maxIteration)){ |
| 613 |
done = 1; |
| 614 |
|
| 615 |
for (i = 0; i < nConstrained; i++){ |
| 616 |
a = constrainedA[i]; |
| 617 |
b = constrainedB[i]; |
| 618 |
|
| 619 |
ax = (a * 3) + 0; |
| 620 |
ay = (a * 3) + 1; |
| 621 |
az = (a * 3) + 2; |
| 622 |
|
| 623 |
bx = (b * 3) + 0; |
| 624 |
by = (b * 3) + 1; |
| 625 |
bz = (b * 3) + 2; |
| 626 |
|
| 627 |
if (moved[a] || moved[b]){ |
| 628 |
atoms[a]->getVel(velA); |
| 629 |
atoms[b]->getVel(velB); |
| 630 |
|
| 631 |
vxab = velA[0] - velB[0]; |
| 632 |
vyab = velA[1] - velB[1]; |
| 633 |
vzab = velA[2] - velB[2]; |
| 634 |
|
| 635 |
atoms[a]->getPos(posA); |
| 636 |
atoms[b]->getPos(posB); |
| 637 |
|
| 638 |
for (j = 0; j < 3; j++) |
| 639 |
rab[j] = posA[j] - posB[j]; |
| 640 |
|
| 641 |
info->wrapVector(rab); |
| 642 |
|
| 643 |
rma = 1.0 / atoms[a]->getMass(); |
| 644 |
rmb = 1.0 / atoms[b]->getMass(); |
| 645 |
|
| 646 |
rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
| 647 |
|
| 648 |
gab = -rvab / ((rma + rmb) * constrainedDsqr[i]); |
| 649 |
|
| 650 |
if (fabs(gab) > tol){ |
| 651 |
dx = rab[0] * gab; |
| 652 |
dy = rab[1] * gab; |
| 653 |
dz = rab[2] * gab; |
| 654 |
|
| 655 |
velA[0] += rma * dx; |
| 656 |
velA[1] += rma * dy; |
| 657 |
velA[2] += rma * dz; |
| 658 |
|
| 659 |
atoms[a]->setVel(velA); |
| 660 |
|
| 661 |
velB[0] -= rmb * dx; |
| 662 |
velB[1] -= rmb * dy; |
| 663 |
velB[2] -= rmb * dz; |
| 664 |
|
| 665 |
atoms[b]->setVel(velB); |
| 666 |
|
| 667 |
moving[a] = 1; |
| 668 |
moving[b] = 1; |
| 669 |
done = 0; |
| 670 |
} |
| 671 |
} |
| 672 |
} |
| 673 |
|
| 674 |
for (i = 0; i < nAtoms; i++){ |
| 675 |
moved[i] = moving[i]; |
| 676 |
moving[i] = 0; |
| 677 |
} |
| 678 |
|
| 679 |
iteration++; |
| 680 |
} |
| 681 |
|
| 682 |
if (!done){ |
| 683 |
sprintf(painCave.errMsg, |
| 684 |
"Constraint failure in constrainB, too many iterations: %d\n", |
| 685 |
iteration); |
| 686 |
painCave.isFatal = 1; |
| 687 |
simError(); |
| 688 |
} |
| 689 |
} |
| 690 |
|
| 691 |
template<typename T> void Integrator<T>::rotationPropagation |
| 692 |
( StuntDouble* sd, double ji[3] ){ |
| 693 |
|
| 694 |
double angle; |
| 695 |
double A[3][3], I[3][3]; |
| 696 |
int i, j, k; |
| 697 |
|
| 698 |
// use the angular velocities to propagate the rotation matrix a |
| 699 |
// full time step |
| 700 |
|
| 701 |
sd->getA(A); |
| 702 |
sd->getI(I); |
| 703 |
|
| 704 |
if (sd->isLinear()) { |
| 705 |
i = sd->linearAxis(); |
| 706 |
j = (i+1)%3; |
| 707 |
k = (i+2)%3; |
| 708 |
|
| 709 |
angle = dt2 * ji[j] / I[j][j]; |
| 710 |
this->rotate( k, i, angle, ji, A ); |
| 711 |
|
| 712 |
angle = dt * ji[k] / I[k][k]; |
| 713 |
this->rotate( i, j, angle, ji, A); |
| 714 |
|
| 715 |
angle = dt2 * ji[j] / I[j][j]; |
| 716 |
this->rotate( k, i, angle, ji, A ); |
| 717 |
|
| 718 |
} else { |
| 719 |
// rotate about the x-axis |
| 720 |
angle = dt2 * ji[0] / I[0][0]; |
| 721 |
this->rotate( 1, 2, angle, ji, A ); |
| 722 |
|
| 723 |
// rotate about the y-axis |
| 724 |
angle = dt2 * ji[1] / I[1][1]; |
| 725 |
this->rotate( 2, 0, angle, ji, A ); |
| 726 |
|
| 727 |
// rotate about the z-axis |
| 728 |
angle = dt * ji[2] / I[2][2]; |
| 729 |
this->rotate( 0, 1, angle, ji, A); |
| 730 |
|
| 731 |
// rotate about the y-axis |
| 732 |
angle = dt2 * ji[1] / I[1][1]; |
| 733 |
this->rotate( 2, 0, angle, ji, A ); |
| 734 |
|
| 735 |
// rotate about the x-axis |
| 736 |
angle = dt2 * ji[0] / I[0][0]; |
| 737 |
this->rotate( 1, 2, angle, ji, A ); |
| 738 |
|
| 739 |
} |
| 740 |
sd->setA( A ); |
| 741 |
} |
| 742 |
|
| 743 |
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
| 744 |
double angle, double ji[3], |
| 745 |
double A[3][3]){ |
| 746 |
int i, j, k; |
| 747 |
double sinAngle; |
| 748 |
double cosAngle; |
| 749 |
double angleSqr; |
| 750 |
double angleSqrOver4; |
| 751 |
double top, bottom; |
| 752 |
double rot[3][3]; |
| 753 |
double tempA[3][3]; |
| 754 |
double tempJ[3]; |
| 755 |
|
| 756 |
// initialize the tempA |
| 757 |
|
| 758 |
for (i = 0; i < 3; i++){ |
| 759 |
for (j = 0; j < 3; j++){ |
| 760 |
tempA[j][i] = A[i][j]; |
| 761 |
} |
| 762 |
} |
| 763 |
|
| 764 |
// initialize the tempJ |
| 765 |
|
| 766 |
for (i = 0; i < 3; i++) |
| 767 |
tempJ[i] = ji[i]; |
| 768 |
|
| 769 |
// initalize rot as a unit matrix |
| 770 |
|
| 771 |
rot[0][0] = 1.0; |
| 772 |
rot[0][1] = 0.0; |
| 773 |
rot[0][2] = 0.0; |
| 774 |
|
| 775 |
rot[1][0] = 0.0; |
| 776 |
rot[1][1] = 1.0; |
| 777 |
rot[1][2] = 0.0; |
| 778 |
|
| 779 |
rot[2][0] = 0.0; |
| 780 |
rot[2][1] = 0.0; |
| 781 |
rot[2][2] = 1.0; |
| 782 |
|
| 783 |
// use a small angle aproximation for sin and cosine |
| 784 |
|
| 785 |
angleSqr = angle * angle; |
| 786 |
angleSqrOver4 = angleSqr / 4.0; |
| 787 |
top = 1.0 - angleSqrOver4; |
| 788 |
bottom = 1.0 + angleSqrOver4; |
| 789 |
|
| 790 |
cosAngle = top / bottom; |
| 791 |
sinAngle = angle / bottom; |
| 792 |
|
| 793 |
rot[axes1][axes1] = cosAngle; |
| 794 |
rot[axes2][axes2] = cosAngle; |
| 795 |
|
| 796 |
rot[axes1][axes2] = sinAngle; |
| 797 |
rot[axes2][axes1] = -sinAngle; |
| 798 |
|
| 799 |
// rotate the momentum acoording to: ji[] = rot[][] * ji[] |
| 800 |
|
| 801 |
for (i = 0; i < 3; i++){ |
| 802 |
ji[i] = 0.0; |
| 803 |
for (k = 0; k < 3; k++){ |
| 804 |
ji[i] += rot[i][k] * tempJ[k]; |
| 805 |
} |
| 806 |
} |
| 807 |
|
| 808 |
// rotate the Rotation matrix acording to: |
| 809 |
// A[][] = A[][] * transpose(rot[][]) |
| 810 |
|
| 811 |
|
| 812 |
// NOte for as yet unknown reason, we are performing the |
| 813 |
// calculation as: |
| 814 |
// transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) |
| 815 |
|
| 816 |
for (i = 0; i < 3; i++){ |
| 817 |
for (j = 0; j < 3; j++){ |
| 818 |
A[j][i] = 0.0; |
| 819 |
for (k = 0; k < 3; k++){ |
| 820 |
A[j][i] += tempA[i][k] * rot[j][k]; |
| 821 |
} |
| 822 |
} |
| 823 |
} |
| 824 |
} |
| 825 |
|
| 826 |
template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){ |
| 827 |
myFF->doForces(calcPot, calcStress); |
| 828 |
} |
| 829 |
|
| 830 |
template<typename T> void Integrator<T>::thermalize(){ |
| 831 |
tStats->velocitize(); |
| 832 |
} |
| 833 |
|
| 834 |
template<typename T> double Integrator<T>::getConservedQuantity(void){ |
| 835 |
return tStats->getTotalE(); |
| 836 |
} |
| 837 |
template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
| 838 |
//By default, return a null string |
| 839 |
//The reason we use string instead of char* is that if we use char*, we will |
| 840 |
//return a pointer point to local variable which might cause problem |
| 841 |
return string(); |
| 842 |
} |