# | Line 1 | Line 1 | |
---|---|---|
1 | #include <iostream> | |
2 | #include <cstdlib> | |
3 | + | #include <cmath> |
4 | ||
5 | #ifdef IS_MPI | |
6 | #include "mpiSimulation.hpp" | |
# | Line 10 | Line 11 | |
11 | #include "simError.h" | |
12 | ||
13 | ||
14 | < | Integrator::Integrator( SimInfo* theInfo, ForceFields* the_ff ){ |
15 | < | |
14 | > | template<typename T> Integrator<T>::Integrator(SimInfo* theInfo, |
15 | > | ForceFields* the_ff){ |
16 | info = theInfo; | |
17 | myFF = the_ff; | |
18 | isFirst = 1; | |
# | Line 20 | Line 21 | Integrator::Integrator( SimInfo* theInfo, ForceFields* | |
21 | nMols = info->n_mol; | |
22 | ||
23 | // give a little love back to the SimInfo object | |
24 | < | |
25 | < | if( info->the_integrator != NULL ) delete info->the_integrator; |
24 | > | |
25 | > | if (info->the_integrator != NULL){ |
26 | > | delete info->the_integrator; |
27 | > | } |
28 | info->the_integrator = this; | |
29 | ||
30 | nAtoms = info->n_atoms; | |
31 | ||
32 | // check for constraints | |
33 | < | |
34 | < | constrainedA = NULL; |
35 | < | constrainedB = NULL; |
33 | > | |
34 | > | constrainedA = NULL; |
35 | > | constrainedB = NULL; |
36 | constrainedDsqr = NULL; | |
37 | < | moving = NULL; |
38 | < | moved = NULL; |
39 | < | prePos = NULL; |
40 | < | |
37 | > | moving = NULL; |
38 | > | moved = NULL; |
39 | > | oldPos = NULL; |
40 | > | |
41 | nConstrained = 0; | |
42 | ||
43 | checkConstraints(); | |
44 | } | |
45 | ||
46 | < | Integrator::~Integrator() { |
47 | < | |
45 | < | if( nConstrained ){ |
46 | > | template<typename T> Integrator<T>::~Integrator(){ |
47 | > | if (nConstrained){ |
48 | delete[] constrainedA; | |
49 | delete[] constrainedB; | |
50 | delete[] constrainedDsqr; | |
51 | delete[] moving; | |
52 | delete[] moved; | |
53 | < | delete[] prePos; |
52 | < | k |
53 | > | delete[] oldPos; |
54 | } | |
54 | – | |
55 | } | |
56 | ||
57 | < | void Integrator::checkConstraints( void ){ |
58 | < | |
59 | < | |
57 | > | template<typename T> void Integrator<T>::checkConstraints(void){ |
58 | isConstrained = 0; | |
59 | ||
60 | < | Constraint *temp_con; |
61 | < | Constraint *dummy_plug; |
60 | > | Constraint* temp_con; |
61 | > | Constraint* dummy_plug; |
62 | temp_con = new Constraint[info->n_SRI]; | |
63 | nConstrained = 0; | |
64 | int constrained = 0; | |
65 | < | |
65 | > | |
66 | SRI** theArray; | |
67 | < | for(int i = 0; i < nMols; i++){ |
68 | < | |
69 | < | theArray = (SRI**) molecules[i].getMyBonds(); |
72 | < | for(int j=0; j<molecules[i].getNBonds(); j++){ |
73 | < | |
67 | > | for (int i = 0; i < nMols; i++){ |
68 | > | theArray = (SRI * *) molecules[i].getMyBonds(); |
69 | > | for (int j = 0; j < molecules[i].getNBonds(); j++){ |
70 | constrained = theArray[j]->is_constrained(); | |
71 | < | |
72 | < | if(constrained){ |
73 | < | |
74 | < | dummy_plug = theArray[j]->get_constraint(); |
75 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
76 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
77 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
78 | < | |
79 | < | nConstrained++; |
84 | < | constrained = 0; |
71 | > | |
72 | > | if (constrained){ |
73 | > | dummy_plug = theArray[j]->get_constraint(); |
74 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
75 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
76 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
77 | > | |
78 | > | nConstrained++; |
79 | > | constrained = 0; |
80 | } | |
81 | } | |
82 | ||
83 | < | theArray = (SRI**) molecules[i].getMyBends(); |
84 | < | for(int j=0; j<molecules[i].getNBends(); j++){ |
90 | < | |
83 | > | theArray = (SRI * *) molecules[i].getMyBends(); |
84 | > | for (int j = 0; j < molecules[i].getNBends(); j++){ |
85 | constrained = theArray[j]->is_constrained(); | |
86 | < | |
87 | < | if(constrained){ |
88 | < | |
89 | < | dummy_plug = theArray[j]->get_constraint(); |
90 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
91 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
92 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
93 | < | |
94 | < | nConstrained++; |
101 | < | constrained = 0; |
86 | > | |
87 | > | if (constrained){ |
88 | > | dummy_plug = theArray[j]->get_constraint(); |
89 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
90 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
91 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
92 | > | |
93 | > | nConstrained++; |
94 | > | constrained = 0; |
95 | } | |
96 | } | |
97 | ||
98 | < | theArray = (SRI**) molecules[i].getMyTorsions(); |
99 | < | for(int j=0; j<molecules[i].getNTorsions(); j++){ |
107 | < | |
98 | > | theArray = (SRI * *) molecules[i].getMyTorsions(); |
99 | > | for (int j = 0; j < molecules[i].getNTorsions(); j++){ |
100 | constrained = theArray[j]->is_constrained(); | |
101 | < | |
102 | < | if(constrained){ |
103 | < | |
104 | < | dummy_plug = theArray[j]->get_constraint(); |
105 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
106 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
107 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
108 | < | |
109 | < | nConstrained++; |
118 | < | constrained = 0; |
101 | > | |
102 | > | if (constrained){ |
103 | > | dummy_plug = theArray[j]->get_constraint(); |
104 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
105 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
106 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
107 | > | |
108 | > | nConstrained++; |
109 | > | constrained = 0; |
110 | } | |
111 | } | |
112 | } | |
113 | ||
114 | < | if(nConstrained > 0){ |
124 | < | |
114 | > | if (nConstrained > 0){ |
115 | isConstrained = 1; | |
116 | ||
117 | < | if(constrainedA != NULL ) delete[] constrainedA; |
118 | < | if(constrainedB != NULL ) delete[] constrainedB; |
119 | < | if(constrainedDsqr != NULL ) delete[] constrainedDsqr; |
117 | > | if (constrainedA != NULL) |
118 | > | delete[] constrainedA; |
119 | > | if (constrainedB != NULL) |
120 | > | delete[] constrainedB; |
121 | > | if (constrainedDsqr != NULL) |
122 | > | delete[] constrainedDsqr; |
123 | ||
124 | < | constrainedA = new int[nConstrained]; |
125 | < | constrainedB = new int[nConstrained]; |
124 | > | constrainedA = new int[nConstrained]; |
125 | > | constrainedB = new int[nConstrained]; |
126 | constrainedDsqr = new double[nConstrained]; | |
127 | < | |
128 | < | for( int i = 0; i < nConstrained; i++){ |
136 | < | |
127 | > | |
128 | > | for (int i = 0; i < nConstrained; i++){ |
129 | constrainedA[i] = temp_con[i].get_a(); | |
130 | constrainedB[i] = temp_con[i].get_b(); | |
131 | constrainedDsqr[i] = temp_con[i].get_dsqr(); | |
132 | } | |
133 | ||
134 | < | |
134 | > | |
135 | // save oldAtoms to check for lode balanceing later on. | |
136 | < | |
136 | > | |
137 | oldAtoms = nAtoms; | |
138 | < | |
138 | > | |
139 | moving = new int[nAtoms]; | |
140 | < | moved = new int[nAtoms]; |
140 | > | moved = new int[nAtoms]; |
141 | ||
142 | < | prePos = new double[nAtoms*3]; |
142 | > | oldPos = new double[nAtoms * 3]; |
143 | } | |
144 | < | |
144 | > | |
145 | delete[] temp_con; | |
146 | } | |
147 | ||
148 | ||
149 | < | void Integrator::integrate( void ){ |
158 | < | |
149 | > | template<typename T> void Integrator<T>::integrate(void){ |
150 | int i, j; // loop counters | |
160 | – | double kE = 0.0; // the kinetic energy |
161 | – | double rot_kE; |
162 | – | double trans_kE; |
163 | – | int tl; // the time loop conter |
164 | – | double dt2; // half the dt |
151 | ||
152 | < | double vx, vy, vz; // the velocities |
153 | < | double vx2, vy2, vz2; // the square of the velocities |
154 | < | double rx, ry, rz; // the postitions |
169 | < | |
170 | < | double ji[3]; // the body frame angular momentum |
171 | < | double jx2, jy2, jz2; // the square of the angular momentums |
172 | < | double Tb[3]; // torque in the body frame |
173 | < | double angle; // the angle through which to rotate the rotation matrix |
174 | < | double A[3][3]; // the rotation matrix |
175 | < | double press[9]; |
176 | < | |
177 | < | double dt = info->dt; |
178 | < | double runTime = info->run_time; |
179 | < | double sampleTime = info->sampleTime; |
180 | < | double statusTime = info->statusTime; |
152 | > | double runTime = info->run_time; |
153 | > | double sampleTime = info->sampleTime; |
154 | > | double statusTime = info->statusTime; |
155 | double thermalTime = info->thermalTime; | |
156 | + | double resetTime = info->resetTime; |
157 | ||
158 | + | |
159 | double currSample; | |
160 | double currThermal; | |
161 | double currStatus; | |
162 | < | double currTime; |
163 | < | |
162 | > | double currReset; |
163 | > | |
164 | int calcPot, calcStress; | |
165 | int isError; | |
166 | ||
167 | < | tStats = new Thermo( info ); |
168 | < | e_out = new StatWriter( info ); |
169 | < | dump_out = new DumpWriter( info ); |
167 | > | tStats = new Thermo(info); |
168 | > | statOut = new StatWriter(info); |
169 | > | dumpOut = new DumpWriter(info); |
170 | ||
171 | < | Atom** atoms = info->atoms; |
171 | > | atoms = info->atoms; |
172 | DirectionalAtom* dAtom; | |
173 | + | |
174 | + | dt = info->dt; |
175 | dt2 = 0.5 * dt; | |
176 | ||
177 | // initialize the forces before the first step | |
178 | ||
179 | < | myFF->doForces(1,1); |
179 | > | calcForce(1, 1); |
180 | ||
181 | < | if( info->setTemp ){ |
182 | < | |
205 | < | tStats->velocitize(); |
181 | > | if (info->setTemp){ |
182 | > | thermalize(); |
183 | } | |
184 | < | |
208 | < | dump_out->writeDump( 0.0 ); |
209 | < | e_out->writeStat( 0.0 ); |
210 | < | |
184 | > | |
185 | calcPot = 0; | |
186 | calcStress = 0; | |
187 | < | currSample = sampleTime; |
188 | < | currThermal = thermalTime; |
189 | < | currStatus = statusTime; |
190 | < | currTime = 0.0;; |
187 | > | currSample = sampleTime + info->getTime(); |
188 | > | currThermal = thermalTime+ info->getTime(); |
189 | > | currStatus = statusTime + info->getTime(); |
190 | > | currReset = resetTime + info->getTime(); |
191 | ||
192 | < | while( currTime < runTime ){ |
192 | > | dumpOut->writeDump(info->getTime()); |
193 | > | statOut->writeStat(info->getTime()); |
194 | ||
195 | < | if( (currTime+dt) >= currStatus ){ |
195 | > | readyCheck(); |
196 | > | |
197 | > | #ifdef IS_MPI |
198 | > | strcpy(checkPointMsg, "The integrator is ready to go."); |
199 | > | MPIcheckPoint(); |
200 | > | #endif // is_mpi |
201 | > | |
202 | > | while (info->getTime() < runTime){ |
203 | > | if ((info->getTime() + dt) >= currStatus){ |
204 | calcPot = 1; | |
205 | calcStress = 1; | |
206 | } | |
224 | – | |
225 | – | integrateStep( calcPot, calcStress ); |
226 | – | |
227 | – | currTime += dt; |
207 | ||
208 | < | if( info->setTemp ){ |
209 | < | if( currTime >= currThermal ){ |
210 | < | tStats->velocitize(); |
211 | < | currThermal += thermalTime; |
208 | > | integrateStep(calcPot, calcStress); |
209 | > | |
210 | > | info->incrTime(dt); |
211 | > | |
212 | > | if (info->setTemp){ |
213 | > | if (info->getTime() >= currThermal){ |
214 | > | thermalize(); |
215 | > | currThermal += thermalTime; |
216 | } | |
217 | } | |
218 | ||
219 | < | if( currTime >= currSample ){ |
220 | < | dump_out->writeDump( currTime ); |
219 | > | if (info->getTime() >= currSample){ |
220 | > | dumpOut->writeDump(info->getTime()); |
221 | currSample += sampleTime; | |
222 | } | |
223 | ||
224 | < | if( currTime >= currStatus ){ |
225 | < | e_out->writeStat( time * dt ); |
224 | > | if (info->getTime() >= currStatus){ |
225 | > | statOut->writeStat(info->getTime()); |
226 | calcPot = 0; | |
227 | calcStress = 0; | |
228 | currStatus += statusTime; | |
229 | } | |
247 | – | } |
230 | ||
231 | < | dump_out->writeFinal(); |
231 | > | if (info->resetIntegrator){ |
232 | > | if (info->getTime() >= currReset){ |
233 | > | this->resetIntegrator(); |
234 | > | currReset += resetTime; |
235 | > | } |
236 | > | } |
237 | ||
238 | < | delete dump_out; |
239 | < | delete e_out; |
240 | < | } |
238 | > | #ifdef IS_MPI |
239 | > | strcpy(checkPointMsg, "successfully took a time step."); |
240 | > | MPIcheckPoint(); |
241 | > | #endif // is_mpi |
242 | > | } |
243 | ||
244 | < | void Integrator::integrateStep( int calcPot, int calcStress ){ |
244 | > | dumpOut->writeFinal(info->getTime()); |
245 | ||
246 | + | delete dumpOut; |
247 | + | delete statOut; |
248 | + | } |
249 | + | |
250 | + | template<typename T> void Integrator<T>::integrateStep(int calcPot, |
251 | + | int calcStress){ |
252 | // Position full step, and velocity half step | |
253 | + | preMove(); |
254 | ||
259 | – | //preMove(); |
255 | moveA(); | |
261 | – | if( nConstrained ) constrainA(); |
256 | ||
257 | + | |
258 | + | |
259 | + | |
260 | + | #ifdef IS_MPI |
261 | + | strcpy(checkPointMsg, "Succesful moveA\n"); |
262 | + | MPIcheckPoint(); |
263 | + | #endif // is_mpi |
264 | + | |
265 | + | |
266 | // calc forces | |
267 | ||
268 | < | myFF->doForces(calcPot,calcStress); |
268 | > | calcForce(calcPot, calcStress); |
269 | ||
270 | + | #ifdef IS_MPI |
271 | + | strcpy(checkPointMsg, "Succesful doForces\n"); |
272 | + | MPIcheckPoint(); |
273 | + | #endif // is_mpi |
274 | + | |
275 | + | |
276 | // finish the velocity half step | |
277 | < | |
277 | > | |
278 | moveB(); | |
279 | < | if( nConstrained ) constrainB(); |
280 | < | |
279 | > | |
280 | > | |
281 | > | |
282 | > | #ifdef IS_MPI |
283 | > | strcpy(checkPointMsg, "Succesful moveB\n"); |
284 | > | MPIcheckPoint(); |
285 | > | #endif // is_mpi |
286 | } | |
287 | ||
288 | ||
289 | < | void Integrator::moveA( void ){ |
290 | < | |
277 | < | int i,j,k; |
278 | < | int atomIndex, aMatIndex; |
289 | > | template<typename T> void Integrator<T>::moveA(void){ |
290 | > | int i, j; |
291 | DirectionalAtom* dAtom; | |
292 | < | double Tb[3]; |
293 | < | double ji[3]; |
292 | > | double Tb[3], ji[3]; |
293 | > | double A[3][3], I[3][3]; |
294 | > | double angle; |
295 | > | double vel[3], pos[3], frc[3]; |
296 | > | double mass; |
297 | ||
298 | < | for( i=0; i<nAtoms; i++ ){ |
299 | < | atomIndex = i * 3; |
300 | < | aMatIndex = i * 9; |
301 | < | |
287 | < | // velocity half step |
288 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
289 | < | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
298 | > | for (i = 0; i < nAtoms; i++){ |
299 | > | atoms[i]->getVel(vel); |
300 | > | atoms[i]->getPos(pos); |
301 | > | atoms[i]->getFrc(frc); |
302 | ||
303 | < | // position whole step |
304 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
303 | > | mass = atoms[i]->getMass(); |
304 | > | |
305 | > | for (j = 0; j < 3; j++){ |
306 | > | // velocity half step |
307 | > | vel[j] += (dt2 * frc[j] / mass) * eConvert; |
308 | > | // position whole step |
309 | pos[j] += dt * vel[j]; | |
310 | + | } |
311 | ||
312 | < | |
313 | < | if( atoms[i]->isDirectional() ){ |
312 | > | atoms[i]->setVel(vel); |
313 | > | atoms[i]->setPos(pos); |
314 | ||
315 | < | dAtom = (DirectionalAtom *)atoms[i]; |
316 | < | |
315 | > | if (atoms[i]->isDirectional()){ |
316 | > | dAtom = (DirectionalAtom *) atoms[i]; |
317 | > | |
318 | // get and convert the torque to body frame | |
319 | < | |
320 | < | Tb[0] = dAtom->getTx(); |
321 | < | Tb[1] = dAtom->getTy(); |
322 | < | Tb[2] = dAtom->getTz(); |
305 | < | |
306 | < | dAtom->lab2Body( Tb ); |
307 | < | |
319 | > | |
320 | > | dAtom->getTrq(Tb); |
321 | > | dAtom->lab2Body(Tb); |
322 | > | |
323 | // get the angular momentum, and propagate a half step | |
324 | < | |
325 | < | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
326 | < | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
327 | < | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
328 | < | |
324 | > | |
325 | > | dAtom->getJ(ji); |
326 | > | |
327 | > | for (j = 0; j < 3; j++) |
328 | > | ji[j] += (dt2 * Tb[j]) * eConvert; |
329 | > | |
330 | // use the angular velocities to propagate the rotation matrix a | |
331 | // full time step | |
332 | < | |
332 | > | |
333 | > | dAtom->getA(A); |
334 | > | dAtom->getI(I); |
335 | > | |
336 | // rotate about the x-axis | |
337 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
338 | < | this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
339 | < | |
337 | > | angle = dt2 * ji[0] / I[0][0]; |
338 | > | this->rotate(1, 2, angle, ji, A); |
339 | > | |
340 | // rotate about the y-axis | |
341 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
342 | < | this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
343 | < | |
341 | > | angle = dt2 * ji[1] / I[1][1]; |
342 | > | this->rotate(2, 0, angle, ji, A); |
343 | > | |
344 | // rotate about the z-axis | |
345 | < | angle = dt * ji[2] / dAtom->getIzz(); |
346 | < | this->rotate( 0, 1, angle, ji, &aMat[aMatIndex] ); |
347 | < | |
345 | > | angle = dt * ji[2] / I[2][2]; |
346 | > | this->rotate(0, 1, angle, ji, A); |
347 | > | |
348 | // rotate about the y-axis | |
349 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
350 | < | this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
351 | < | |
352 | < | // rotate about the x-axis |
353 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
354 | < | this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
355 | < | |
356 | < | dAtom->setJx( ji[0] ); |
357 | < | dAtom->setJy( ji[1] ); |
339 | < | dAtom->setJz( ji[2] ); |
349 | > | angle = dt2 * ji[1] / I[1][1]; |
350 | > | this->rotate(2, 0, angle, ji, A); |
351 | > | |
352 | > | // rotate about the x-axis |
353 | > | angle = dt2 * ji[0] / I[0][0]; |
354 | > | this->rotate(1, 2, angle, ji, A); |
355 | > | |
356 | > | dAtom->setJ(ji); |
357 | > | dAtom->setA(A); |
358 | } | |
341 | – | |
359 | } | |
360 | + | |
361 | + | if (nConstrained){ |
362 | + | constrainA(); |
363 | + | } |
364 | } | |
365 | ||
366 | ||
367 | < | void Integrator::moveB( void ){ |
368 | < | int i,j,k; |
348 | < | int atomIndex; |
367 | > | template<typename T> void Integrator<T>::moveB(void){ |
368 | > | int i, j; |
369 | DirectionalAtom* dAtom; | |
370 | < | double Tb[3]; |
371 | < | double ji[3]; |
370 | > | double Tb[3], ji[3]; |
371 | > | double vel[3], frc[3]; |
372 | > | double mass; |
373 | ||
374 | < | for( i=0; i<nAtoms; i++ ){ |
375 | < | atomIndex = i * 3; |
374 | > | for (i = 0; i < nAtoms; i++){ |
375 | > | atoms[i]->getVel(vel); |
376 | > | atoms[i]->getFrc(frc); |
377 | ||
378 | + | mass = atoms[i]->getMass(); |
379 | + | |
380 | // velocity half step | |
381 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
382 | < | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
381 | > | for (j = 0; j < 3; j++) |
382 | > | vel[j] += (dt2 * frc[j] / mass) * eConvert; |
383 | ||
384 | < | if( atoms[i]->isDirectional() ){ |
385 | < | |
386 | < | dAtom = (DirectionalAtom *)atoms[i]; |
387 | < | |
388 | < | // get and convert the torque to body frame |
389 | < | |
390 | < | Tb[0] = dAtom->getTx(); |
391 | < | Tb[1] = dAtom->getTy(); |
392 | < | Tb[2] = dAtom->getTz(); |
393 | < | |
394 | < | dAtom->lab2Body( Tb ); |
395 | < | |
396 | < | // get the angular momentum, and complete the angular momentum |
397 | < | // half step |
398 | < | |
399 | < | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
400 | < | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
401 | < | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
402 | < | |
379 | < | jx2 = ji[0] * ji[0]; |
380 | < | jy2 = ji[1] * ji[1]; |
381 | < | jz2 = ji[2] * ji[2]; |
382 | < | |
383 | < | dAtom->setJx( ji[0] ); |
384 | < | dAtom->setJy( ji[1] ); |
385 | < | dAtom->setJz( ji[2] ); |
384 | > | atoms[i]->setVel(vel); |
385 | > | |
386 | > | if (atoms[i]->isDirectional()){ |
387 | > | dAtom = (DirectionalAtom *) atoms[i]; |
388 | > | |
389 | > | // get and convert the torque to body frame |
390 | > | |
391 | > | dAtom->getTrq(Tb); |
392 | > | dAtom->lab2Body(Tb); |
393 | > | |
394 | > | // get the angular momentum, and propagate a half step |
395 | > | |
396 | > | dAtom->getJ(ji); |
397 | > | |
398 | > | for (j = 0; j < 3; j++) |
399 | > | ji[j] += (dt2 * Tb[j]) * eConvert; |
400 | > | |
401 | > | |
402 | > | dAtom->setJ(ji); |
403 | } | |
404 | } | |
405 | ||
406 | + | if (nConstrained){ |
407 | + | constrainB(); |
408 | + | } |
409 | } | |
410 | ||
411 | < | void Integrator::preMove( void ){ |
412 | < | int i; |
411 | > | template<typename T> void Integrator<T>::preMove(void){ |
412 | > | int i, j; |
413 | > | double pos[3]; |
414 | ||
415 | < | if( nConstrained ){ |
416 | < | if( oldAtoms != nAtoms ){ |
417 | < | |
418 | < | // save oldAtoms to check for lode balanceing later on. |
419 | < | |
420 | < | oldAtoms = nAtoms; |
421 | < | |
401 | < | delete[] moving; |
402 | < | delete[] moved; |
403 | < | delete[] oldPos; |
404 | < | |
405 | < | moving = new int[nAtoms]; |
406 | < | moved = new int[nAtoms]; |
407 | < | |
408 | < | oldPos = new double[nAtoms*3]; |
415 | > | if (nConstrained){ |
416 | > | for (i = 0; i < nAtoms; i++){ |
417 | > | atoms[i]->getPos(pos); |
418 | > | |
419 | > | for (j = 0; j < 3; j++){ |
420 | > | oldPos[3 * i + j] = pos[j]; |
421 | > | } |
422 | } | |
410 | – | |
411 | – | for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i]; |
423 | } | |
424 | < | } |
424 | > | } |
425 | ||
426 | < | void Integrator::constrainA(){ |
427 | < | |
417 | < | int i,j,k; |
426 | > | template<typename T> void Integrator<T>::constrainA(){ |
427 | > | int i, j, k; |
428 | int done; | |
429 | < | double pxab, pyab, pzab; |
430 | < | double rxab, ryab, rzab; |
431 | < | int a, b; |
429 | > | double posA[3], posB[3]; |
430 | > | double velA[3], velB[3]; |
431 | > | double pab[3]; |
432 | > | double rab[3]; |
433 | > | int a, b, ax, ay, az, bx, by, bz; |
434 | double rma, rmb; | |
435 | double dx, dy, dz; | |
436 | + | double rpab; |
437 | double rabsq, pabsq, rpabsq; | |
438 | double diffsq; | |
439 | double gab; | |
440 | int iteration; | |
441 | ||
442 | < | |
430 | < | |
431 | < | for( i=0; i<nAtoms; i++){ |
432 | < | |
442 | > | for (i = 0; i < nAtoms; i++){ |
443 | moving[i] = 0; | |
444 | < | moved[i] = 1; |
444 | > | moved[i] = 1; |
445 | } | |
446 | < | |
437 | < | |
446 | > | |
447 | iteration = 0; | |
448 | done = 0; | |
449 | < | while( !done && (iteration < maxIteration )){ |
441 | < | |
449 | > | while (!done && (iteration < maxIteration)){ |
450 | done = 1; | |
451 | < | for(i=0; i<nConstrained; i++){ |
444 | < | |
451 | > | for (i = 0; i < nConstrained; i++){ |
452 | a = constrainedA[i]; | |
453 | b = constrainedB[i]; | |
447 | – | |
448 | – | if( moved[a] || moved[b] ){ |
449 | – | |
450 | – | pxab = pos[3*a+0] - pos[3*b+0]; |
451 | – | pyab = pos[3*a+1] - pos[3*b+1]; |
452 | – | pzab = pos[3*a+2] - pos[3*b+2]; |
454 | ||
455 | < | //periodic boundary condition |
456 | < | pxab = pxab - info->box_x * copysign(1, pxab) |
457 | < | * int(pxab / info->box_x + 0.5); |
457 | < | pyab = pyab - info->box_y * copysign(1, pyab) |
458 | < | * int(pyab / info->box_y + 0.5); |
459 | < | pzab = pzab - info->box_z * copysign(1, pzab) |
460 | < | * int(pzab / info->box_z + 0.5); |
461 | < | |
462 | < | pabsq = pxab * pxab + pyab * pyab + pzab * pzab; |
463 | < | rabsq = constraintedDsqr[i]; |
464 | < | diffsq = pabsq - rabsq; |
455 | > | ax = (a * 3) + 0; |
456 | > | ay = (a * 3) + 1; |
457 | > | az = (a * 3) + 2; |
458 | ||
459 | < | // the original rattle code from alan tidesley |
460 | < | if (fabs(diffsq) > tol*rabsq*2) { |
461 | < | rxab = oldPos[3*a+0] - oldPos[3*b+0]; |
469 | < | ryab = oldPos[3*a+1] - oldPos[3*b+1]; |
470 | < | rzab = oldPos[3*a+2] - oldPos[3*b+2]; |
471 | < | |
472 | < | rxab = rxab - info->box_x * copysign(1, rxab) |
473 | < | * int(rxab / info->box_x + 0.5); |
474 | < | ryab = ryab - info->box_y * copysign(1, ryab) |
475 | < | * int(ryab / info->box_y + 0.5); |
476 | < | rzab = rzab - info->box_z * copysign(1, rzab) |
477 | < | * int(rzab / info->box_z + 0.5); |
459 | > | bx = (b * 3) + 0; |
460 | > | by = (b * 3) + 1; |
461 | > | bz = (b * 3) + 2; |
462 | ||
463 | < | rpab = rxab * pxab + ryab * pyab + rzab * pzab; |
464 | < | rpabsq = rpab * rpab; |
463 | > | if (moved[a] || moved[b]){ |
464 | > | atoms[a]->getPos(posA); |
465 | > | atoms[b]->getPos(posB); |
466 | ||
467 | + | for (j = 0; j < 3; j++) |
468 | + | pab[j] = posA[j] - posB[j]; |
469 | ||
470 | < | if (rpabsq < (rabsq * -diffsq)){ |
470 | > | //periodic boundary condition |
471 | > | |
472 | > | info->wrapVector(pab); |
473 | > | |
474 | > | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
475 | > | |
476 | > | rabsq = constrainedDsqr[i]; |
477 | > | diffsq = rabsq - pabsq; |
478 | > | |
479 | > | // the original rattle code from alan tidesley |
480 | > | if (fabs(diffsq) > (tol * rabsq * 2)){ |
481 | > | rab[0] = oldPos[ax] - oldPos[bx]; |
482 | > | rab[1] = oldPos[ay] - oldPos[by]; |
483 | > | rab[2] = oldPos[az] - oldPos[bz]; |
484 | > | |
485 | > | info->wrapVector(rab); |
486 | > | |
487 | > | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
488 | > | |
489 | > | rpabsq = rpab * rpab; |
490 | > | |
491 | > | |
492 | > | if (rpabsq < (rabsq * -diffsq)){ |
493 | #ifdef IS_MPI | |
494 | < | a = atoms[a]->getGlobalIndex(); |
495 | < | b = atoms[b]->getGlobalIndex(); |
494 | > | a = atoms[a]->getGlobalIndex(); |
495 | > | b = atoms[b]->getGlobalIndex(); |
496 | #endif //is_mpi | |
497 | < | sprintf( painCave.errMsg, |
498 | < | "Constraint failure in constrainA at atom %d and %d\n.", |
499 | < | a, b ); |
500 | < | painCave.isFatal = 1; |
501 | < | simError(); |
502 | < | } |
497 | > | sprintf(painCave.errMsg, |
498 | > | "Constraint failure in constrainA at atom %d and %d.\n", a, |
499 | > | b); |
500 | > | painCave.isFatal = 1; |
501 | > | simError(); |
502 | > | } |
503 | ||
504 | < | rma = 1.0 / atoms[a]->getMass(); |
505 | < | rmb = 1.0 / atoms[b]->getMass(); |
497 | < | |
498 | < | gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); |
499 | < | dx = rxab * gab; |
500 | < | dy = ryab * gab; |
501 | < | dz = rzab * gab; |
504 | > | rma = 1.0 / atoms[a]->getMass(); |
505 | > | rmb = 1.0 / atoms[b]->getMass(); |
506 | ||
507 | < | pos[3*a+0] += rma * dx; |
504 | < | pos[3*a+1] += rma * dy; |
505 | < | pos[3*a+2] += rma * dz; |
507 | > | gab = diffsq / (2.0 * (rma + rmb) * rpab); |
508 | ||
509 | < | pos[3*b+0] -= rmb * dx; |
510 | < | pos[3*b+1] -= rmb * dy; |
511 | < | pos[3*b+2] -= rmb * dz; |
509 | > | dx = rab[0] * gab; |
510 | > | dy = rab[1] * gab; |
511 | > | dz = rab[2] * gab; |
512 | ||
513 | + | posA[0] += rma * dx; |
514 | + | posA[1] += rma * dy; |
515 | + | posA[2] += rma * dz; |
516 | + | |
517 | + | atoms[a]->setPos(posA); |
518 | + | |
519 | + | posB[0] -= rmb * dx; |
520 | + | posB[1] -= rmb * dy; |
521 | + | posB[2] -= rmb * dz; |
522 | + | |
523 | + | atoms[b]->setPos(posB); |
524 | + | |
525 | dx = dx / dt; | |
526 | dy = dy / dt; | |
527 | dz = dz / dt; | |
528 | ||
529 | < | vel[3*a+0] += rma * dx; |
516 | < | vel[3*a+1] += rma * dy; |
517 | < | vel[3*a+2] += rma * dz; |
529 | > | atoms[a]->getVel(velA); |
530 | ||
531 | < | vel[3*b+0] -= rmb * dx; |
532 | < | vel[3*b+1] -= rmb * dy; |
533 | < | vel[3*b+2] -= rmb * dz; |
531 | > | velA[0] += rma * dx; |
532 | > | velA[1] += rma * dy; |
533 | > | velA[2] += rma * dz; |
534 | ||
535 | < | moving[a] = 1; |
536 | < | moving[b] = 1; |
537 | < | done = 0; |
538 | < | } |
535 | > | atoms[a]->setVel(velA); |
536 | > | |
537 | > | atoms[b]->getVel(velB); |
538 | > | |
539 | > | velB[0] -= rmb * dx; |
540 | > | velB[1] -= rmb * dy; |
541 | > | velB[2] -= rmb * dz; |
542 | > | |
543 | > | atoms[b]->setVel(velB); |
544 | > | |
545 | > | moving[a] = 1; |
546 | > | moving[b] = 1; |
547 | > | done = 0; |
548 | > | } |
549 | } | |
550 | } | |
551 | < | |
552 | < | for(i=0; i<nAtoms; i++){ |
531 | < | |
551 | > | |
552 | > | for (i = 0; i < nAtoms; i++){ |
553 | moved[i] = moving[i]; | |
554 | moving[i] = 0; | |
555 | } | |
# | Line 536 | Line 557 | void Integrator::constrainA(){ | |
557 | iteration++; | |
558 | } | |
559 | ||
560 | < | if( !done ){ |
561 | < | |
562 | < | sprintf( painCae.errMsg, |
563 | < | "Constraint failure in constrainA, too many iterations: %d\n", |
543 | < | iterations ); |
560 | > | if (!done){ |
561 | > | sprintf(painCave.errMsg, |
562 | > | "Constraint failure in constrainA, too many iterations: %d\n", |
563 | > | iteration); |
564 | painCave.isFatal = 1; | |
565 | simError(); | |
566 | } | |
567 | ||
568 | } | |
569 | ||
570 | < | void Integrator::constrainB( void ){ |
571 | < | |
552 | < | int i,j,k; |
570 | > | template<typename T> void Integrator<T>::constrainB(void){ |
571 | > | int i, j, k; |
572 | int done; | |
573 | + | double posA[3], posB[3]; |
574 | + | double velA[3], velB[3]; |
575 | double vxab, vyab, vzab; | |
576 | < | double rxab, ryab, rzab; |
577 | < | int a, b; |
576 | > | double rab[3]; |
577 | > | int a, b, ax, ay, az, bx, by, bz; |
578 | double rma, rmb; | |
579 | double dx, dy, dz; | |
580 | double rabsq, pabsq, rvab; | |
# | Line 561 | Line 582 | void Integrator::constrainB( void ){ | |
582 | double gab; | |
583 | int iteration; | |
584 | ||
585 | < | for(i=0; i<nAtom; i++){ |
585 | > | for (i = 0; i < nAtoms; i++){ |
586 | moving[i] = 0; | |
587 | moved[i] = 1; | |
588 | } | |
589 | ||
590 | done = 0; | |
591 | < | while( !done && (iteration < maxIteration ) ){ |
591 | > | iteration = 0; |
592 | > | while (!done && (iteration < maxIteration)){ |
593 | > | done = 1; |
594 | ||
595 | < | for(i=0; i<nConstrained; i++){ |
573 | < | |
595 | > | for (i = 0; i < nConstrained; i++){ |
596 | a = constrainedA[i]; | |
597 | b = constrainedB[i]; | |
598 | ||
599 | < | if( moved[a] || moved[b] ){ |
600 | < | |
601 | < | vxab = vel[3*a+0] - vel[3*b+0]; |
580 | < | vyab = vel[3*a+1] - vel[3*b+1]; |
581 | < | vzab = vel[3*a+2] - vel[3*b+2]; |
599 | > | ax = (a * 3) + 0; |
600 | > | ay = (a * 3) + 1; |
601 | > | az = (a * 3) + 2; |
602 | ||
603 | < | rxab = pos[3*a+0] - pos[3*b+0];q |
604 | < | ryab = pos[3*a+1] - pos[3*b+1]; |
605 | < | rzab = pos[3*a+2] - pos[3*b+2]; |
586 | < | |
587 | < | rxab = rxab - info->box_x * copysign(1, rxab) |
588 | < | * int(rxab / info->box_x + 0.5); |
589 | < | ryab = ryab - info->box_y * copysign(1, ryab) |
590 | < | * int(ryab / info->box_y + 0.5); |
591 | < | rzab = rzab - info->box_z * copysign(1, rzab) |
592 | < | * int(rzab / info->box_z + 0.5); |
603 | > | bx = (b * 3) + 0; |
604 | > | by = (b * 3) + 1; |
605 | > | bz = (b * 3) + 2; |
606 | ||
607 | < | rma = 1.0 / atoms[a]->getMass(); |
608 | < | rmb = 1.0 / atoms[b]->getMass(); |
607 | > | if (moved[a] || moved[b]){ |
608 | > | atoms[a]->getVel(velA); |
609 | > | atoms[b]->getVel(velB); |
610 | ||
611 | < | rvab = rxab * vxab + ryab * vyab + rzab * vzab; |
612 | < | |
613 | < | gab = -rvab / ( ( rma + rmb ) * constraintsDsqr[i] ); |
611 | > | vxab = velA[0] - velB[0]; |
612 | > | vyab = velA[1] - velB[1]; |
613 | > | vzab = velA[2] - velB[2]; |
614 | ||
615 | < | if (fabs(gab) > tol) { |
616 | < | |
603 | < | dx = rxab * gab; |
604 | < | dy = ryab * gab; |
605 | < | dz = rzab * gab; |
606 | < | |
607 | < | vel[3*a+0] += rma * dx; |
608 | < | vel[3*a+1] += rma * dy; |
609 | < | vel[3*a+2] += rma * dz; |
615 | > | atoms[a]->getPos(posA); |
616 | > | atoms[b]->getPos(posB); |
617 | ||
618 | < | vel[3*b+0] -= rmb * dx; |
619 | < | vel[3*b+1] -= rmb * dy; |
620 | < | vel[3*b+2] -= rmb * dz; |
621 | < | |
622 | < | moving[a] = 1; |
623 | < | moving[b] = 1; |
624 | < | done = 0; |
625 | < | } |
618 | > | for (j = 0; j < 3; j++) |
619 | > | rab[j] = posA[j] - posB[j]; |
620 | > | |
621 | > | info->wrapVector(rab); |
622 | > | |
623 | > | rma = 1.0 / atoms[a]->getMass(); |
624 | > | rmb = 1.0 / atoms[b]->getMass(); |
625 | > | |
626 | > | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
627 | > | |
628 | > | gab = -rvab / ((rma + rmb) * constrainedDsqr[i]); |
629 | > | |
630 | > | if (fabs(gab) > tol){ |
631 | > | dx = rab[0] * gab; |
632 | > | dy = rab[1] * gab; |
633 | > | dz = rab[2] * gab; |
634 | > | |
635 | > | velA[0] += rma * dx; |
636 | > | velA[1] += rma * dy; |
637 | > | velA[2] += rma * dz; |
638 | > | |
639 | > | atoms[a]->setVel(velA); |
640 | > | |
641 | > | velB[0] -= rmb * dx; |
642 | > | velB[1] -= rmb * dy; |
643 | > | velB[2] -= rmb * dz; |
644 | > | |
645 | > | atoms[b]->setVel(velB); |
646 | > | |
647 | > | moving[a] = 1; |
648 | > | moving[b] = 1; |
649 | > | done = 0; |
650 | > | } |
651 | } | |
652 | } | |
653 | ||
654 | < | for(i=0; i<nAtoms; i++){ |
654 | > | for (i = 0; i < nAtoms; i++){ |
655 | moved[i] = moving[i]; | |
656 | moving[i] = 0; | |
657 | } | |
658 | < | |
658 | > | |
659 | iteration++; | |
660 | } | |
661 | ||
662 | < | if( !done ){ |
663 | < | |
664 | < | |
665 | < | sprintf( painCae.errMsg, |
634 | < | "Constraint failure in constrainB, too many iterations: %d\n", |
635 | < | iterations ); |
662 | > | if (!done){ |
663 | > | sprintf(painCave.errMsg, |
664 | > | "Constraint failure in constrainB, too many iterations: %d\n", |
665 | > | iteration); |
666 | painCave.isFatal = 1; | |
667 | simError(); | |
668 | < | } |
639 | < | |
668 | > | } |
669 | } | |
670 | ||
671 | < | |
672 | < | |
673 | < | |
674 | < | |
646 | < | |
647 | < | |
648 | < | void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], |
649 | < | double A[3][3] ){ |
650 | < | |
651 | < | int i,j,k; |
671 | > | template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
672 | > | double angle, double ji[3], |
673 | > | double A[3][3]){ |
674 | > | int i, j, k; |
675 | double sinAngle; | |
676 | double cosAngle; | |
677 | double angleSqr; | |
# | Line 660 | Line 683 | void Integrator::rotate( int axes1, int axes2, double | |
683 | ||
684 | // initialize the tempA | |
685 | ||
686 | < | for(i=0; i<3; i++){ |
687 | < | for(j=0; j<3; j++){ |
686 | > | for (i = 0; i < 3; i++){ |
687 | > | for (j = 0; j < 3; j++){ |
688 | tempA[j][i] = A[i][j]; | |
689 | } | |
690 | } | |
691 | ||
692 | // initialize the tempJ | |
693 | ||
694 | < | for( i=0; i<3; i++) tempJ[i] = ji[i]; |
695 | < | |
694 | > | for (i = 0; i < 3; i++) |
695 | > | tempJ[i] = ji[i]; |
696 | > | |
697 | // initalize rot as a unit matrix | |
698 | ||
699 | rot[0][0] = 1.0; | |
# | Line 679 | Line 703 | void Integrator::rotate( int axes1, int axes2, double | |
703 | rot[1][0] = 0.0; | |
704 | rot[1][1] = 1.0; | |
705 | rot[1][2] = 0.0; | |
706 | < | |
706 | > | |
707 | rot[2][0] = 0.0; | |
708 | rot[2][1] = 0.0; | |
709 | rot[2][2] = 1.0; | |
710 | < | |
710 | > | |
711 | // use a small angle aproximation for sin and cosine | |
712 | ||
713 | < | angleSqr = angle * angle; |
713 | > | angleSqr = angle * angle; |
714 | angleSqrOver4 = angleSqr / 4.0; | |
715 | top = 1.0 - angleSqrOver4; | |
716 | bottom = 1.0 + angleSqrOver4; | |
# | Line 699 | Line 723 | void Integrator::rotate( int axes1, int axes2, double | |
723 | ||
724 | rot[axes1][axes2] = sinAngle; | |
725 | rot[axes2][axes1] = -sinAngle; | |
726 | < | |
726 | > | |
727 | // rotate the momentum acoording to: ji[] = rot[][] * ji[] | |
728 | < | |
729 | < | for(i=0; i<3; i++){ |
728 | > | |
729 | > | for (i = 0; i < 3; i++){ |
730 | ji[i] = 0.0; | |
731 | < | for(k=0; k<3; k++){ |
731 | > | for (k = 0; k < 3; k++){ |
732 | ji[i] += rot[i][k] * tempJ[k]; | |
733 | } | |
734 | } | |
# | Line 713 | Line 737 | void Integrator::rotate( int axes1, int axes2, double | |
737 | // A[][] = A[][] * transpose(rot[][]) | |
738 | ||
739 | ||
740 | < | // NOte for as yet unknown reason, we are setting the performing the |
740 | > | // NOte for as yet unknown reason, we are performing the |
741 | // calculation as: | |
742 | // transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | |
743 | ||
744 | < | for(i=0; i<3; i++){ |
745 | < | for(j=0; j<3; j++){ |
744 | > | for (i = 0; i < 3; i++){ |
745 | > | for (j = 0; j < 3; j++){ |
746 | A[j][i] = 0.0; | |
747 | < | for(k=0; k<3; k++){ |
748 | < | A[j][i] += tempA[i][k] * rot[j][k]; |
747 | > | for (k = 0; k < 3; k++){ |
748 | > | A[j][i] += tempA[i][k] * rot[j][k]; |
749 | } | |
750 | } | |
751 | } | |
752 | } | |
753 | + | |
754 | + | template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){ |
755 | + | myFF->doForces(calcPot, calcStress); |
756 | + | } |
757 | + | |
758 | + | template<typename T> void Integrator<T>::thermalize(){ |
759 | + | tStats->velocitize(); |
760 | + | } |
761 | + | |
762 | + | template<typename T> double Integrator<T>::getConservedQuantity(void){ |
763 | + | return tStats->getTotalE(); |
764 | + | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |