# | Line 1 | Line 1 | |
---|---|---|
1 | #include <iostream> | |
2 | #include <cstdlib> | |
3 | + | #include <cmath> |
4 | ||
5 | #ifdef IS_MPI | |
6 | #include "mpiSimulation.hpp" | |
# | Line 10 | Line 11 | |
11 | #include "simError.h" | |
12 | ||
13 | ||
14 | < | Integrator::Integrator( SimInfo* theInfo, ForceFields* the_ff ){ |
14 | > | Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){ |
15 | ||
16 | info = theInfo; | |
17 | myFF = the_ff; | |
# | Line 33 | Line 34 | Integrator::Integrator( SimInfo* theInfo, ForceFields* | |
34 | constrainedDsqr = NULL; | |
35 | moving = NULL; | |
36 | moved = NULL; | |
37 | < | prePos = NULL; |
37 | > | oldPos = NULL; |
38 | ||
39 | nConstrained = 0; | |
40 | ||
# | Line 48 | Line 49 | Integrator::~Integrator() { | |
49 | delete[] constrainedDsqr; | |
50 | delete[] moving; | |
51 | delete[] moved; | |
52 | < | delete[] prePos; |
52 | < | k |
52 | > | delete[] oldPos; |
53 | } | |
54 | ||
55 | } | |
# | Line 137 | Line 137 | void Integrator::checkConstraints( void ){ | |
137 | constrainedA[i] = temp_con[i].get_a(); | |
138 | constrainedB[i] = temp_con[i].get_b(); | |
139 | constrainedDsqr[i] = temp_con[i].get_dsqr(); | |
140 | + | |
141 | } | |
142 | ||
143 | ||
# | Line 147 | Line 148 | void Integrator::checkConstraints( void ){ | |
148 | moving = new int[nAtoms]; | |
149 | moved = new int[nAtoms]; | |
150 | ||
151 | < | prePos = new double[nAtoms*3]; |
151 | > | oldPos = new double[nAtoms*3]; |
152 | } | |
153 | ||
154 | delete[] temp_con; | |
# | Line 157 | Line 158 | void Integrator::integrate( void ){ | |
158 | void Integrator::integrate( void ){ | |
159 | ||
160 | int i, j; // loop counters | |
160 | – | double kE = 0.0; // the kinetic energy |
161 | – | double rot_kE; |
162 | – | double trans_kE; |
163 | – | int tl; // the time loop conter |
164 | – | double dt2; // half the dt |
161 | ||
166 | – | double vx, vy, vz; // the velocities |
167 | – | double vx2, vy2, vz2; // the square of the velocities |
168 | – | double rx, ry, rz; // the postitions |
169 | – | |
170 | – | double ji[3]; // the body frame angular momentum |
171 | – | double jx2, jy2, jz2; // the square of the angular momentums |
172 | – | double Tb[3]; // torque in the body frame |
173 | – | double angle; // the angle through which to rotate the rotation matrix |
174 | – | double A[3][3]; // the rotation matrix |
175 | – | double press[9]; |
176 | – | |
177 | – | double dt = info->dt; |
162 | double runTime = info->run_time; | |
163 | double sampleTime = info->sampleTime; | |
164 | double statusTime = info->statusTime; | |
# | Line 188 | Line 172 | void Integrator::integrate( void ){ | |
172 | int calcPot, calcStress; | |
173 | int isError; | |
174 | ||
175 | + | |
176 | + | |
177 | tStats = new Thermo( info ); | |
178 | < | e_out = new StatWriter( info ); |
179 | < | dump_out = new DumpWriter( info ); |
178 | > | statOut = new StatWriter( info ); |
179 | > | dumpOut = new DumpWriter( info ); |
180 | ||
181 | < | Atom** atoms = info->atoms; |
181 | > | atoms = info->atoms; |
182 | DirectionalAtom* dAtom; | |
183 | + | |
184 | + | dt = info->dt; |
185 | dt2 = 0.5 * dt; | |
186 | ||
187 | // initialize the forces before the first step | |
# | Line 205 | Line 193 | void Integrator::integrate( void ){ | |
193 | tStats->velocitize(); | |
194 | } | |
195 | ||
196 | < | dump_out->writeDump( 0.0 ); |
197 | < | e_out->writeStat( 0.0 ); |
196 | > | dumpOut->writeDump( 0.0 ); |
197 | > | statOut->writeStat( 0.0 ); |
198 | ||
199 | calcPot = 0; | |
200 | calcStress = 0; | |
# | Line 215 | Line 203 | void Integrator::integrate( void ){ | |
203 | currStatus = statusTime; | |
204 | currTime = 0.0;; | |
205 | ||
206 | + | |
207 | + | readyCheck(); |
208 | + | |
209 | + | #ifdef IS_MPI |
210 | + | strcpy( checkPointMsg, |
211 | + | "The integrator is ready to go." ); |
212 | + | MPIcheckPoint(); |
213 | + | #endif // is_mpi |
214 | + | |
215 | + | |
216 | + | pos = Atom::getPosArray(); |
217 | + | vel = Atom::getVelArray(); |
218 | + | frc = Atom::getFrcArray(); |
219 | + | trq = Atom::getTrqArray(); |
220 | + | Amat = Atom::getAmatArray(); |
221 | + | |
222 | while( currTime < runTime ){ | |
223 | ||
224 | if( (currTime+dt) >= currStatus ){ | |
225 | calcPot = 1; | |
226 | calcStress = 1; | |
227 | } | |
228 | < | |
228 | > | |
229 | integrateStep( calcPot, calcStress ); | |
230 | ||
231 | currTime += dt; | |
# | Line 234 | Line 238 | void Integrator::integrate( void ){ | |
238 | } | |
239 | ||
240 | if( currTime >= currSample ){ | |
241 | < | dump_out->writeDump( currTime ); |
241 | > | dumpOut->writeDump( currTime ); |
242 | currSample += sampleTime; | |
243 | } | |
244 | ||
245 | if( currTime >= currStatus ){ | |
246 | < | e_out->writeStat( time * dt ); |
246 | > | statOut->writeStat( currTime ); |
247 | calcPot = 0; | |
248 | calcStress = 0; | |
249 | currStatus += statusTime; | |
250 | } | |
251 | + | |
252 | + | #ifdef IS_MPI |
253 | + | strcpy( checkPointMsg, |
254 | + | "successfully took a time step." ); |
255 | + | MPIcheckPoint(); |
256 | + | #endif // is_mpi |
257 | + | |
258 | } | |
259 | ||
260 | < | dump_out->writeFinal(); |
260 | > | dumpOut->writeFinal(currTime); |
261 | ||
262 | < | delete dump_out; |
263 | < | delete e_out; |
262 | > | delete dumpOut; |
263 | > | delete statOut; |
264 | } | |
265 | ||
266 | void Integrator::integrateStep( int calcPot, int calcStress ){ | |
267 | ||
268 | + | |
269 | + | |
270 | // Position full step, and velocity half step | |
271 | ||
272 | < | //preMove(); |
272 | > | preMove(); |
273 | moveA(); | |
274 | if( nConstrained ) constrainA(); | |
275 | ||
# | Line 279 | Line 292 | void Integrator::moveA( void ){ | |
292 | DirectionalAtom* dAtom; | |
293 | double Tb[3]; | |
294 | double ji[3]; | |
295 | + | double angle; |
296 | ||
297 | + | |
298 | + | |
299 | for( i=0; i<nAtoms; i++ ){ | |
300 | atomIndex = i * 3; | |
301 | aMatIndex = i * 9; | |
302 | < | |
302 | > | |
303 | // velocity half step | |
304 | for( j=atomIndex; j<(atomIndex+3); j++ ) | |
305 | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; | |
306 | ||
307 | // position whole step | |
308 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
309 | < | pos[j] += dt * vel[j]; |
294 | < | |
295 | < | |
308 | > | for( j=atomIndex; j<(atomIndex+3); j++ ) pos[j] += dt * vel[j]; |
309 | > | |
310 | if( atoms[i]->isDirectional() ){ | |
311 | ||
312 | dAtom = (DirectionalAtom *)atoms[i]; | |
# | Line 316 | Line 330 | void Integrator::moveA( void ){ | |
330 | ||
331 | // rotate about the x-axis | |
332 | angle = dt2 * ji[0] / dAtom->getIxx(); | |
333 | < | this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
333 | > | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
334 | ||
335 | // rotate about the y-axis | |
336 | angle = dt2 * ji[1] / dAtom->getIyy(); | |
337 | < | this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
337 | > | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
338 | ||
339 | // rotate about the z-axis | |
340 | angle = dt * ji[2] / dAtom->getIzz(); | |
341 | < | this->rotate( 0, 1, angle, ji, &aMat[aMatIndex] ); |
341 | > | this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
342 | ||
343 | // rotate about the y-axis | |
344 | angle = dt2 * ji[1] / dAtom->getIyy(); | |
345 | < | this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
345 | > | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
346 | ||
347 | // rotate about the x-axis | |
348 | angle = dt2 * ji[0] / dAtom->getIxx(); | |
349 | < | this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
349 | > | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
350 | ||
351 | dAtom->setJx( ji[0] ); | |
352 | dAtom->setJy( ji[1] ); | |
# | Line 376 | Line 390 | void Integrator::moveB( void ){ | |
390 | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; | |
391 | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; | |
392 | ||
379 | – | jx2 = ji[0] * ji[0]; |
380 | – | jy2 = ji[1] * ji[1]; |
381 | – | jz2 = ji[2] * ji[2]; |
382 | – | |
393 | dAtom->setJx( ji[0] ); | |
394 | dAtom->setJy( ji[1] ); | |
395 | dAtom->setJz( ji[2] ); | |
# | Line 392 | Line 402 | void Integrator::preMove( void ){ | |
402 | int i; | |
403 | ||
404 | if( nConstrained ){ | |
405 | < | if( oldAtoms != nAtoms ){ |
396 | < | |
397 | < | // save oldAtoms to check for lode balanceing later on. |
398 | < | |
399 | < | oldAtoms = nAtoms; |
400 | < | |
401 | < | delete[] moving; |
402 | < | delete[] moved; |
403 | < | delete[] oldPos; |
404 | < | |
405 | < | moving = new int[nAtoms]; |
406 | < | moved = new int[nAtoms]; |
407 | < | |
408 | < | oldPos = new double[nAtoms*3]; |
409 | < | } |
410 | < | |
405 | > | |
406 | for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i]; | |
407 | } | |
408 | } | |
# | Line 416 | Line 411 | void Integrator::constrainA(){ | |
411 | ||
412 | int i,j,k; | |
413 | int done; | |
414 | < | double pxab, pyab, pzab; |
415 | < | double rxab, ryab, rzab; |
416 | < | int a, b; |
414 | > | double pab[3]; |
415 | > | double rab[3]; |
416 | > | int a, b, ax, ay, az, bx, by, bz; |
417 | double rma, rmb; | |
418 | double dx, dy, dz; | |
419 | + | double rpab; |
420 | double rabsq, pabsq, rpabsq; | |
421 | double diffsq; | |
422 | double gab; | |
# | Line 433 | Line 429 | void Integrator::constrainA(){ | |
429 | moving[i] = 0; | |
430 | moved[i] = 1; | |
431 | } | |
432 | < | |
437 | < | |
432 | > | |
433 | iteration = 0; | |
434 | done = 0; | |
435 | while( !done && (iteration < maxIteration )){ | |
# | Line 444 | Line 439 | void Integrator::constrainA(){ | |
439 | ||
440 | a = constrainedA[i]; | |
441 | b = constrainedB[i]; | |
442 | < | |
442 | > | |
443 | > | ax = (a*3) + 0; |
444 | > | ay = (a*3) + 1; |
445 | > | az = (a*3) + 2; |
446 | > | |
447 | > | bx = (b*3) + 0; |
448 | > | by = (b*3) + 1; |
449 | > | bz = (b*3) + 2; |
450 | > | |
451 | if( moved[a] || moved[b] ){ | |
452 | ||
453 | < | pxab = pos[3*a+0] - pos[3*b+0]; |
454 | < | pyab = pos[3*a+1] - pos[3*b+1]; |
455 | < | pzab = pos[3*a+2] - pos[3*b+2]; |
453 | > | pab[0] = pos[ax] - pos[bx]; |
454 | > | pab[1] = pos[ay] - pos[by]; |
455 | > | pab[2] = pos[az] - pos[bz]; |
456 | ||
457 | < | //periodic boundary condition |
458 | < | pxab = pxab - info->box_x * copysign(1, pxab) |
459 | < | * int(pxab / info->box_x + 0.5); |
457 | < | pyab = pyab - info->box_y * copysign(1, pyab) |
458 | < | * int(pyab / info->box_y + 0.5); |
459 | < | pzab = pzab - info->box_z * copysign(1, pzab) |
460 | < | * int(pzab / info->box_z + 0.5); |
461 | < | |
462 | < | pabsq = pxab * pxab + pyab * pyab + pzab * pzab; |
463 | < | rabsq = constraintedDsqr[i]; |
464 | < | diffsq = pabsq - rabsq; |
457 | > | //periodic boundary condition |
458 | > | |
459 | > | info->wrapVector( pab ); |
460 | ||
461 | + | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
462 | + | |
463 | + | rabsq = constrainedDsqr[i]; |
464 | + | diffsq = rabsq - pabsq; |
465 | + | |
466 | // the original rattle code from alan tidesley | |
467 | < | if (fabs(diffsq) > tol*rabsq*2) { |
468 | < | rxab = oldPos[3*a+0] - oldPos[3*b+0]; |
469 | < | ryab = oldPos[3*a+1] - oldPos[3*b+1]; |
470 | < | rzab = oldPos[3*a+2] - oldPos[3*b+2]; |
471 | < | |
472 | < | rxab = rxab - info->box_x * copysign(1, rxab) |
473 | < | * int(rxab / info->box_x + 0.5); |
474 | < | ryab = ryab - info->box_y * copysign(1, ryab) |
475 | < | * int(ryab / info->box_y + 0.5); |
476 | < | rzab = rzab - info->box_z * copysign(1, rzab) |
477 | < | * int(rzab / info->box_z + 0.5); |
467 | > | if (fabs(diffsq) > (tol*rabsq*2)) { |
468 | > | rab[0] = oldPos[ax] - oldPos[bx]; |
469 | > | rab[1] = oldPos[ay] - oldPos[by]; |
470 | > | rab[2] = oldPos[az] - oldPos[bz]; |
471 | ||
472 | < | rpab = rxab * pxab + ryab * pyab + rzab * pzab; |
472 | > | info->wrapVector( rab ); |
473 | > | |
474 | > | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
475 | > | |
476 | rpabsq = rpab * rpab; | |
477 | ||
478 | ||
479 | if (rpabsq < (rabsq * -diffsq)){ | |
480 | + | |
481 | #ifdef IS_MPI | |
482 | a = atoms[a]->getGlobalIndex(); | |
483 | b = atoms[b]->getGlobalIndex(); | |
484 | #endif //is_mpi | |
485 | sprintf( painCave.errMsg, | |
486 | < | "Constraint failure in constrainA at atom %d and %d\n.", |
486 | > | "Constraint failure in constrainA at atom %d and %d.\n", |
487 | a, b ); | |
488 | painCave.isFatal = 1; | |
489 | simError(); | |
# | Line 494 | Line 491 | void Integrator::constrainA(){ | |
491 | ||
492 | rma = 1.0 / atoms[a]->getMass(); | |
493 | rmb = 1.0 / atoms[b]->getMass(); | |
494 | < | |
494 | > | |
495 | gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); | |
499 | – | dx = rxab * gab; |
500 | – | dy = ryab * gab; |
501 | – | dz = rzab * gab; |
496 | ||
497 | < | pos[3*a+0] += rma * dx; |
498 | < | pos[3*a+1] += rma * dy; |
499 | < | pos[3*a+2] += rma * dz; |
497 | > | dx = rab[0] * gab; |
498 | > | dy = rab[1] * gab; |
499 | > | dz = rab[2] * gab; |
500 | ||
501 | < | pos[3*b+0] -= rmb * dx; |
502 | < | pos[3*b+1] -= rmb * dy; |
503 | < | pos[3*b+2] -= rmb * dz; |
501 | > | pos[ax] += rma * dx; |
502 | > | pos[ay] += rma * dy; |
503 | > | pos[az] += rma * dz; |
504 | ||
505 | + | pos[bx] -= rmb * dx; |
506 | + | pos[by] -= rmb * dy; |
507 | + | pos[bz] -= rmb * dz; |
508 | + | |
509 | dx = dx / dt; | |
510 | dy = dy / dt; | |
511 | dz = dz / dt; | |
512 | ||
513 | < | vel[3*a+0] += rma * dx; |
514 | < | vel[3*a+1] += rma * dy; |
515 | < | vel[3*a+2] += rma * dz; |
513 | > | vel[ax] += rma * dx; |
514 | > | vel[ay] += rma * dy; |
515 | > | vel[az] += rma * dz; |
516 | ||
517 | < | vel[3*b+0] -= rmb * dx; |
518 | < | vel[3*b+1] -= rmb * dy; |
519 | < | vel[3*b+2] -= rmb * dz; |
517 | > | vel[bx] -= rmb * dx; |
518 | > | vel[by] -= rmb * dy; |
519 | > | vel[bz] -= rmb * dz; |
520 | ||
521 | moving[a] = 1; | |
522 | moving[b] = 1; | |
# | Line 538 | Line 536 | void Integrator::constrainA(){ | |
536 | ||
537 | if( !done ){ | |
538 | ||
539 | < | sprintf( painCae.errMsg, |
539 | > | sprintf( painCave.errMsg, |
540 | "Constraint failure in constrainA, too many iterations: %d\n", | |
541 | < | iterations ); |
541 | > | iteration ); |
542 | painCave.isFatal = 1; | |
543 | simError(); | |
544 | } | |
# | Line 552 | Line 550 | void Integrator::constrainB( void ){ | |
550 | int i,j,k; | |
551 | int done; | |
552 | double vxab, vyab, vzab; | |
553 | < | double rxab, ryab, rzab; |
554 | < | int a, b; |
553 | > | double rab[3]; |
554 | > | int a, b, ax, ay, az, bx, by, bz; |
555 | double rma, rmb; | |
556 | double dx, dy, dz; | |
557 | double rabsq, pabsq, rvab; | |
# | Line 561 | Line 559 | void Integrator::constrainB( void ){ | |
559 | double gab; | |
560 | int iteration; | |
561 | ||
562 | < | for(i=0; i<nAtom; i++){ |
562 | > | for(i=0; i<nAtoms; i++){ |
563 | moving[i] = 0; | |
564 | moved[i] = 1; | |
565 | } | |
566 | ||
567 | done = 0; | |
568 | + | iteration = 0; |
569 | while( !done && (iteration < maxIteration ) ){ | |
570 | ||
571 | + | done = 1; |
572 | + | |
573 | for(i=0; i<nConstrained; i++){ | |
574 | ||
575 | a = constrainedA[i]; | |
576 | b = constrainedB[i]; | |
577 | ||
578 | + | ax = (a*3) + 0; |
579 | + | ay = (a*3) + 1; |
580 | + | az = (a*3) + 2; |
581 | + | |
582 | + | bx = (b*3) + 0; |
583 | + | by = (b*3) + 1; |
584 | + | bz = (b*3) + 2; |
585 | + | |
586 | if( moved[a] || moved[b] ){ | |
587 | ||
588 | < | vxab = vel[3*a+0] - vel[3*b+0]; |
589 | < | vyab = vel[3*a+1] - vel[3*b+1]; |
590 | < | vzab = vel[3*a+2] - vel[3*b+2]; |
588 | > | vxab = vel[ax] - vel[bx]; |
589 | > | vyab = vel[ay] - vel[by]; |
590 | > | vzab = vel[az] - vel[bz]; |
591 | ||
592 | < | rxab = pos[3*a+0] - pos[3*b+0];q |
593 | < | ryab = pos[3*a+1] - pos[3*b+1]; |
594 | < | rzab = pos[3*a+2] - pos[3*b+2]; |
592 | > | rab[0] = pos[ax] - pos[bx]; |
593 | > | rab[1] = pos[ay] - pos[by]; |
594 | > | rab[2] = pos[az] - pos[bz]; |
595 | ||
596 | < | rxab = rxab - info->box_x * copysign(1, rxab) |
597 | < | * int(rxab / info->box_x + 0.5); |
589 | < | ryab = ryab - info->box_y * copysign(1, ryab) |
590 | < | * int(ryab / info->box_y + 0.5); |
591 | < | rzab = rzab - info->box_z * copysign(1, rzab) |
592 | < | * int(rzab / info->box_z + 0.5); |
593 | < | |
596 | > | info->wrapVector( rab ); |
597 | > | |
598 | rma = 1.0 / atoms[a]->getMass(); | |
599 | rmb = 1.0 / atoms[b]->getMass(); | |
600 | ||
601 | < | rvab = rxab * vxab + ryab * vyab + rzab * vzab; |
601 | > | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
602 | ||
603 | < | gab = -rvab / ( ( rma + rmb ) * constraintsDsqr[i] ); |
603 | > | gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); |
604 | ||
605 | if (fabs(gab) > tol) { | |
606 | ||
607 | < | dx = rxab * gab; |
608 | < | dy = ryab * gab; |
609 | < | dz = rzab * gab; |
607 | > | dx = rab[0] * gab; |
608 | > | dy = rab[1] * gab; |
609 | > | dz = rab[2] * gab; |
610 | ||
611 | < | vel[3*a+0] += rma * dx; |
612 | < | vel[3*a+1] += rma * dy; |
613 | < | vel[3*a+2] += rma * dz; |
611 | > | vel[ax] += rma * dx; |
612 | > | vel[ay] += rma * dy; |
613 | > | vel[az] += rma * dz; |
614 | ||
615 | < | vel[3*b+0] -= rmb * dx; |
616 | < | vel[3*b+1] -= rmb * dy; |
617 | < | vel[3*b+2] -= rmb * dz; |
615 | > | vel[bx] -= rmb * dx; |
616 | > | vel[by] -= rmb * dy; |
617 | > | vel[bz] -= rmb * dz; |
618 | ||
619 | moving[a] = 1; | |
620 | moving[b] = 1; | |
# | Line 630 | Line 634 | void Integrator::constrainB( void ){ | |
634 | if( !done ){ | |
635 | ||
636 | ||
637 | < | sprintf( painCae.errMsg, |
637 | > | sprintf( painCave.errMsg, |
638 | "Constraint failure in constrainB, too many iterations: %d\n", | |
639 | < | iterations ); |
639 | > | iteration ); |
640 | painCave.isFatal = 1; | |
641 | simError(); | |
642 | } | |
# | Line 646 | Line 650 | void Integrator::rotate( int axes1, int axes2, double | |
650 | ||
651 | ||
652 | void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], | |
653 | < | double A[3][3] ){ |
653 | > | double A[9] ){ |
654 | ||
655 | int i,j,k; | |
656 | double sinAngle; | |
# | Line 662 | Line 666 | void Integrator::rotate( int axes1, int axes2, double | |
666 | ||
667 | for(i=0; i<3; i++){ | |
668 | for(j=0; j<3; j++){ | |
669 | < | tempA[j][i] = A[i][j]; |
669 | > | tempA[j][i] = A[3*i + j]; |
670 | } | |
671 | } | |
672 | ||
# | Line 713 | Line 717 | void Integrator::rotate( int axes1, int axes2, double | |
717 | // A[][] = A[][] * transpose(rot[][]) | |
718 | ||
719 | ||
720 | < | // NOte for as yet unknown reason, we are setting the performing the |
720 | > | // NOte for as yet unknown reason, we are performing the |
721 | // calculation as: | |
722 | // transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | |
723 | ||
724 | for(i=0; i<3; i++){ | |
725 | for(j=0; j<3; j++){ | |
726 | < | A[j][i] = 0.0; |
726 | > | A[3*j + i] = 0.0; |
727 | for(k=0; k<3; k++){ | |
728 | < | A[j][i] += tempA[i][k] * rot[j][k]; |
728 | > | A[3*j + i] += tempA[i][k] * rot[j][k]; |
729 | } | |
730 | } | |
731 | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |