# | Line 72 | Line 72 | void Integrator::checkConstraints( void ){ | |
---|---|---|
72 | for(int j=0; j<molecules[i].getNBonds(); j++){ | |
73 | ||
74 | constrained = theArray[j]->is_constrained(); | |
75 | < | |
75 | > | |
76 | if(constrained){ | |
77 | < | |
77 | > | |
78 | dummy_plug = theArray[j]->get_constraint(); | |
79 | temp_con[nConstrained].set_a( dummy_plug->get_a() ); | |
80 | temp_con[nConstrained].set_b( dummy_plug->get_b() ); | |
# | Line 82 | Line 82 | void Integrator::checkConstraints( void ){ | |
82 | ||
83 | nConstrained++; | |
84 | constrained = 0; | |
85 | < | } |
85 | > | } |
86 | } | |
87 | ||
88 | theArray = (SRI**) molecules[i].getMyBends(); | |
# | Line 167 | Line 167 | void Integrator::integrate( void ){ | |
167 | double currSample; | |
168 | double currThermal; | |
169 | double currStatus; | |
170 | – | double currTime; |
170 | ||
171 | int calcPot, calcStress; | |
172 | int isError; | |
173 | ||
175 | – | |
176 | – | |
174 | tStats = new Thermo( info ); | |
175 | statOut = new StatWriter( info ); | |
176 | dumpOut = new DumpWriter( info ); | |
# | Line 193 | Line 190 | void Integrator::integrate( void ){ | |
190 | tStats->velocitize(); | |
191 | } | |
192 | ||
196 | – | dumpOut->writeDump( 0.0 ); |
197 | – | statOut->writeStat( 0.0 ); |
198 | – | |
193 | calcPot = 0; | |
194 | calcStress = 0; | |
195 | currSample = sampleTime; | |
196 | currThermal = thermalTime; | |
197 | currStatus = statusTime; | |
204 | – | currTime = 0.0;; |
198 | ||
199 | + | dumpOut->writeDump( info->getTime() ); |
200 | + | statOut->writeStat( info->getTime() ); |
201 | ||
202 | readyCheck(); | |
203 | ||
# | Line 212 | Line 207 | void Integrator::integrate( void ){ | |
207 | MPIcheckPoint(); | |
208 | #endif // is_mpi | |
209 | ||
210 | + | while( info->getTime() < runTime ){ |
211 | ||
212 | < | pos = Atom::getPosArray(); |
217 | < | vel = Atom::getVelArray(); |
218 | < | frc = Atom::getFrcArray(); |
219 | < | trq = Atom::getTrqArray(); |
220 | < | Amat = Atom::getAmatArray(); |
221 | < | |
222 | < | while( currTime < runTime ){ |
223 | < | |
224 | < | if( (currTime+dt) >= currStatus ){ |
212 | > | if( (info->getTime()+dt) >= currStatus ){ |
213 | calcPot = 1; | |
214 | calcStress = 1; | |
215 | } | |
216 | ||
217 | integrateStep( calcPot, calcStress ); | |
218 | ||
219 | < | currTime += dt; |
219 | > | info->incrTime(dt); |
220 | ||
221 | if( info->setTemp ){ | |
222 | < | if( currTime >= currThermal ){ |
222 | > | if( info->getTime() >= currThermal ){ |
223 | tStats->velocitize(); | |
224 | currThermal += thermalTime; | |
225 | } | |
226 | } | |
227 | ||
228 | < | if( currTime >= currSample ){ |
229 | < | dumpOut->writeDump( currTime ); |
228 | > | if( info->getTime() >= currSample ){ |
229 | > | dumpOut->writeDump( info->getTime() ); |
230 | currSample += sampleTime; | |
231 | } | |
232 | ||
233 | < | if( currTime >= currStatus ){ |
234 | < | statOut->writeStat( currTime ); |
233 | > | if( info->getTime() >= currStatus ){ |
234 | > | statOut->writeStat( info->getTime() ); |
235 | calcPot = 0; | |
236 | calcStress = 0; | |
237 | currStatus += statusTime; | |
# | Line 257 | Line 245 | void Integrator::integrate( void ){ | |
245 | ||
246 | } | |
247 | ||
248 | < | dumpOut->writeFinal(currTime); |
248 | > | dumpOut->writeFinal(info->getTime()); |
249 | ||
250 | delete dumpOut; | |
251 | delete statOut; | |
# | Line 273 | Line 261 | void Integrator::integrateStep( int calcPot, int calcS | |
261 | moveA(); | |
262 | if( nConstrained ) constrainA(); | |
263 | ||
264 | + | |
265 | + | #ifdef IS_MPI |
266 | + | strcpy( checkPointMsg, "Succesful moveA\n" ); |
267 | + | MPIcheckPoint(); |
268 | + | #endif // is_mpi |
269 | + | |
270 | + | |
271 | // calc forces | |
272 | ||
273 | myFF->doForces(calcPot,calcStress); | |
274 | + | |
275 | + | #ifdef IS_MPI |
276 | + | strcpy( checkPointMsg, "Succesful doForces\n" ); |
277 | + | MPIcheckPoint(); |
278 | + | #endif // is_mpi |
279 | + | |
280 | ||
281 | // finish the velocity half step | |
282 | ||
283 | moveB(); | |
284 | if( nConstrained ) constrainB(); | |
285 | < | |
285 | > | |
286 | > | #ifdef IS_MPI |
287 | > | strcpy( checkPointMsg, "Succesful moveB\n" ); |
288 | > | MPIcheckPoint(); |
289 | > | #endif // is_mpi |
290 | > | |
291 | > | |
292 | } | |
293 | ||
294 | ||
295 | void Integrator::moveA( void ){ | |
296 | ||
297 | < | int i,j,k; |
291 | < | int atomIndex, aMatIndex; |
297 | > | int i, j; |
298 | DirectionalAtom* dAtom; | |
299 | < | double Tb[3]; |
300 | < | double ji[3]; |
299 | > | double Tb[3], ji[3]; |
300 | > | double A[3][3], I[3][3]; |
301 | double angle; | |
302 | + | double vel[3], pos[3], frc[3]; |
303 | + | double mass; |
304 | ||
305 | + | for( i=0; i<nAtoms; i++ ){ |
306 | ||
307 | + | atoms[i]->getVel( vel ); |
308 | + | atoms[i]->getPos( pos ); |
309 | + | atoms[i]->getFrc( frc ); |
310 | ||
311 | < | for( i=0; i<nAtoms; i++ ){ |
300 | < | atomIndex = i * 3; |
301 | < | aMatIndex = i * 9; |
311 | > | mass = atoms[i]->getMass(); |
312 | ||
313 | < | // velocity half step |
314 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
315 | < | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
313 | > | for (j=0; j < 3; j++) { |
314 | > | // velocity half step |
315 | > | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
316 | > | // position whole step |
317 | > | pos[j] += dt * vel[j]; |
318 | > | } |
319 | ||
320 | < | // position whole step |
321 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) pos[j] += dt * vel[j]; |
322 | < | |
320 | > | atoms[i]->setVel( vel ); |
321 | > | atoms[i]->setPos( pos ); |
322 | > | |
323 | if( atoms[i]->isDirectional() ){ | |
324 | ||
325 | dAtom = (DirectionalAtom *)atoms[i]; | |
326 | ||
327 | // get and convert the torque to body frame | |
328 | ||
329 | < | Tb[0] = dAtom->getTx(); |
317 | < | Tb[1] = dAtom->getTy(); |
318 | < | Tb[2] = dAtom->getTz(); |
319 | < | |
329 | > | dAtom->getTrq( Tb ); |
330 | dAtom->lab2Body( Tb ); | |
331 | < | |
331 | > | |
332 | // get the angular momentum, and propagate a half step | |
333 | + | |
334 | + | dAtom->getJ( ji ); |
335 | + | |
336 | + | for (j=0; j < 3; j++) |
337 | + | ji[j] += (dt2 * Tb[j]) * eConvert; |
338 | ||
324 | – | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
325 | – | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
326 | – | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
327 | – | |
339 | // use the angular velocities to propagate the rotation matrix a | |
340 | // full time step | |
341 | < | |
341 | > | |
342 | > | dAtom->getA(A); |
343 | > | dAtom->getI(I); |
344 | > | |
345 | // rotate about the x-axis | |
346 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
347 | < | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
348 | < | |
346 | > | angle = dt2 * ji[0] / I[0][0]; |
347 | > | this->rotate( 1, 2, angle, ji, A ); |
348 | > | |
349 | // rotate about the y-axis | |
350 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
351 | < | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
350 | > | angle = dt2 * ji[1] / I[1][1]; |
351 | > | this->rotate( 2, 0, angle, ji, A ); |
352 | ||
353 | // rotate about the z-axis | |
354 | < | angle = dt * ji[2] / dAtom->getIzz(); |
355 | < | this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
354 | > | angle = dt * ji[2] / I[2][2]; |
355 | > | this->rotate( 0, 1, angle, ji, A); |
356 | ||
357 | // rotate about the y-axis | |
358 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
359 | < | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
358 | > | angle = dt2 * ji[1] / I[1][1]; |
359 | > | this->rotate( 2, 0, angle, ji, A ); |
360 | ||
361 | // rotate about the x-axis | |
362 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
363 | < | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
362 | > | angle = dt2 * ji[0] / I[0][0]; |
363 | > | this->rotate( 1, 2, angle, ji, A ); |
364 | ||
365 | < | dAtom->setJx( ji[0] ); |
366 | < | dAtom->setJy( ji[1] ); |
367 | < | dAtom->setJz( ji[2] ); |
368 | < | } |
369 | < | |
365 | > | |
366 | > | dAtom->setJ( ji ); |
367 | > | dAtom->setA( A ); |
368 | > | |
369 | > | } |
370 | } | |
371 | } | |
372 | ||
373 | ||
374 | void Integrator::moveB( void ){ | |
375 | < | int i,j,k; |
362 | < | int atomIndex; |
375 | > | int i, j; |
376 | DirectionalAtom* dAtom; | |
377 | < | double Tb[3]; |
378 | < | double ji[3]; |
377 | > | double Tb[3], ji[3]; |
378 | > | double vel[3], frc[3]; |
379 | > | double mass; |
380 | ||
381 | for( i=0; i<nAtoms; i++ ){ | |
382 | < | atomIndex = i * 3; |
382 | > | |
383 | > | atoms[i]->getVel( vel ); |
384 | > | atoms[i]->getFrc( frc ); |
385 | ||
386 | < | // velocity half step |
371 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
372 | < | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
386 | > | mass = atoms[i]->getMass(); |
387 | ||
388 | + | // velocity half step |
389 | + | for (j=0; j < 3; j++) |
390 | + | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
391 | + | |
392 | + | atoms[i]->setVel( vel ); |
393 | + | |
394 | if( atoms[i]->isDirectional() ){ | |
395 | < | |
395 | > | |
396 | dAtom = (DirectionalAtom *)atoms[i]; | |
397 | < | |
398 | < | // get and convert the torque to body frame |
399 | < | |
400 | < | Tb[0] = dAtom->getTx(); |
381 | < | Tb[1] = dAtom->getTy(); |
382 | < | Tb[2] = dAtom->getTz(); |
383 | < | |
397 | > | |
398 | > | // get and convert the torque to body frame |
399 | > | |
400 | > | dAtom->getTrq( Tb ); |
401 | dAtom->lab2Body( Tb ); | |
402 | + | |
403 | + | // get the angular momentum, and propagate a half step |
404 | + | |
405 | + | dAtom->getJ( ji ); |
406 | + | |
407 | + | for (j=0; j < 3; j++) |
408 | + | ji[j] += (dt2 * Tb[j]) * eConvert; |
409 | ||
410 | < | // get the angular momentum, and complete the angular momentum |
411 | < | // half step |
388 | < | |
389 | < | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
390 | < | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
391 | < | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
392 | < | |
393 | < | dAtom->setJx( ji[0] ); |
394 | < | dAtom->setJy( ji[1] ); |
395 | < | dAtom->setJz( ji[2] ); |
410 | > | |
411 | > | dAtom->setJ( ji ); |
412 | } | |
413 | } | |
398 | – | |
414 | } | |
415 | ||
416 | void Integrator::preMove( void ){ | |
417 | < | int i; |
417 | > | int i, j; |
418 | > | double pos[3]; |
419 | ||
420 | if( nConstrained ){ | |
421 | ||
422 | < | for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i]; |
423 | < | } |
424 | < | } |
422 | > | for(i=0; i < nAtoms; i++) { |
423 | > | |
424 | > | atoms[i]->getPos( pos ); |
425 | ||
426 | + | for (j = 0; j < 3; j++) { |
427 | + | oldPos[3*i + j] = pos[j]; |
428 | + | } |
429 | + | |
430 | + | } |
431 | + | } |
432 | + | } |
433 | + | |
434 | void Integrator::constrainA(){ | |
435 | ||
436 | int i,j,k; | |
437 | int done; | |
438 | + | double posA[3], posB[3]; |
439 | + | double velA[3], velB[3]; |
440 | double pab[3]; | |
441 | double rab[3]; | |
442 | int a, b, ax, ay, az, bx, by, bz; | |
# | Line 422 | Line 448 | void Integrator::constrainA(){ | |
448 | double gab; | |
449 | int iteration; | |
450 | ||
451 | < | |
426 | < | |
427 | < | for( i=0; i<nAtoms; i++){ |
428 | < | |
451 | > | for( i=0; i<nAtoms; i++){ |
452 | moving[i] = 0; | |
453 | moved[i] = 1; | |
454 | } | |
# | Line 449 | Line 472 | void Integrator::constrainA(){ | |
472 | bz = (b*3) + 2; | |
473 | ||
474 | if( moved[a] || moved[b] ){ | |
475 | < | |
476 | < | pab[0] = pos[ax] - pos[bx]; |
477 | < | pab[1] = pos[ay] - pos[by]; |
478 | < | pab[2] = pos[az] - pos[bz]; |
479 | < | |
475 | > | |
476 | > | atoms[a]->getPos( posA ); |
477 | > | atoms[b]->getPos( posB ); |
478 | > | |
479 | > | for (j = 0; j < 3; j++ ) |
480 | > | pab[j] = posA[j] - posB[j]; |
481 | > | |
482 | //periodic boundary condition | |
483 | ||
484 | info->wrapVector( pab ); | |
# | Line 498 | Line 523 | void Integrator::constrainA(){ | |
523 | dy = rab[1] * gab; | |
524 | dz = rab[2] * gab; | |
525 | ||
526 | < | pos[ax] += rma * dx; |
527 | < | pos[ay] += rma * dy; |
528 | < | pos[az] += rma * dz; |
526 | > | posA[0] += rma * dx; |
527 | > | posA[1] += rma * dy; |
528 | > | posA[2] += rma * dz; |
529 | ||
530 | < | pos[bx] -= rmb * dx; |
506 | < | pos[by] -= rmb * dy; |
507 | < | pos[bz] -= rmb * dz; |
530 | > | atoms[a]->setPos( posA ); |
531 | ||
532 | + | posB[0] -= rmb * dx; |
533 | + | posB[1] -= rmb * dy; |
534 | + | posB[2] -= rmb * dz; |
535 | + | |
536 | + | atoms[b]->setPos( posB ); |
537 | + | |
538 | dx = dx / dt; | |
539 | dy = dy / dt; | |
540 | dz = dz / dt; | |
541 | ||
542 | < | vel[ax] += rma * dx; |
514 | < | vel[ay] += rma * dy; |
515 | < | vel[az] += rma * dz; |
542 | > | atoms[a]->getVel( velA ); |
543 | ||
544 | < | vel[bx] -= rmb * dx; |
545 | < | vel[by] -= rmb * dy; |
546 | < | vel[bz] -= rmb * dz; |
544 | > | velA[0] += rma * dx; |
545 | > | velA[1] += rma * dy; |
546 | > | velA[2] += rma * dz; |
547 | ||
548 | + | atoms[a]->setVel( velA ); |
549 | + | |
550 | + | atoms[b]->getVel( velB ); |
551 | + | |
552 | + | velB[0] -= rmb * dx; |
553 | + | velB[1] -= rmb * dy; |
554 | + | velB[2] -= rmb * dz; |
555 | + | |
556 | + | atoms[b]->setVel( velB ); |
557 | + | |
558 | moving[a] = 1; | |
559 | moving[b] = 1; | |
560 | done = 0; | |
# | Line 549 | Line 586 | void Integrator::constrainB( void ){ | |
586 | ||
587 | int i,j,k; | |
588 | int done; | |
589 | + | double posA[3], posB[3]; |
590 | + | double velA[3], velB[3]; |
591 | double vxab, vyab, vzab; | |
592 | double rab[3]; | |
593 | int a, b, ax, ay, az, bx, by, bz; | |
# | Line 584 | Line 623 | void Integrator::constrainB( void ){ | |
623 | bz = (b*3) + 2; | |
624 | ||
625 | if( moved[a] || moved[b] ){ | |
587 | – | |
588 | – | vxab = vel[ax] - vel[bx]; |
589 | – | vyab = vel[ay] - vel[by]; |
590 | – | vzab = vel[az] - vel[bz]; |
626 | ||
627 | < | rab[0] = pos[ax] - pos[bx]; |
628 | < | rab[1] = pos[ay] - pos[by]; |
629 | < | rab[2] = pos[az] - pos[bz]; |
630 | < | |
627 | > | atoms[a]->getVel( velA ); |
628 | > | atoms[b]->getVel( velB ); |
629 | > | |
630 | > | vxab = velA[0] - velB[0]; |
631 | > | vyab = velA[1] - velB[1]; |
632 | > | vzab = velA[2] - velB[2]; |
633 | > | |
634 | > | atoms[a]->getPos( posA ); |
635 | > | atoms[b]->getPos( posB ); |
636 | > | |
637 | > | for (j = 0; j < 3; j++) |
638 | > | rab[j] = posA[j] - posB[j]; |
639 | > | |
640 | info->wrapVector( rab ); | |
641 | ||
642 | rma = 1.0 / atoms[a]->getMass(); | |
# | Line 607 | Line 651 | void Integrator::constrainB( void ){ | |
651 | dx = rab[0] * gab; | |
652 | dy = rab[1] * gab; | |
653 | dz = rab[2] * gab; | |
654 | < | |
655 | < | vel[ax] += rma * dx; |
656 | < | vel[ay] += rma * dy; |
657 | < | vel[az] += rma * dz; |
654 | > | |
655 | > | velA[0] += rma * dx; |
656 | > | velA[1] += rma * dy; |
657 | > | velA[2] += rma * dz; |
658 | ||
659 | < | vel[bx] -= rmb * dx; |
660 | < | vel[by] -= rmb * dy; |
661 | < | vel[bz] -= rmb * dz; |
659 | > | atoms[a]->setVel( velA ); |
660 | > | |
661 | > | velB[0] -= rmb * dx; |
662 | > | velB[1] -= rmb * dy; |
663 | > | velB[2] -= rmb * dz; |
664 | > | |
665 | > | atoms[b]->setVel( velB ); |
666 | ||
667 | moving[a] = 1; | |
668 | moving[b] = 1; | |
# | Line 630 | Line 678 | void Integrator::constrainB( void ){ | |
678 | ||
679 | iteration++; | |
680 | } | |
681 | < | |
681 | > | |
682 | if( !done ){ | |
683 | ||
684 | ||
# | Line 643 | Line 691 | void Integrator::constrainB( void ){ | |
691 | ||
692 | } | |
693 | ||
646 | – | |
647 | – | |
648 | – | |
649 | – | |
650 | – | |
651 | – | |
694 | void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], | |
695 | < | double A[9] ){ |
695 | > | double A[3][3] ){ |
696 | ||
697 | int i,j,k; | |
698 | double sinAngle; | |
# | Line 666 | Line 708 | void Integrator::rotate( int axes1, int axes2, double | |
708 | ||
709 | for(i=0; i<3; i++){ | |
710 | for(j=0; j<3; j++){ | |
711 | < | tempA[j][i] = A[3*i + j]; |
711 | > | tempA[j][i] = A[i][j]; |
712 | } | |
713 | } | |
714 | ||
# | Line 723 | Line 765 | void Integrator::rotate( int axes1, int axes2, double | |
765 | ||
766 | for(i=0; i<3; i++){ | |
767 | for(j=0; j<3; j++){ | |
768 | < | A[3*j + i] = 0.0; |
768 | > | A[j][i] = 0.0; |
769 | for(k=0; k<3; k++){ | |
770 | < | A[3*j + i] += tempA[i][k] * rot[j][k]; |
770 | > | A[j][i] += tempA[i][k] * rot[j][k]; |
771 | } | |
772 | } | |
773 | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |