# | Line 1 | Line 1 | |
---|---|---|
1 | #include <iostream> | |
2 | < | #include <cstdlib> |
3 | < | #include <cmath> |
2 | > | #include <stdlib.h> |
3 | > | #include <math.h> |
4 | ||
5 | #ifdef IS_MPI | |
6 | #include "mpiSimulation.hpp" | |
7 | #include <unistd.h> | |
8 | #endif //is_mpi | |
9 | ||
10 | + | #ifdef PROFILE |
11 | + | #include "mdProfile.hpp" |
12 | + | #endif // profile |
13 | + | |
14 | #include "Integrator.hpp" | |
15 | #include "simError.h" | |
16 | ||
17 | ||
18 | < | Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){ |
19 | < | |
18 | > | template<typename T> Integrator<T>::Integrator(SimInfo* theInfo, |
19 | > | ForceFields* the_ff){ |
20 | info = theInfo; | |
21 | myFF = the_ff; | |
22 | isFirst = 1; | |
# | Line 21 | Line 25 | Integrator::Integrator( SimInfo *theInfo, ForceFields* | |
25 | nMols = info->n_mol; | |
26 | ||
27 | // give a little love back to the SimInfo object | |
24 | – | |
25 | – | if( info->the_integrator != NULL ) delete info->the_integrator; |
26 | – | info->the_integrator = this; |
28 | ||
29 | + | if (info->the_integrator != NULL){ |
30 | + | delete info->the_integrator; |
31 | + | } |
32 | + | |
33 | nAtoms = info->n_atoms; | |
34 | + | integrableObjects = info->integrableObjects; |
35 | ||
30 | – | std::cerr << "integ nAtoms = " << nAtoms << "\n"; |
31 | – | |
36 | // check for constraints | |
37 | < | |
38 | < | constrainedA = NULL; |
39 | < | constrainedB = NULL; |
37 | > | |
38 | > | constrainedA = NULL; |
39 | > | constrainedB = NULL; |
40 | constrainedDsqr = NULL; | |
41 | < | moving = NULL; |
42 | < | moved = NULL; |
43 | < | oldPos = NULL; |
44 | < | |
41 | > | moving = NULL; |
42 | > | moved = NULL; |
43 | > | oldPos = NULL; |
44 | > | |
45 | nConstrained = 0; | |
46 | ||
47 | checkConstraints(); | |
48 | } | |
49 | ||
50 | < | Integrator::~Integrator() { |
51 | < | |
48 | < | if( nConstrained ){ |
50 | > | template<typename T> Integrator<T>::~Integrator(){ |
51 | > | if (nConstrained){ |
52 | delete[] constrainedA; | |
53 | delete[] constrainedB; | |
54 | delete[] constrainedDsqr; | |
# | Line 53 | Line 56 | Integrator::~Integrator() { | |
56 | delete[] moved; | |
57 | delete[] oldPos; | |
58 | } | |
56 | – | |
59 | } | |
60 | ||
61 | < | void Integrator::checkConstraints( void ){ |
60 | < | |
61 | < | |
61 | > | template<typename T> void Integrator<T>::checkConstraints(void){ |
62 | isConstrained = 0; | |
63 | ||
64 | < | Constraint *temp_con; |
65 | < | Constraint *dummy_plug; |
64 | > | Constraint* temp_con; |
65 | > | Constraint* dummy_plug; |
66 | temp_con = new Constraint[info->n_SRI]; | |
67 | nConstrained = 0; | |
68 | int constrained = 0; | |
69 | < | |
69 | > | |
70 | SRI** theArray; | |
71 | < | for(int i = 0; i < nMols; i++){ |
72 | < | |
73 | < | theArray = (SRI**) molecules[i].getMyBonds(); |
74 | < | for(int j=0; j<molecules[i].getNBonds(); j++){ |
75 | < | |
71 | > | for (int i = 0; i < nMols; i++){ |
72 | > | |
73 | > | theArray = (SRI * *) molecules[i].getMyBonds(); |
74 | > | for (int j = 0; j < molecules[i].getNBonds(); j++){ |
75 | constrained = theArray[j]->is_constrained(); | |
76 | ||
77 | < | std::cerr << "Is the folowing bond constrained \n"; |
78 | < | theArray[j]->printMe(); |
79 | < | |
80 | < | if(constrained){ |
81 | < | |
83 | < | std::cerr << "Yes\n"; |
77 | > | if (constrained){ |
78 | > | dummy_plug = theArray[j]->get_constraint(); |
79 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
80 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
81 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
82 | ||
83 | < | dummy_plug = theArray[j]->get_constraint(); |
84 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
85 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
88 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
89 | < | |
90 | < | nConstrained++; |
91 | < | constrained = 0; |
92 | < | } |
93 | < | else std::cerr << "No.\n"; |
83 | > | nConstrained++; |
84 | > | constrained = 0; |
85 | > | } |
86 | } | |
87 | ||
88 | < | theArray = (SRI**) molecules[i].getMyBends(); |
89 | < | for(int j=0; j<molecules[i].getNBends(); j++){ |
98 | < | |
88 | > | theArray = (SRI * *) molecules[i].getMyBends(); |
89 | > | for (int j = 0; j < molecules[i].getNBends(); j++){ |
90 | constrained = theArray[j]->is_constrained(); | |
91 | < | |
92 | < | if(constrained){ |
93 | < | |
94 | < | dummy_plug = theArray[j]->get_constraint(); |
95 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
96 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
97 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
98 | < | |
99 | < | nConstrained++; |
109 | < | constrained = 0; |
91 | > | |
92 | > | if (constrained){ |
93 | > | dummy_plug = theArray[j]->get_constraint(); |
94 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
95 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
96 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
97 | > | |
98 | > | nConstrained++; |
99 | > | constrained = 0; |
100 | } | |
101 | } | |
102 | ||
103 | < | theArray = (SRI**) molecules[i].getMyTorsions(); |
104 | < | for(int j=0; j<molecules[i].getNTorsions(); j++){ |
115 | < | |
103 | > | theArray = (SRI * *) molecules[i].getMyTorsions(); |
104 | > | for (int j = 0; j < molecules[i].getNTorsions(); j++){ |
105 | constrained = theArray[j]->is_constrained(); | |
106 | < | |
107 | < | if(constrained){ |
108 | < | |
109 | < | dummy_plug = theArray[j]->get_constraint(); |
110 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
111 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
112 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
113 | < | |
114 | < | nConstrained++; |
126 | < | constrained = 0; |
106 | > | |
107 | > | if (constrained){ |
108 | > | dummy_plug = theArray[j]->get_constraint(); |
109 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
110 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
111 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
112 | > | |
113 | > | nConstrained++; |
114 | > | constrained = 0; |
115 | } | |
116 | } | |
117 | } | |
118 | ||
119 | < | if(nConstrained > 0){ |
120 | < | |
119 | > | |
120 | > | if (nConstrained > 0){ |
121 | isConstrained = 1; | |
122 | ||
123 | < | if(constrainedA != NULL ) delete[] constrainedA; |
124 | < | if(constrainedB != NULL ) delete[] constrainedB; |
125 | < | if(constrainedDsqr != NULL ) delete[] constrainedDsqr; |
123 | > | if (constrainedA != NULL) |
124 | > | delete[] constrainedA; |
125 | > | if (constrainedB != NULL) |
126 | > | delete[] constrainedB; |
127 | > | if (constrainedDsqr != NULL) |
128 | > | delete[] constrainedDsqr; |
129 | ||
130 | < | constrainedA = new int[nConstrained]; |
131 | < | constrainedB = new int[nConstrained]; |
130 | > | constrainedA = new int[nConstrained]; |
131 | > | constrainedB = new int[nConstrained]; |
132 | constrainedDsqr = new double[nConstrained]; | |
133 | < | |
134 | < | for( int i = 0; i < nConstrained; i++){ |
144 | < | |
133 | > | |
134 | > | for (int i = 0; i < nConstrained; i++){ |
135 | constrainedA[i] = temp_con[i].get_a(); | |
136 | constrainedB[i] = temp_con[i].get_b(); | |
137 | constrainedDsqr[i] = temp_con[i].get_dsqr(); | |
148 | – | |
138 | } | |
139 | ||
140 | < | |
141 | < | // save oldAtoms to check for lode balanceing later on. |
142 | < | |
140 | > | |
141 | > | // save oldAtoms to check for lode balancing later on. |
142 | > | |
143 | oldAtoms = nAtoms; | |
144 | < | |
144 | > | |
145 | moving = new int[nAtoms]; | |
146 | < | moved = new int[nAtoms]; |
146 | > | moved = new int[nAtoms]; |
147 | ||
148 | < | oldPos = new double[nAtoms*3]; |
148 | > | oldPos = new double[nAtoms * 3]; |
149 | } | |
150 | < | |
150 | > | |
151 | delete[] temp_con; | |
152 | } | |
153 | ||
154 | ||
155 | < | void Integrator::integrate( void ){ |
155 | > | template<typename T> void Integrator<T>::integrate(void){ |
156 | ||
157 | < | int i, j; // loop counters |
158 | < | |
159 | < | double runTime = info->run_time; |
171 | < | double sampleTime = info->sampleTime; |
172 | < | double statusTime = info->statusTime; |
157 | > | double runTime = info->run_time; |
158 | > | double sampleTime = info->sampleTime; |
159 | > | double statusTime = info->statusTime; |
160 | double thermalTime = info->thermalTime; | |
161 | + | double resetTime = info->resetTime; |
162 | ||
163 | + | |
164 | double currSample; | |
165 | double currThermal; | |
166 | double currStatus; | |
167 | < | double currTime; |
167 | > | double currReset; |
168 | ||
169 | int calcPot, calcStress; | |
181 | – | int isError; |
170 | ||
171 | < | tStats = new Thermo( info ); |
172 | < | statOut = new StatWriter( info ); |
173 | < | dumpOut = new DumpWriter( info ); |
171 | > | tStats = new Thermo(info); |
172 | > | statOut = new StatWriter(info); |
173 | > | dumpOut = new DumpWriter(info); |
174 | ||
175 | atoms = info->atoms; | |
188 | – | DirectionalAtom* dAtom; |
176 | ||
177 | dt = info->dt; | |
178 | dt2 = 0.5 * dt; | |
179 | ||
180 | + | readyCheck(); |
181 | + | |
182 | // initialize the forces before the first step | |
183 | ||
184 | < | myFF->doForces(1,1); |
184 | > | calcForce(1, 1); |
185 | > | |
186 | > | //temp test |
187 | > | tStats->getPotential(); |
188 | ||
189 | < | if( info->setTemp ){ |
190 | < | |
191 | < | tStats->velocitize(); |
189 | > | if (nConstrained){ |
190 | > | preMove(); |
191 | > | constrainA(); |
192 | > | calcForce(1, 1); |
193 | > | constrainB(); |
194 | } | |
195 | ||
196 | < | dumpOut->writeDump( 0.0 ); |
197 | < | statOut->writeStat( 0.0 ); |
198 | < | |
196 | > | if (info->setTemp){ |
197 | > | thermalize(); |
198 | > | } |
199 | > | |
200 | calcPot = 0; | |
201 | calcStress = 0; | |
202 | < | currSample = sampleTime; |
203 | < | currThermal = thermalTime; |
204 | < | currStatus = statusTime; |
205 | < | currTime = 0.0;; |
202 | > | currSample = sampleTime + info->getTime(); |
203 | > | currThermal = thermalTime+ info->getTime(); |
204 | > | currStatus = statusTime + info->getTime(); |
205 | > | currReset = resetTime + info->getTime(); |
206 | ||
207 | + | dumpOut->writeDump(info->getTime()); |
208 | + | statOut->writeStat(info->getTime()); |
209 | ||
213 | – | readyCheck(); |
210 | ||
211 | #ifdef IS_MPI | |
212 | < | strcpy( checkPointMsg, |
217 | < | "The integrator is ready to go." ); |
212 | > | strcpy(checkPointMsg, "The integrator is ready to go."); |
213 | MPIcheckPoint(); | |
214 | #endif // is_mpi | |
215 | ||
216 | < | while( currTime < runTime ){ |
217 | < | |
223 | < | if( (currTime+dt) >= currStatus ){ |
216 | > | while (info->getTime() < runTime){ |
217 | > | if ((info->getTime() + dt) >= currStatus){ |
218 | calcPot = 1; | |
219 | calcStress = 1; | |
220 | } | |
221 | ||
222 | < | std::cerr << currTime << "\n"; |
222 | > | #ifdef PROFILE |
223 | > | startProfile( pro1 ); |
224 | > | #endif |
225 | > | |
226 | > | integrateStep(calcPot, calcStress); |
227 | ||
228 | < | integrateStep( calcPot, calcStress ); |
229 | < | |
232 | < | currTime += dt; |
228 | > | #ifdef PROFILE |
229 | > | endProfile( pro1 ); |
230 | ||
231 | < | if( info->setTemp ){ |
232 | < | if( currTime >= currThermal ){ |
233 | < | tStats->velocitize(); |
234 | < | currThermal += thermalTime; |
231 | > | startProfile( pro2 ); |
232 | > | #endif // profile |
233 | > | |
234 | > | info->incrTime(dt); |
235 | > | |
236 | > | if (info->setTemp){ |
237 | > | if (info->getTime() >= currThermal){ |
238 | > | thermalize(); |
239 | > | currThermal += thermalTime; |
240 | } | |
241 | } | |
242 | ||
243 | < | if( currTime >= currSample ){ |
244 | < | dumpOut->writeDump( currTime ); |
243 | > | if (info->getTime() >= currSample){ |
244 | > | dumpOut->writeDump(info->getTime()); |
245 | currSample += sampleTime; | |
246 | } | |
247 | ||
248 | < | if( currTime >= currStatus ){ |
249 | < | statOut->writeStat( currTime ); |
250 | < | calcPot = 0; |
248 | > | if (info->getTime() >= currStatus){ |
249 | > | statOut->writeStat(info->getTime()); |
250 | > | calcPot = 0; |
251 | calcStress = 0; | |
252 | currStatus += statusTime; | |
253 | < | } |
253 | > | } |
254 | ||
255 | + | if (info->resetIntegrator){ |
256 | + | if (info->getTime() >= currReset){ |
257 | + | this->resetIntegrator(); |
258 | + | currReset += resetTime; |
259 | + | } |
260 | + | } |
261 | + | |
262 | + | #ifdef PROFILE |
263 | + | endProfile( pro2 ); |
264 | + | #endif //profile |
265 | + | |
266 | #ifdef IS_MPI | |
267 | < | strcpy( checkPointMsg, |
255 | < | "successfully took a time step." ); |
267 | > | strcpy(checkPointMsg, "successfully took a time step."); |
268 | MPIcheckPoint(); | |
269 | #endif // is_mpi | |
258 | – | |
270 | } | |
271 | ||
261 | – | dumpOut->writeFinal(currTime); |
262 | – | |
272 | delete dumpOut; | |
273 | delete statOut; | |
274 | } | |
275 | ||
276 | < | void Integrator::integrateStep( int calcPot, int calcStress ){ |
277 | < | |
269 | < | |
270 | < | |
276 | > | template<typename T> void Integrator<T>::integrateStep(int calcPot, |
277 | > | int calcStress){ |
278 | // Position full step, and velocity half step | |
279 | ||
280 | + | #ifdef PROFILE |
281 | + | startProfile(pro3); |
282 | + | #endif //profile |
283 | + | |
284 | preMove(); | |
285 | + | |
286 | + | #ifdef PROFILE |
287 | + | endProfile(pro3); |
288 | + | |
289 | + | startProfile(pro4); |
290 | + | #endif // profile |
291 | + | |
292 | moveA(); | |
275 | – | if( nConstrained ) constrainA(); |
293 | ||
294 | + | #ifdef PROFILE |
295 | + | endProfile(pro4); |
296 | + | |
297 | + | startProfile(pro5); |
298 | + | #endif//profile |
299 | + | |
300 | + | |
301 | + | #ifdef IS_MPI |
302 | + | strcpy(checkPointMsg, "Succesful moveA\n"); |
303 | + | MPIcheckPoint(); |
304 | + | #endif // is_mpi |
305 | + | |
306 | + | |
307 | // calc forces | |
308 | ||
309 | < | myFF->doForces(calcPot,calcStress); |
309 | > | calcForce(calcPot, calcStress); |
310 | ||
311 | + | #ifdef IS_MPI |
312 | + | strcpy(checkPointMsg, "Succesful doForces\n"); |
313 | + | MPIcheckPoint(); |
314 | + | #endif // is_mpi |
315 | + | |
316 | + | #ifdef PROFILE |
317 | + | endProfile( pro5 ); |
318 | + | |
319 | + | startProfile( pro6 ); |
320 | + | #endif //profile |
321 | + | |
322 | // finish the velocity half step | |
323 | < | |
323 | > | |
324 | moveB(); | |
325 | < | if( nConstrained ) constrainB(); |
326 | < | |
325 | > | |
326 | > | #ifdef PROFILE |
327 | > | endProfile(pro6); |
328 | > | #endif // profile |
329 | > | |
330 | > | #ifdef IS_MPI |
331 | > | strcpy(checkPointMsg, "Succesful moveB\n"); |
332 | > | MPIcheckPoint(); |
333 | > | #endif // is_mpi |
334 | } | |
335 | ||
336 | ||
337 | < | void Integrator::moveA( void ){ |
338 | < | |
291 | < | int i, j; |
337 | > | template<typename T> void Integrator<T>::moveA(void){ |
338 | > | size_t i, j; |
339 | DirectionalAtom* dAtom; | |
340 | double Tb[3], ji[3]; | |
294 | – | double A[3][3], I[3][3]; |
295 | – | double angle; |
341 | double vel[3], pos[3], frc[3]; | |
342 | double mass; | |
343 | + | |
344 | + | for (i = 0; i < integrableObjects.size() ; i++){ |
345 | + | integrableObjects[i]->getVel(vel); |
346 | + | integrableObjects[i]->getPos(pos); |
347 | + | integrableObjects[i]->getFrc(frc); |
348 | + | |
349 | + | mass = integrableObjects[i]->getMass(); |
350 | ||
351 | < | for( i=0; i<nAtoms; i++ ){ |
300 | < | |
301 | < | atoms[i]->getVel( vel ); |
302 | < | atoms[i]->getPos( pos ); |
303 | < | atoms[i]->getFrc( frc ); |
304 | < | |
305 | < | mass = atoms[i]->getMass(); |
306 | < | |
307 | < | for (j=0; j < 3; j++) { |
351 | > | for (j = 0; j < 3; j++){ |
352 | // velocity half step | |
353 | < | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
353 | > | vel[j] += (dt2 * frc[j] / mass) * eConvert; |
354 | // position whole step | |
355 | pos[j] += dt * vel[j]; | |
356 | } | |
357 | ||
358 | < | atoms[i]->setVel( vel ); |
359 | < | atoms[i]->setPos( pos ); |
358 | > | integrableObjects[i]->setVel(vel); |
359 | > | integrableObjects[i]->setPos(pos); |
360 | ||
361 | < | if( atoms[i]->isDirectional() ){ |
361 | > | if (integrableObjects[i]->isDirectional()){ |
362 | ||
319 | – | dAtom = (DirectionalAtom *)atoms[i]; |
320 | – | |
363 | // get and convert the torque to body frame | |
322 | – | |
323 | – | dAtom->getTrq( Tb ); |
324 | – | dAtom->lab2Body( Tb ); |
364 | ||
365 | + | integrableObjects[i]->getTrq(Tb); |
366 | + | integrableObjects[i]->lab2Body(Tb); |
367 | + | |
368 | // get the angular momentum, and propagate a half step | |
369 | ||
370 | < | dAtom->getJ( ji ); |
370 | > | integrableObjects[i]->getJ(ji); |
371 | ||
372 | < | for (j=0; j < 3; j++) |
372 | > | for (j = 0; j < 3; j++) |
373 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
332 | – | |
333 | – | // use the angular velocities to propagate the rotation matrix a |
334 | – | // full time step |
374 | ||
375 | < | dAtom->getA(A); |
337 | < | dAtom->getI(I); |
338 | < | |
339 | < | // rotate about the x-axis |
340 | < | angle = dt2 * ji[0] / I[0][0]; |
341 | < | this->rotate( 1, 2, angle, ji, A ); |
375 | > | this->rotationPropagation( integrableObjects[i], ji ); |
376 | ||
377 | < | // rotate about the y-axis |
378 | < | angle = dt2 * ji[1] / I[1][1]; |
379 | < | this->rotate( 2, 0, angle, ji, A ); |
346 | < | |
347 | < | // rotate about the z-axis |
348 | < | angle = dt * ji[2] / I[2][2]; |
349 | < | this->rotate( 0, 1, angle, ji, A); |
350 | < | |
351 | < | // rotate about the y-axis |
352 | < | angle = dt2 * ji[1] / I[1][1]; |
353 | < | this->rotate( 2, 0, angle, ji, A ); |
354 | < | |
355 | < | // rotate about the x-axis |
356 | < | angle = dt2 * ji[0] / I[0][0]; |
357 | < | this->rotate( 1, 2, angle, ji, A ); |
358 | < | |
377 | > | integrableObjects[i]->setJ(ji); |
378 | > | } |
379 | > | } |
380 | ||
381 | < | dAtom->setJ( ji ); |
382 | < | dAtom->setA( A ); |
362 | < | |
363 | < | } |
381 | > | if (nConstrained){ |
382 | > | constrainA(); |
383 | } | |
384 | } | |
385 | ||
386 | ||
387 | < | void Integrator::moveB( void ){ |
387 | > | template<typename T> void Integrator<T>::moveB(void){ |
388 | int i, j; | |
370 | – | DirectionalAtom* dAtom; |
389 | double Tb[3], ji[3]; | |
390 | double vel[3], frc[3]; | |
391 | double mass; | |
392 | ||
393 | < | for( i=0; i<nAtoms; i++ ){ |
394 | < | |
395 | < | atoms[i]->getVel( vel ); |
378 | < | atoms[i]->getFrc( frc ); |
393 | > | for (i = 0; i < integrableObjects.size(); i++){ |
394 | > | integrableObjects[i]->getVel(vel); |
395 | > | integrableObjects[i]->getFrc(frc); |
396 | ||
397 | < | mass = atoms[i]->getMass(); |
397 | > | mass = integrableObjects[i]->getMass(); |
398 | ||
399 | // velocity half step | |
400 | < | for (j=0; j < 3; j++) |
401 | < | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
385 | < | |
386 | < | atoms[i]->setVel( vel ); |
387 | < | |
388 | < | if( atoms[i]->isDirectional() ){ |
400 | > | for (j = 0; j < 3; j++) |
401 | > | vel[j] += (dt2 * frc[j] / mass) * eConvert; |
402 | ||
403 | < | dAtom = (DirectionalAtom *)atoms[i]; |
403 | > | integrableObjects[i]->setVel(vel); |
404 | ||
405 | < | // get and convert the torque to body frame |
405 | > | if (integrableObjects[i]->isDirectional()){ |
406 | ||
407 | < | dAtom->getTrq( Tb ); |
395 | < | dAtom->lab2Body( Tb ); |
407 | > | // get and convert the torque to body frame |
408 | ||
409 | + | integrableObjects[i]->getTrq(Tb); |
410 | + | integrableObjects[i]->lab2Body(Tb); |
411 | + | |
412 | // get the angular momentum, and propagate a half step | |
413 | ||
414 | < | dAtom->getJ( ji ); |
414 | > | integrableObjects[i]->getJ(ji); |
415 | ||
416 | < | for (j=0; j < 3; j++) |
416 | > | for (j = 0; j < 3; j++) |
417 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
403 | – | |
418 | ||
419 | < | dAtom->setJ( ji ); |
419 | > | |
420 | > | integrableObjects[i]->setJ(ji); |
421 | } | |
422 | } | |
423 | + | |
424 | + | if (nConstrained){ |
425 | + | constrainB(); |
426 | + | } |
427 | } | |
428 | ||
429 | < | void Integrator::preMove( void ){ |
429 | > | template<typename T> void Integrator<T>::preMove(void){ |
430 | int i, j; | |
431 | double pos[3]; | |
432 | ||
433 | < | if( nConstrained ){ |
434 | < | |
435 | < | for(i=0; i < nAtoms; i++) { |
417 | < | |
418 | < | atoms[i]->getPos( pos ); |
433 | > | if (nConstrained){ |
434 | > | for (i = 0; i < nAtoms; i++){ |
435 | > | atoms[i]->getPos(pos); |
436 | ||
437 | < | for (j = 0; j < 3; j++) { |
438 | < | oldPos[3*i + j] = pos[j]; |
437 | > | for (j = 0; j < 3; j++){ |
438 | > | oldPos[3 * i + j] = pos[j]; |
439 | } | |
423 | – | |
440 | } | |
441 | < | } |
441 | > | } |
442 | } | |
443 | ||
444 | < | void Integrator::constrainA(){ |
445 | < | |
430 | < | int i,j,k; |
444 | > | template<typename T> void Integrator<T>::constrainA(){ |
445 | > | int i, j; |
446 | int done; | |
447 | double posA[3], posB[3]; | |
448 | double velA[3], velB[3]; | |
# | Line 442 | Line 457 | void Integrator::constrainA(){ | |
457 | double gab; | |
458 | int iteration; | |
459 | ||
460 | < | for( i=0; i<nAtoms; i++){ |
460 | > | for (i = 0; i < nAtoms; i++){ |
461 | moving[i] = 0; | |
462 | < | moved[i] = 1; |
462 | > | moved[i] = 1; |
463 | } | |
464 | ||
465 | iteration = 0; | |
466 | done = 0; | |
467 | < | while( !done && (iteration < maxIteration )){ |
453 | < | |
467 | > | while (!done && (iteration < maxIteration)){ |
468 | done = 1; | |
469 | < | for(i=0; i<nConstrained; i++){ |
456 | < | |
469 | > | for (i = 0; i < nConstrained; i++){ |
470 | a = constrainedA[i]; | |
471 | b = constrainedB[i]; | |
459 | – | |
460 | – | ax = (a*3) + 0; |
461 | – | ay = (a*3) + 1; |
462 | – | az = (a*3) + 2; |
472 | ||
473 | < | bx = (b*3) + 0; |
474 | < | by = (b*3) + 1; |
475 | < | bz = (b*3) + 2; |
473 | > | ax = (a * 3) + 0; |
474 | > | ay = (a * 3) + 1; |
475 | > | az = (a * 3) + 2; |
476 | ||
477 | < | if( moved[a] || moved[b] ){ |
478 | < | |
479 | < | atoms[a]->getPos( posA ); |
480 | < | atoms[b]->getPos( posB ); |
481 | < | |
482 | < | for (j = 0; j < 3; j++ ) |
477 | > | bx = (b * 3) + 0; |
478 | > | by = (b * 3) + 1; |
479 | > | bz = (b * 3) + 2; |
480 | > | |
481 | > | if (moved[a] || moved[b]){ |
482 | > | atoms[a]->getPos(posA); |
483 | > | atoms[b]->getPos(posB); |
484 | > | |
485 | > | for (j = 0; j < 3; j++) |
486 | pab[j] = posA[j] - posB[j]; | |
475 | – | |
476 | – | //periodic boundary condition |
487 | ||
488 | < | info->wrapVector( pab ); |
488 | > | //periodic boundary condition |
489 | ||
490 | < | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
490 | > | info->wrapVector(pab); |
491 | ||
492 | < | rabsq = constrainedDsqr[i]; |
483 | < | diffsq = rabsq - pabsq; |
492 | > | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
493 | ||
494 | < | // the original rattle code from alan tidesley |
495 | < | if (fabs(diffsq) > (tol*rabsq*2)) { |
487 | < | rab[0] = oldPos[ax] - oldPos[bx]; |
488 | < | rab[1] = oldPos[ay] - oldPos[by]; |
489 | < | rab[2] = oldPos[az] - oldPos[bz]; |
494 | > | rabsq = constrainedDsqr[i]; |
495 | > | diffsq = rabsq - pabsq; |
496 | ||
497 | < | info->wrapVector( rab ); |
497 | > | // the original rattle code from alan tidesley |
498 | > | if (fabs(diffsq) > (tol * rabsq * 2)){ |
499 | > | rab[0] = oldPos[ax] - oldPos[bx]; |
500 | > | rab[1] = oldPos[ay] - oldPos[by]; |
501 | > | rab[2] = oldPos[az] - oldPos[bz]; |
502 | ||
503 | < | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
503 | > | info->wrapVector(rab); |
504 | ||
505 | < | rpabsq = rpab * rpab; |
505 | > | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
506 | ||
507 | + | rpabsq = rpab * rpab; |
508 | ||
498 | – | if (rpabsq < (rabsq * -diffsq)){ |
509 | ||
510 | + | if (rpabsq < (rabsq * -diffsq)){ |
511 | #ifdef IS_MPI | |
512 | < | a = atoms[a]->getGlobalIndex(); |
513 | < | b = atoms[b]->getGlobalIndex(); |
512 | > | a = atoms[a]->getGlobalIndex(); |
513 | > | b = atoms[b]->getGlobalIndex(); |
514 | #endif //is_mpi | |
515 | < | sprintf( painCave.errMsg, |
516 | < | "Constraint failure in constrainA at atom %d and %d.\n", |
517 | < | a, b ); |
518 | < | painCave.isFatal = 1; |
519 | < | simError(); |
520 | < | } |
515 | > | sprintf(painCave.errMsg, |
516 | > | "Constraint failure in constrainA at atom %d and %d.\n", a, |
517 | > | b); |
518 | > | painCave.isFatal = 1; |
519 | > | simError(); |
520 | > | } |
521 | ||
522 | < | rma = 1.0 / atoms[a]->getMass(); |
523 | < | rmb = 1.0 / atoms[b]->getMass(); |
522 | > | rma = 1.0 / atoms[a]->getMass(); |
523 | > | rmb = 1.0 / atoms[b]->getMass(); |
524 | ||
525 | < | gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); |
525 | > | gab = diffsq / (2.0 * (rma + rmb) * rpab); |
526 | ||
527 | dx = rab[0] * gab; | |
528 | dy = rab[1] * gab; | |
529 | dz = rab[2] * gab; | |
530 | ||
531 | < | posA[0] += rma * dx; |
532 | < | posA[1] += rma * dy; |
533 | < | posA[2] += rma * dz; |
531 | > | posA[0] += rma * dx; |
532 | > | posA[1] += rma * dy; |
533 | > | posA[2] += rma * dz; |
534 | ||
535 | < | atoms[a]->setPos( posA ); |
535 | > | atoms[a]->setPos(posA); |
536 | ||
537 | < | posB[0] -= rmb * dx; |
538 | < | posB[1] -= rmb * dy; |
539 | < | posB[2] -= rmb * dz; |
537 | > | posB[0] -= rmb * dx; |
538 | > | posB[1] -= rmb * dy; |
539 | > | posB[2] -= rmb * dz; |
540 | ||
541 | < | atoms[b]->setPos( posB ); |
541 | > | atoms[b]->setPos(posB); |
542 | ||
543 | dx = dx / dt; | |
544 | dy = dy / dt; | |
545 | dz = dz / dt; | |
546 | ||
547 | < | atoms[a]->getVel( velA ); |
547 | > | atoms[a]->getVel(velA); |
548 | ||
549 | < | velA[0] += rma * dx; |
550 | < | velA[1] += rma * dy; |
551 | < | velA[2] += rma * dz; |
549 | > | velA[0] += rma * dx; |
550 | > | velA[1] += rma * dy; |
551 | > | velA[2] += rma * dz; |
552 | ||
553 | < | atoms[a]->setVel( velA ); |
553 | > | atoms[a]->setVel(velA); |
554 | ||
555 | < | atoms[b]->getVel( velB ); |
555 | > | atoms[b]->getVel(velB); |
556 | ||
557 | < | velB[0] -= rmb * dx; |
558 | < | velB[1] -= rmb * dy; |
559 | < | velB[2] -= rmb * dz; |
557 | > | velB[0] -= rmb * dx; |
558 | > | velB[1] -= rmb * dy; |
559 | > | velB[2] -= rmb * dz; |
560 | ||
561 | < | atoms[b]->setVel( velB ); |
561 | > | atoms[b]->setVel(velB); |
562 | ||
563 | < | moving[a] = 1; |
564 | < | moving[b] = 1; |
565 | < | done = 0; |
566 | < | } |
563 | > | moving[a] = 1; |
564 | > | moving[b] = 1; |
565 | > | done = 0; |
566 | > | } |
567 | } | |
568 | } | |
569 | < | |
570 | < | for(i=0; i<nAtoms; i++){ |
560 | < | |
569 | > | |
570 | > | for (i = 0; i < nAtoms; i++){ |
571 | moved[i] = moving[i]; | |
572 | moving[i] = 0; | |
573 | } | |
# | Line 565 | Line 575 | void Integrator::constrainA(){ | |
575 | iteration++; | |
576 | } | |
577 | ||
578 | < | if( !done ){ |
579 | < | |
580 | < | sprintf( painCave.errMsg, |
581 | < | "Constraint failure in constrainA, too many iterations: %d\n", |
572 | < | iteration ); |
578 | > | if (!done){ |
579 | > | sprintf(painCave.errMsg, |
580 | > | "Constraint failure in constrainA, too many iterations: %d\n", |
581 | > | iteration); |
582 | painCave.isFatal = 1; | |
583 | simError(); | |
584 | } | |
585 | ||
586 | } | |
587 | ||
588 | < | void Integrator::constrainB( void ){ |
589 | < | |
581 | < | int i,j,k; |
588 | > | template<typename T> void Integrator<T>::constrainB(void){ |
589 | > | int i, j; |
590 | int done; | |
591 | double posA[3], posB[3]; | |
592 | double velA[3], velB[3]; | |
# | Line 587 | Line 595 | void Integrator::constrainB( void ){ | |
595 | int a, b, ax, ay, az, bx, by, bz; | |
596 | double rma, rmb; | |
597 | double dx, dy, dz; | |
598 | < | double rabsq, pabsq, rvab; |
591 | < | double diffsq; |
598 | > | double rvab; |
599 | double gab; | |
600 | int iteration; | |
601 | ||
602 | < | for(i=0; i<nAtoms; i++){ |
602 | > | for (i = 0; i < nAtoms; i++){ |
603 | moving[i] = 0; | |
604 | moved[i] = 1; | |
605 | } | |
606 | ||
607 | done = 0; | |
608 | iteration = 0; | |
609 | < | while( !done && (iteration < maxIteration ) ){ |
603 | < | |
609 | > | while (!done && (iteration < maxIteration)){ |
610 | done = 1; | |
611 | ||
612 | < | for(i=0; i<nConstrained; i++){ |
607 | < | |
612 | > | for (i = 0; i < nConstrained; i++){ |
613 | a = constrainedA[i]; | |
614 | b = constrainedB[i]; | |
615 | ||
616 | < | ax = (a*3) + 0; |
617 | < | ay = (a*3) + 1; |
618 | < | az = (a*3) + 2; |
616 | > | ax = (a * 3) + 0; |
617 | > | ay = (a * 3) + 1; |
618 | > | az = (a * 3) + 2; |
619 | ||
620 | < | bx = (b*3) + 0; |
621 | < | by = (b*3) + 1; |
622 | < | bz = (b*3) + 2; |
620 | > | bx = (b * 3) + 0; |
621 | > | by = (b * 3) + 1; |
622 | > | bz = (b * 3) + 2; |
623 | ||
624 | < | if( moved[a] || moved[b] ){ |
624 | > | if (moved[a] || moved[b]){ |
625 | > | atoms[a]->getVel(velA); |
626 | > | atoms[b]->getVel(velB); |
627 | ||
628 | < | atoms[a]->getVel( velA ); |
629 | < | atoms[b]->getVel( velB ); |
630 | < | |
624 | < | vxab = velA[0] - velB[0]; |
625 | < | vyab = velA[1] - velB[1]; |
626 | < | vzab = velA[2] - velB[2]; |
628 | > | vxab = velA[0] - velB[0]; |
629 | > | vyab = velA[1] - velB[1]; |
630 | > | vzab = velA[2] - velB[2]; |
631 | ||
632 | < | atoms[a]->getPos( posA ); |
633 | < | atoms[b]->getPos( posB ); |
632 | > | atoms[a]->getPos(posA); |
633 | > | atoms[b]->getPos(posB); |
634 | ||
635 | < | for (j = 0; j < 3; j++) |
635 | > | for (j = 0; j < 3; j++) |
636 | rab[j] = posA[j] - posB[j]; | |
633 | – | |
634 | – | info->wrapVector( rab ); |
635 | – | |
636 | – | rma = 1.0 / atoms[a]->getMass(); |
637 | – | rmb = 1.0 / atoms[b]->getMass(); |
637 | ||
638 | < | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
640 | < | |
641 | < | gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); |
638 | > | info->wrapVector(rab); |
639 | ||
640 | < | if (fabs(gab) > tol) { |
641 | < | |
645 | < | dx = rab[0] * gab; |
646 | < | dy = rab[1] * gab; |
647 | < | dz = rab[2] * gab; |
648 | < | |
649 | < | velA[0] += rma * dx; |
650 | < | velA[1] += rma * dy; |
651 | < | velA[2] += rma * dz; |
640 | > | rma = 1.0 / atoms[a]->getMass(); |
641 | > | rmb = 1.0 / atoms[b]->getMass(); |
642 | ||
643 | < | atoms[a]->setVel( velA ); |
643 | > | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
644 | ||
645 | < | velB[0] -= rmb * dx; |
656 | < | velB[1] -= rmb * dy; |
657 | < | velB[2] -= rmb * dz; |
645 | > | gab = -rvab / ((rma + rmb) * constrainedDsqr[i]); |
646 | ||
647 | < | atoms[b]->setVel( velB ); |
648 | < | |
649 | < | moving[a] = 1; |
650 | < | moving[b] = 1; |
651 | < | done = 0; |
652 | < | } |
647 | > | if (fabs(gab) > tol){ |
648 | > | dx = rab[0] * gab; |
649 | > | dy = rab[1] * gab; |
650 | > | dz = rab[2] * gab; |
651 | > | |
652 | > | velA[0] += rma * dx; |
653 | > | velA[1] += rma * dy; |
654 | > | velA[2] += rma * dz; |
655 | > | |
656 | > | atoms[a]->setVel(velA); |
657 | > | |
658 | > | velB[0] -= rmb * dx; |
659 | > | velB[1] -= rmb * dy; |
660 | > | velB[2] -= rmb * dz; |
661 | > | |
662 | > | atoms[b]->setVel(velB); |
663 | > | |
664 | > | moving[a] = 1; |
665 | > | moving[b] = 1; |
666 | > | done = 0; |
667 | > | } |
668 | } | |
669 | } | |
670 | ||
671 | < | for(i=0; i<nAtoms; i++){ |
671 | > | for (i = 0; i < nAtoms; i++){ |
672 | moved[i] = moving[i]; | |
673 | moving[i] = 0; | |
674 | } | |
675 | < | |
675 | > | |
676 | iteration++; | |
677 | } | |
675 | – | |
676 | – | if( !done ){ |
678 | ||
679 | < | |
680 | < | sprintf( painCave.errMsg, |
681 | < | "Constraint failure in constrainB, too many iterations: %d\n", |
682 | < | iteration ); |
679 | > | if (!done){ |
680 | > | sprintf(painCave.errMsg, |
681 | > | "Constraint failure in constrainB, too many iterations: %d\n", |
682 | > | iteration); |
683 | painCave.isFatal = 1; | |
684 | simError(); | |
685 | < | } |
685 | < | |
685 | > | } |
686 | } | |
687 | ||
688 | < | void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], |
689 | < | double A[3][3] ){ |
688 | > | template<typename T> void Integrator<T>::rotationPropagation |
689 | > | ( StuntDouble* sd, double ji[3] ){ |
690 | ||
691 | < | int i,j,k; |
691 | > | double angle; |
692 | > | double A[3][3], I[3][3]; |
693 | > | |
694 | > | // use the angular velocities to propagate the rotation matrix a |
695 | > | // full time step |
696 | > | |
697 | > | sd->getA(A); |
698 | > | sd->getI(I); |
699 | > | |
700 | > | // rotate about the x-axis |
701 | > | angle = dt2 * ji[0] / I[0][0]; |
702 | > | this->rotate( 1, 2, angle, ji, A ); |
703 | > | |
704 | > | // rotate about the y-axis |
705 | > | angle = dt2 * ji[1] / I[1][1]; |
706 | > | this->rotate( 2, 0, angle, ji, A ); |
707 | > | |
708 | > | // rotate about the z-axis |
709 | > | angle = dt * ji[2] / I[2][2]; |
710 | > | this->rotate( 0, 1, angle, ji, A); |
711 | > | |
712 | > | // rotate about the y-axis |
713 | > | angle = dt2 * ji[1] / I[1][1]; |
714 | > | this->rotate( 2, 0, angle, ji, A ); |
715 | > | |
716 | > | // rotate about the x-axis |
717 | > | angle = dt2 * ji[0] / I[0][0]; |
718 | > | this->rotate( 1, 2, angle, ji, A ); |
719 | > | |
720 | > | sd->setA( A ); |
721 | > | } |
722 | > | |
723 | > | template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
724 | > | double angle, double ji[3], |
725 | > | double A[3][3]){ |
726 | > | int i, j, k; |
727 | double sinAngle; | |
728 | double cosAngle; | |
729 | double angleSqr; | |
# | Line 700 | Line 735 | void Integrator::rotate( int axes1, int axes2, double | |
735 | ||
736 | // initialize the tempA | |
737 | ||
738 | < | for(i=0; i<3; i++){ |
739 | < | for(j=0; j<3; j++){ |
738 | > | for (i = 0; i < 3; i++){ |
739 | > | for (j = 0; j < 3; j++){ |
740 | tempA[j][i] = A[i][j]; | |
741 | } | |
742 | } | |
743 | ||
744 | // initialize the tempJ | |
745 | ||
746 | < | for( i=0; i<3; i++) tempJ[i] = ji[i]; |
747 | < | |
746 | > | for (i = 0; i < 3; i++) |
747 | > | tempJ[i] = ji[i]; |
748 | > | |
749 | // initalize rot as a unit matrix | |
750 | ||
751 | rot[0][0] = 1.0; | |
# | Line 719 | Line 755 | void Integrator::rotate( int axes1, int axes2, double | |
755 | rot[1][0] = 0.0; | |
756 | rot[1][1] = 1.0; | |
757 | rot[1][2] = 0.0; | |
758 | < | |
758 | > | |
759 | rot[2][0] = 0.0; | |
760 | rot[2][1] = 0.0; | |
761 | rot[2][2] = 1.0; | |
762 | < | |
762 | > | |
763 | // use a small angle aproximation for sin and cosine | |
764 | ||
765 | < | angleSqr = angle * angle; |
765 | > | angleSqr = angle * angle; |
766 | angleSqrOver4 = angleSqr / 4.0; | |
767 | top = 1.0 - angleSqrOver4; | |
768 | bottom = 1.0 + angleSqrOver4; | |
# | Line 739 | Line 775 | void Integrator::rotate( int axes1, int axes2, double | |
775 | ||
776 | rot[axes1][axes2] = sinAngle; | |
777 | rot[axes2][axes1] = -sinAngle; | |
778 | < | |
778 | > | |
779 | // rotate the momentum acoording to: ji[] = rot[][] * ji[] | |
780 | < | |
781 | < | for(i=0; i<3; i++){ |
780 | > | |
781 | > | for (i = 0; i < 3; i++){ |
782 | ji[i] = 0.0; | |
783 | < | for(k=0; k<3; k++){ |
783 | > | for (k = 0; k < 3; k++){ |
784 | ji[i] += rot[i][k] * tempJ[k]; | |
785 | } | |
786 | } | |
787 | ||
788 | < | // rotate the Rotation matrix acording to: |
788 | > | // rotate the Rotation matrix acording to: |
789 | // A[][] = A[][] * transpose(rot[][]) | |
790 | ||
791 | ||
# | Line 757 | Line 793 | void Integrator::rotate( int axes1, int axes2, double | |
793 | // calculation as: | |
794 | // transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | |
795 | ||
796 | < | for(i=0; i<3; i++){ |
797 | < | for(j=0; j<3; j++){ |
796 | > | for (i = 0; i < 3; i++){ |
797 | > | for (j = 0; j < 3; j++){ |
798 | A[j][i] = 0.0; | |
799 | < | for(k=0; k<3; k++){ |
800 | < | A[j][i] += tempA[i][k] * rot[j][k]; |
799 | > | for (k = 0; k < 3; k++){ |
800 | > | A[j][i] += tempA[i][k] * rot[j][k]; |
801 | } | |
802 | } | |
803 | } | |
804 | } | |
805 | + | |
806 | + | template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){ |
807 | + | myFF->doForces(calcPot, calcStress); |
808 | + | } |
809 | + | |
810 | + | template<typename T> void Integrator<T>::thermalize(){ |
811 | + | tStats->velocitize(); |
812 | + | } |
813 | + | |
814 | + | template<typename T> double Integrator<T>::getConservedQuantity(void){ |
815 | + | return tStats->getTotalE(); |
816 | + | } |
817 | + | template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
818 | + | //By default, return a null string |
819 | + | //The reason we use string instead of char* is that if we use char*, we will |
820 | + | //return a pointer point to local variable which might cause problem |
821 | + | return string(); |
822 | + | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |