# | Line 31 | Line 31 | template<typename T> Integrator<T>::Integrator(SimInfo | |
---|---|---|
31 | } | |
32 | ||
33 | nAtoms = info->n_atoms; | |
34 | < | |
34 | > | integrableObjects = info->integrableObjects; |
35 | > | |
36 | // check for constraints | |
37 | ||
38 | constrainedA = NULL; | |
# | Line 44 | Line 45 | template<typename T> Integrator<T>::Integrator(SimInfo | |
45 | nConstrained = 0; | |
46 | ||
47 | checkConstraints(); | |
48 | + | |
49 | + | for (i=0; i<nMols; i++) |
50 | + | zAngle[i] = 0.0; |
51 | } | |
52 | ||
53 | template<typename T> Integrator<T>::~Integrator(){ | |
# | Line 68 | Line 72 | template<typename T> void Integrator<T>::checkConstrai | |
72 | ||
73 | SRI** theArray; | |
74 | for (int i = 0; i < nMols; i++){ | |
75 | < | theArray = (SRI * *) molecules[i].getMyBonds(); |
75 | > | |
76 | > | theArray = (SRI * *) molecules[i].getMyBonds(); |
77 | for (int j = 0; j < molecules[i].getNBonds(); j++){ | |
78 | constrained = theArray[j]->is_constrained(); | |
79 | ||
# | Line 114 | Line 119 | template<typename T> void Integrator<T>::checkConstrai | |
119 | } | |
120 | } | |
121 | ||
122 | + | |
123 | if (nConstrained > 0){ | |
124 | isConstrained = 1; | |
125 | ||
# | Line 135 | Line 141 | template<typename T> void Integrator<T>::checkConstrai | |
141 | } | |
142 | ||
143 | ||
144 | < | // save oldAtoms to check for lode balanceing later on. |
144 | > | // save oldAtoms to check for lode balancing later on. |
145 | ||
146 | oldAtoms = nAtoms; | |
147 | ||
# | Line 157 | Line 163 | template<typename T> void Integrator<T>::integrate(voi | |
163 | double thermalTime = info->thermalTime; | |
164 | double resetTime = info->resetTime; | |
165 | ||
166 | < | |
166 | > | double difference; |
167 | double currSample; | |
168 | double currThermal; | |
169 | double currStatus; | |
# | Line 176 | Line 182 | template<typename T> void Integrator<T>::integrate(voi | |
182 | ||
183 | readyCheck(); | |
184 | ||
185 | + | // remove center of mass drift velocity (in case we passed in a configuration |
186 | + | // that was drifting |
187 | + | tStats->removeCOMdrift(); |
188 | + | |
189 | + | // initialize the retraints if necessary |
190 | + | if (info->useThermInt) { |
191 | + | myFF->initRestraints(); |
192 | + | } |
193 | + | |
194 | // initialize the forces before the first step | |
195 | ||
196 | calcForce(1, 1); | |
197 | < | |
197 | > | |
198 | if (nConstrained){ | |
199 | preMove(); | |
200 | constrainA(); | |
# | Line 207 | Line 222 | template<typename T> void Integrator<T>::integrate(voi | |
222 | MPIcheckPoint(); | |
223 | #endif // is_mpi | |
224 | ||
225 | < | while (info->getTime() < runTime){ |
226 | < | if ((info->getTime() + dt) >= currStatus){ |
225 | > | while (info->getTime() < runTime && !stopIntegrator()){ |
226 | > | difference = info->getTime() + dt - currStatus; |
227 | > | if (difference > 0 || fabs(difference) < 1e-4 ){ |
228 | calcPot = 1; | |
229 | calcStress = 1; | |
230 | } | |
# | Line 241 | Line 257 | template<typename T> void Integrator<T>::integrate(voi | |
257 | ||
258 | if (info->getTime() >= currStatus){ | |
259 | statOut->writeStat(info->getTime()); | |
260 | + | statOut->writeRaw(info->getTime()); |
261 | calcPot = 0; | |
262 | calcStress = 0; | |
263 | currStatus += statusTime; | |
# | Line 263 | Line 280 | template<typename T> void Integrator<T>::integrate(voi | |
280 | #endif // is_mpi | |
281 | } | |
282 | ||
283 | + | // dump out a file containing the omega values for the final configuration |
284 | + | if (info->useThermInt) |
285 | + | myFF->dumpzAngle(); |
286 | + | |
287 | ||
267 | – | // write the last frame |
268 | – | dumpOut->writeDump(info->getTime()); |
269 | – | |
288 | delete dumpOut; | |
289 | delete statOut; | |
290 | } | |
# | Line 333 | Line 351 | template<typename T> void Integrator<T>::moveA(void){ | |
351 | ||
352 | ||
353 | template<typename T> void Integrator<T>::moveA(void){ | |
354 | < | int i, j; |
354 | > | size_t i, j; |
355 | DirectionalAtom* dAtom; | |
356 | double Tb[3], ji[3]; | |
357 | double vel[3], pos[3], frc[3]; | |
358 | double mass; | |
359 | < | |
360 | < | for (i = 0; i < nAtoms; i++){ |
361 | < | atoms[i]->getVel(vel); |
362 | < | atoms[i]->getPos(pos); |
363 | < | atoms[i]->getFrc(frc); |
359 | > | |
360 | > | for (i = 0; i < integrableObjects.size() ; i++){ |
361 | > | integrableObjects[i]->getVel(vel); |
362 | > | integrableObjects[i]->getPos(pos); |
363 | > | integrableObjects[i]->getFrc(frc); |
364 | > | |
365 | > | mass = integrableObjects[i]->getMass(); |
366 | ||
347 | – | mass = atoms[i]->getMass(); |
348 | – | |
367 | for (j = 0; j < 3; j++){ | |
368 | // velocity half step | |
369 | vel[j] += (dt2 * frc[j] / mass) * eConvert; | |
# | Line 353 | Line 371 | template<typename T> void Integrator<T>::moveA(void){ | |
371 | pos[j] += dt * vel[j]; | |
372 | } | |
373 | ||
374 | < | atoms[i]->setVel(vel); |
375 | < | atoms[i]->setPos(pos); |
374 | > | integrableObjects[i]->setVel(vel); |
375 | > | integrableObjects[i]->setPos(pos); |
376 | ||
377 | < | if (atoms[i]->isDirectional()){ |
360 | < | dAtom = (DirectionalAtom *) atoms[i]; |
377 | > | if (integrableObjects[i]->isDirectional()){ |
378 | ||
379 | // get and convert the torque to body frame | |
380 | ||
381 | < | dAtom->getTrq(Tb); |
382 | < | dAtom->lab2Body(Tb); |
381 | > | integrableObjects[i]->getTrq(Tb); |
382 | > | integrableObjects[i]->lab2Body(Tb); |
383 | ||
384 | // get the angular momentum, and propagate a half step | |
385 | ||
386 | < | dAtom->getJ(ji); |
386 | > | integrableObjects[i]->getJ(ji); |
387 | ||
388 | for (j = 0; j < 3; j++) | |
389 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
390 | ||
391 | < | this->rotationPropagation( dAtom, ji ); |
391 | > | this->rotationPropagation( integrableObjects[i], ji ); |
392 | ||
393 | < | dAtom->setJ(ji); |
393 | > | integrableObjects[i]->setJ(ji); |
394 | } | |
395 | } | |
396 | ||
# | Line 385 | Line 402 | template<typename T> void Integrator<T>::moveB(void){ | |
402 | ||
403 | template<typename T> void Integrator<T>::moveB(void){ | |
404 | int i, j; | |
388 | – | DirectionalAtom* dAtom; |
405 | double Tb[3], ji[3]; | |
406 | double vel[3], frc[3]; | |
407 | double mass; | |
408 | ||
409 | < | for (i = 0; i < nAtoms; i++){ |
410 | < | atoms[i]->getVel(vel); |
411 | < | atoms[i]->getFrc(frc); |
409 | > | for (i = 0; i < integrableObjects.size(); i++){ |
410 | > | integrableObjects[i]->getVel(vel); |
411 | > | integrableObjects[i]->getFrc(frc); |
412 | ||
413 | < | mass = atoms[i]->getMass(); |
413 | > | mass = integrableObjects[i]->getMass(); |
414 | ||
415 | // velocity half step | |
416 | for (j = 0; j < 3; j++) | |
417 | vel[j] += (dt2 * frc[j] / mass) * eConvert; | |
418 | ||
419 | < | atoms[i]->setVel(vel); |
419 | > | integrableObjects[i]->setVel(vel); |
420 | ||
421 | < | if (atoms[i]->isDirectional()){ |
406 | < | dAtom = (DirectionalAtom *) atoms[i]; |
421 | > | if (integrableObjects[i]->isDirectional()){ |
422 | ||
423 | // get and convert the torque to body frame | |
424 | ||
425 | < | dAtom->getTrq(Tb); |
426 | < | dAtom->lab2Body(Tb); |
425 | > | integrableObjects[i]->getTrq(Tb); |
426 | > | integrableObjects[i]->lab2Body(Tb); |
427 | ||
428 | // get the angular momentum, and propagate a half step | |
429 | ||
430 | < | dAtom->getJ(ji); |
430 | > | integrableObjects[i]->getJ(ji); |
431 | ||
432 | for (j = 0; j < 3; j++) | |
433 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
434 | ||
435 | ||
436 | < | dAtom->setJ(ji); |
436 | > | integrableObjects[i]->setJ(ji); |
437 | } | |
438 | } | |
439 | ||
# | Line 687 | Line 702 | template<typename T> void Integrator<T>::rotationPropa | |
702 | } | |
703 | ||
704 | template<typename T> void Integrator<T>::rotationPropagation | |
705 | < | ( DirectionalAtom* dAtom, double ji[3] ){ |
705 | > | ( StuntDouble* sd, double ji[3] ){ |
706 | ||
707 | double angle; | |
708 | double A[3][3], I[3][3]; | |
709 | + | int i, j, k; |
710 | ||
711 | // use the angular velocities to propagate the rotation matrix a | |
712 | // full time step | |
713 | ||
714 | < | dAtom->getA(A); |
715 | < | dAtom->getI(I); |
714 | > | sd->getA(A); |
715 | > | sd->getI(I); |
716 | ||
717 | < | // rotate about the x-axis |
718 | < | angle = dt2 * ji[0] / I[0][0]; |
719 | < | this->rotate( 1, 2, angle, ji, A ); |
717 | > | if (sd->isLinear()) { |
718 | > | i = sd->linearAxis(); |
719 | > | j = (i+1)%3; |
720 | > | k = (i+2)%3; |
721 | > | |
722 | > | angle = dt2 * ji[j] / I[j][j]; |
723 | > | this->rotate( k, i, angle, ji, A ); |
724 | ||
725 | < | // rotate about the y-axis |
726 | < | angle = dt2 * ji[1] / I[1][1]; |
707 | < | this->rotate( 2, 0, angle, ji, A ); |
708 | < | |
709 | < | // rotate about the z-axis |
710 | < | angle = dt * ji[2] / I[2][2]; |
711 | < | this->rotate( 0, 1, angle, ji, A); |
725 | > | angle = dt * ji[k] / I[k][k]; |
726 | > | this->rotate( i, j, angle, ji, A); |
727 | ||
728 | < | // rotate about the y-axis |
729 | < | angle = dt2 * ji[1] / I[1][1]; |
715 | < | this->rotate( 2, 0, angle, ji, A ); |
728 | > | angle = dt2 * ji[j] / I[j][j]; |
729 | > | this->rotate( k, i, angle, ji, A ); |
730 | ||
731 | < | // rotate about the x-axis |
732 | < | angle = dt2 * ji[0] / I[0][0]; |
733 | < | this->rotate( 1, 2, angle, ji, A ); |
734 | < | |
735 | < | dAtom->setA( A ); |
731 | > | } else { |
732 | > | // rotate about the x-axis |
733 | > | angle = dt2 * ji[0] / I[0][0]; |
734 | > | this->rotate( 1, 2, angle, ji, A ); |
735 | > | |
736 | > | // rotate about the y-axis |
737 | > | angle = dt2 * ji[1] / I[1][1]; |
738 | > | this->rotate( 2, 0, angle, ji, A ); |
739 | > | |
740 | > | // rotate about the z-axis |
741 | > | angle = dt * ji[2] / I[2][2]; |
742 | > | this->rotate( 0, 1, angle, ji, A); |
743 | > | |
744 | > | // rotate about the y-axis |
745 | > | angle = dt2 * ji[1] / I[1][1]; |
746 | > | this->rotate( 2, 0, angle, ji, A ); |
747 | > | |
748 | > | // rotate about the x-axis |
749 | > | angle = dt2 * ji[0] / I[0][0]; |
750 | > | this->rotate( 1, 2, angle, ji, A ); |
751 | > | |
752 | > | } |
753 | > | sd->setA( A ); |
754 | } | |
755 | ||
756 | template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |