# | Line 1 | Line 1 | |
---|---|---|
1 | #include <iostream> | |
2 | #include <cstdlib> | |
3 | + | #include <cmath> |
4 | ||
5 | #ifdef IS_MPI | |
6 | #include "mpiSimulation.hpp" | |
# | Line 10 | Line 11 | |
11 | #include "simError.h" | |
12 | ||
13 | ||
14 | < | Integrator::Integrator( SimInfo* theInfo, ForceFields* the_ff ){ |
14 | > | Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){ |
15 | ||
16 | info = theInfo; | |
17 | myFF = the_ff; | |
# | Line 26 | Line 27 | Integrator::Integrator( SimInfo* theInfo, ForceFields* | |
27 | ||
28 | nAtoms = info->n_atoms; | |
29 | ||
30 | + | std::cerr << "integ nAtoms = " << nAtoms << "\n"; |
31 | + | |
32 | // check for constraints | |
33 | ||
34 | constrainedA = NULL; | |
# | Line 33 | Line 36 | Integrator::Integrator( SimInfo* theInfo, ForceFields* | |
36 | constrainedDsqr = NULL; | |
37 | moving = NULL; | |
38 | moved = NULL; | |
39 | < | prePos = NULL; |
39 | > | oldPos = NULL; |
40 | ||
41 | nConstrained = 0; | |
42 | ||
# | Line 48 | Line 51 | Integrator::~Integrator() { | |
51 | delete[] constrainedDsqr; | |
52 | delete[] moving; | |
53 | delete[] moved; | |
54 | < | delete[] prePos; |
54 | > | delete[] oldPos; |
55 | } | |
56 | ||
57 | } | |
# | Line 71 | Line 74 | void Integrator::checkConstraints( void ){ | |
74 | for(int j=0; j<molecules[i].getNBonds(); j++){ | |
75 | ||
76 | constrained = theArray[j]->is_constrained(); | |
77 | + | |
78 | + | std::cerr << "Is the folowing bond constrained \n"; |
79 | + | theArray[j]->printMe(); |
80 | ||
81 | if(constrained){ | |
82 | ||
83 | + | std::cerr << "Yes\n"; |
84 | + | |
85 | dummy_plug = theArray[j]->get_constraint(); | |
86 | temp_con[nConstrained].set_a( dummy_plug->get_a() ); | |
87 | temp_con[nConstrained].set_b( dummy_plug->get_b() ); | |
# | Line 81 | Line 89 | void Integrator::checkConstraints( void ){ | |
89 | ||
90 | nConstrained++; | |
91 | constrained = 0; | |
92 | < | } |
92 | > | } |
93 | > | else std::cerr << "No.\n"; |
94 | } | |
95 | ||
96 | theArray = (SRI**) molecules[i].getMyBends(); | |
# | Line 136 | Line 145 | void Integrator::checkConstraints( void ){ | |
145 | constrainedA[i] = temp_con[i].get_a(); | |
146 | constrainedB[i] = temp_con[i].get_b(); | |
147 | constrainedDsqr[i] = temp_con[i].get_dsqr(); | |
148 | + | |
149 | } | |
150 | ||
151 | ||
# | Line 146 | Line 156 | void Integrator::checkConstraints( void ){ | |
156 | moving = new int[nAtoms]; | |
157 | moved = new int[nAtoms]; | |
158 | ||
159 | < | prePos = new double[nAtoms*3]; |
159 | > | oldPos = new double[nAtoms*3]; |
160 | } | |
161 | ||
162 | delete[] temp_con; | |
# | Line 156 | Line 166 | void Integrator::integrate( void ){ | |
166 | void Integrator::integrate( void ){ | |
167 | ||
168 | int i, j; // loop counters | |
159 | – | double kE = 0.0; // the kinetic energy |
160 | – | double rot_kE; |
161 | – | double trans_kE; |
162 | – | int tl; // the time loop conter |
163 | – | double dt2; // half the dt |
169 | ||
165 | – | double vx, vy, vz; // the velocities |
166 | – | double vx2, vy2, vz2; // the square of the velocities |
167 | – | double rx, ry, rz; // the postitions |
168 | – | |
169 | – | double ji[3]; // the body frame angular momentum |
170 | – | double jx2, jy2, jz2; // the square of the angular momentums |
171 | – | double Tb[3]; // torque in the body frame |
172 | – | double angle; // the angle through which to rotate the rotation matrix |
173 | – | double A[3][3]; // the rotation matrix |
174 | – | double press[9]; |
175 | – | |
176 | – | double dt = info->dt; |
170 | double runTime = info->run_time; | |
171 | double sampleTime = info->sampleTime; | |
172 | double statusTime = info->statusTime; | |
# | Line 188 | Line 181 | void Integrator::integrate( void ){ | |
181 | int isError; | |
182 | ||
183 | tStats = new Thermo( info ); | |
184 | < | e_out = new StatWriter( info ); |
185 | < | dump_out = new DumpWriter( info ); |
184 | > | statOut = new StatWriter( info ); |
185 | > | dumpOut = new DumpWriter( info ); |
186 | ||
187 | < | Atom** atoms = info->atoms; |
187 | > | atoms = info->atoms; |
188 | DirectionalAtom* dAtom; | |
189 | + | |
190 | + | dt = info->dt; |
191 | dt2 = 0.5 * dt; | |
192 | ||
193 | // initialize the forces before the first step | |
# | Line 204 | Line 199 | void Integrator::integrate( void ){ | |
199 | tStats->velocitize(); | |
200 | } | |
201 | ||
202 | < | dump_out->writeDump( 0.0 ); |
203 | < | e_out->writeStat( 0.0 ); |
202 | > | dumpOut->writeDump( 0.0 ); |
203 | > | statOut->writeStat( 0.0 ); |
204 | ||
205 | calcPot = 0; | |
206 | calcStress = 0; | |
# | Line 229 | Line 224 | void Integrator::integrate( void ){ | |
224 | calcPot = 1; | |
225 | calcStress = 1; | |
226 | } | |
227 | < | |
227 | > | |
228 | > | std::cerr << currTime << "\n"; |
229 | > | |
230 | integrateStep( calcPot, calcStress ); | |
231 | ||
232 | currTime += dt; | |
# | Line 242 | Line 239 | void Integrator::integrate( void ){ | |
239 | } | |
240 | ||
241 | if( currTime >= currSample ){ | |
242 | < | dump_out->writeDump( currTime ); |
242 | > | dumpOut->writeDump( currTime ); |
243 | currSample += sampleTime; | |
244 | } | |
245 | ||
246 | if( currTime >= currStatus ){ | |
247 | < | e_out->writeStat( time * dt ); |
247 | > | statOut->writeStat( currTime ); |
248 | calcPot = 0; | |
249 | calcStress = 0; | |
250 | currStatus += statusTime; | |
# | Line 261 | Line 258 | void Integrator::integrate( void ){ | |
258 | ||
259 | } | |
260 | ||
261 | < | dump_out->writeFinal(); |
261 | > | dumpOut->writeFinal(currTime); |
262 | ||
263 | < | delete dump_out; |
264 | < | delete e_out; |
263 | > | delete dumpOut; |
264 | > | delete statOut; |
265 | } | |
266 | ||
267 | void Integrator::integrateStep( int calcPot, int calcStress ){ | |
268 | ||
269 | + | |
270 | + | |
271 | // Position full step, and velocity half step | |
272 | ||
273 | < | //preMove(); |
273 | > | preMove(); |
274 | moveA(); | |
275 | if( nConstrained ) constrainA(); | |
276 | ||
# | Line 289 | Line 288 | void Integrator::moveA( void ){ | |
288 | ||
289 | void Integrator::moveA( void ){ | |
290 | ||
291 | < | int i,j,k; |
293 | < | int atomIndex, aMatIndex; |
291 | > | int i, j; |
292 | DirectionalAtom* dAtom; | |
293 | < | double Tb[3]; |
294 | < | double ji[3]; |
293 | > | double Tb[3], ji[3]; |
294 | > | double A[3][3], I[3][3]; |
295 | > | double angle; |
296 | > | double vel[3], pos[3], frc[3]; |
297 | > | double mass; |
298 | ||
299 | for( i=0; i<nAtoms; i++ ){ | |
299 | – | atomIndex = i * 3; |
300 | – | aMatIndex = i * 9; |
301 | – | |
302 | – | // velocity half step |
303 | – | for( j=atomIndex; j<(atomIndex+3); j++ ) |
304 | – | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
300 | ||
301 | < | // position whole step |
302 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
301 | > | atoms[i]->getVel( vel ); |
302 | > | atoms[i]->getPos( pos ); |
303 | > | atoms[i]->getFrc( frc ); |
304 | > | |
305 | > | mass = atoms[i]->getMass(); |
306 | > | |
307 | > | for (j=0; j < 3; j++) { |
308 | > | // velocity half step |
309 | > | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
310 | > | // position whole step |
311 | pos[j] += dt * vel[j]; | |
312 | + | } |
313 | ||
314 | < | |
314 | > | atoms[i]->setVel( vel ); |
315 | > | atoms[i]->setPos( pos ); |
316 | > | |
317 | if( atoms[i]->isDirectional() ){ | |
318 | ||
319 | dAtom = (DirectionalAtom *)atoms[i]; | |
320 | ||
321 | // get and convert the torque to body frame | |
322 | ||
323 | < | Tb[0] = dAtom->getTx(); |
318 | < | Tb[1] = dAtom->getTy(); |
319 | < | Tb[2] = dAtom->getTz(); |
320 | < | |
323 | > | dAtom->getTrq( Tb ); |
324 | dAtom->lab2Body( Tb ); | |
325 | < | |
325 | > | |
326 | // get the angular momentum, and propagate a half step | |
327 | + | |
328 | + | dAtom->getJ( ji ); |
329 | + | |
330 | + | for (j=0; j < 3; j++) |
331 | + | ji[j] += (dt2 * Tb[j]) * eConvert; |
332 | ||
325 | – | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
326 | – | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
327 | – | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
328 | – | |
333 | // use the angular velocities to propagate the rotation matrix a | |
334 | // full time step | |
335 | < | |
335 | > | |
336 | > | dAtom->getA(A); |
337 | > | dAtom->getI(I); |
338 | > | |
339 | // rotate about the x-axis | |
340 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
341 | < | this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
342 | < | |
340 | > | angle = dt2 * ji[0] / I[0][0]; |
341 | > | this->rotate( 1, 2, angle, ji, A ); |
342 | > | |
343 | // rotate about the y-axis | |
344 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
345 | < | this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
344 | > | angle = dt2 * ji[1] / I[1][1]; |
345 | > | this->rotate( 2, 0, angle, ji, A ); |
346 | ||
347 | // rotate about the z-axis | |
348 | < | angle = dt * ji[2] / dAtom->getIzz(); |
349 | < | this->rotate( 0, 1, angle, ji, &aMat[aMatIndex] ); |
348 | > | angle = dt * ji[2] / I[2][2]; |
349 | > | this->rotate( 0, 1, angle, ji, A); |
350 | ||
351 | // rotate about the y-axis | |
352 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
353 | < | this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
352 | > | angle = dt2 * ji[1] / I[1][1]; |
353 | > | this->rotate( 2, 0, angle, ji, A ); |
354 | ||
355 | // rotate about the x-axis | |
356 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
357 | < | this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
356 | > | angle = dt2 * ji[0] / I[0][0]; |
357 | > | this->rotate( 1, 2, angle, ji, A ); |
358 | ||
359 | < | dAtom->setJx( ji[0] ); |
360 | < | dAtom->setJy( ji[1] ); |
361 | < | dAtom->setJz( ji[2] ); |
362 | < | } |
363 | < | |
359 | > | |
360 | > | dAtom->setJ( ji ); |
361 | > | dAtom->setA( A ); |
362 | > | |
363 | > | } |
364 | } | |
365 | } | |
366 | ||
367 | ||
368 | void Integrator::moveB( void ){ | |
369 | < | int i,j,k; |
363 | < | int atomIndex; |
369 | > | int i, j; |
370 | DirectionalAtom* dAtom; | |
371 | < | double Tb[3]; |
372 | < | double ji[3]; |
371 | > | double Tb[3], ji[3]; |
372 | > | double vel[3], frc[3]; |
373 | > | double mass; |
374 | ||
375 | for( i=0; i<nAtoms; i++ ){ | |
376 | < | atomIndex = i * 3; |
376 | > | |
377 | > | atoms[i]->getVel( vel ); |
378 | > | atoms[i]->getFrc( frc ); |
379 | ||
380 | < | // velocity half step |
372 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
373 | < | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
380 | > | mass = atoms[i]->getMass(); |
381 | ||
382 | + | // velocity half step |
383 | + | for (j=0; j < 3; j++) |
384 | + | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
385 | + | |
386 | + | atoms[i]->setVel( vel ); |
387 | + | |
388 | if( atoms[i]->isDirectional() ){ | |
389 | < | |
389 | > | |
390 | dAtom = (DirectionalAtom *)atoms[i]; | |
391 | < | |
392 | < | // get and convert the torque to body frame |
393 | < | |
394 | < | Tb[0] = dAtom->getTx(); |
382 | < | Tb[1] = dAtom->getTy(); |
383 | < | Tb[2] = dAtom->getTz(); |
384 | < | |
391 | > | |
392 | > | // get and convert the torque to body frame |
393 | > | |
394 | > | dAtom->getTrq( Tb ); |
395 | dAtom->lab2Body( Tb ); | |
396 | + | |
397 | + | // get the angular momentum, and propagate a half step |
398 | + | |
399 | + | dAtom->getJ( ji ); |
400 | + | |
401 | + | for (j=0; j < 3; j++) |
402 | + | ji[j] += (dt2 * Tb[j]) * eConvert; |
403 | ||
404 | < | // get the angular momentum, and complete the angular momentum |
405 | < | // half step |
389 | < | |
390 | < | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
391 | < | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
392 | < | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
393 | < | |
394 | < | jx2 = ji[0] * ji[0]; |
395 | < | jy2 = ji[1] * ji[1]; |
396 | < | jz2 = ji[2] * ji[2]; |
397 | < | |
398 | < | dAtom->setJx( ji[0] ); |
399 | < | dAtom->setJy( ji[1] ); |
400 | < | dAtom->setJz( ji[2] ); |
404 | > | |
405 | > | dAtom->setJ( ji ); |
406 | } | |
407 | } | |
403 | – | |
408 | } | |
409 | ||
410 | void Integrator::preMove( void ){ | |
411 | < | int i; |
411 | > | int i, j; |
412 | > | double pos[3]; |
413 | ||
414 | if( nConstrained ){ | |
415 | < | if( oldAtoms != nAtoms ){ |
416 | < | |
417 | < | // save oldAtoms to check for lode balanceing later on. |
418 | < | |
419 | < | oldAtoms = nAtoms; |
420 | < | |
421 | < | delete[] moving; |
422 | < | delete[] moved; |
423 | < | delete[] oldPos; |
419 | < | |
420 | < | moving = new int[nAtoms]; |
421 | < | moved = new int[nAtoms]; |
422 | < | |
423 | < | oldPos = new double[nAtoms*3]; |
415 | > | |
416 | > | for(i=0; i < nAtoms; i++) { |
417 | > | |
418 | > | atoms[i]->getPos( pos ); |
419 | > | |
420 | > | for (j = 0; j < 3; j++) { |
421 | > | oldPos[3*i + j] = pos[j]; |
422 | > | } |
423 | > | |
424 | } | |
425 | < | |
426 | < | for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i]; |
427 | < | } |
428 | < | } |
425 | > | } |
426 | > | } |
427 | ||
428 | void Integrator::constrainA(){ | |
429 | ||
430 | int i,j,k; | |
431 | int done; | |
432 | < | double pxab, pyab, pzab; |
433 | < | double rxab, ryab, rzab; |
434 | < | int a, b; |
432 | > | double posA[3], posB[3]; |
433 | > | double velA[3], velB[3]; |
434 | > | double pab[3]; |
435 | > | double rab[3]; |
436 | > | int a, b, ax, ay, az, bx, by, bz; |
437 | double rma, rmb; | |
438 | double dx, dy, dz; | |
439 | + | double rpab; |
440 | double rabsq, pabsq, rpabsq; | |
441 | double diffsq; | |
442 | double gab; | |
443 | int iteration; | |
444 | ||
445 | < | |
445 | < | |
446 | < | for( i=0; i<nAtoms; i++){ |
447 | < | |
445 | > | for( i=0; i<nAtoms; i++){ |
446 | moving[i] = 0; | |
447 | moved[i] = 1; | |
448 | } | |
449 | < | |
452 | < | |
449 | > | |
450 | iteration = 0; | |
451 | done = 0; | |
452 | while( !done && (iteration < maxIteration )){ | |
# | Line 459 | Line 456 | void Integrator::constrainA(){ | |
456 | ||
457 | a = constrainedA[i]; | |
458 | b = constrainedB[i]; | |
459 | < | |
459 | > | |
460 | > | ax = (a*3) + 0; |
461 | > | ay = (a*3) + 1; |
462 | > | az = (a*3) + 2; |
463 | > | |
464 | > | bx = (b*3) + 0; |
465 | > | by = (b*3) + 1; |
466 | > | bz = (b*3) + 2; |
467 | > | |
468 | if( moved[a] || moved[b] ){ | |
469 | < | |
470 | < | pxab = pos[3*a+0] - pos[3*b+0]; |
471 | < | pyab = pos[3*a+1] - pos[3*b+1]; |
472 | < | pzab = pos[3*a+2] - pos[3*b+2]; |
469 | > | |
470 | > | atoms[a]->getPos( posA ); |
471 | > | atoms[b]->getPos( posB ); |
472 | > | |
473 | > | for (j = 0; j < 3; j++ ) |
474 | > | pab[j] = posA[j] - posB[j]; |
475 | > | |
476 | > | //periodic boundary condition |
477 | ||
478 | < | //periodic boundary condition |
470 | < | pxab = pxab - info->box_x * copysign(1, pxab) |
471 | < | * int(pxab / info->box_x + 0.5); |
472 | < | pyab = pyab - info->box_y * copysign(1, pyab) |
473 | < | * int(pyab / info->box_y + 0.5); |
474 | < | pzab = pzab - info->box_z * copysign(1, pzab) |
475 | < | * int(pzab / info->box_z + 0.5); |
476 | < | |
477 | < | pabsq = pxab * pxab + pyab * pyab + pzab * pzab; |
478 | < | rabsq = constraintedDsqr[i]; |
479 | < | diffsq = pabsq - rabsq; |
478 | > | info->wrapVector( pab ); |
479 | ||
480 | + | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
481 | + | |
482 | + | rabsq = constrainedDsqr[i]; |
483 | + | diffsq = rabsq - pabsq; |
484 | + | |
485 | // the original rattle code from alan tidesley | |
486 | < | if (fabs(diffsq) > tol*rabsq*2) { |
487 | < | rxab = oldPos[3*a+0] - oldPos[3*b+0]; |
488 | < | ryab = oldPos[3*a+1] - oldPos[3*b+1]; |
489 | < | rzab = oldPos[3*a+2] - oldPos[3*b+2]; |
486 | < | |
487 | < | rxab = rxab - info->box_x * copysign(1, rxab) |
488 | < | * int(rxab / info->box_x + 0.5); |
489 | < | ryab = ryab - info->box_y * copysign(1, ryab) |
490 | < | * int(ryab / info->box_y + 0.5); |
491 | < | rzab = rzab - info->box_z * copysign(1, rzab) |
492 | < | * int(rzab / info->box_z + 0.5); |
486 | > | if (fabs(diffsq) > (tol*rabsq*2)) { |
487 | > | rab[0] = oldPos[ax] - oldPos[bx]; |
488 | > | rab[1] = oldPos[ay] - oldPos[by]; |
489 | > | rab[2] = oldPos[az] - oldPos[bz]; |
490 | ||
491 | < | rpab = rxab * pxab + ryab * pyab + rzab * pzab; |
491 | > | info->wrapVector( rab ); |
492 | > | |
493 | > | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
494 | > | |
495 | rpabsq = rpab * rpab; | |
496 | ||
497 | ||
498 | if (rpabsq < (rabsq * -diffsq)){ | |
499 | + | |
500 | #ifdef IS_MPI | |
501 | a = atoms[a]->getGlobalIndex(); | |
502 | b = atoms[b]->getGlobalIndex(); | |
503 | #endif //is_mpi | |
504 | sprintf( painCave.errMsg, | |
505 | < | "Constraint failure in constrainA at atom %d and %d\n.", |
505 | > | "Constraint failure in constrainA at atom %d and %d.\n", |
506 | a, b ); | |
507 | painCave.isFatal = 1; | |
508 | simError(); | |
# | Line 509 | Line 510 | void Integrator::constrainA(){ | |
510 | ||
511 | rma = 1.0 / atoms[a]->getMass(); | |
512 | rmb = 1.0 / atoms[b]->getMass(); | |
513 | < | |
513 | > | |
514 | gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); | |
514 | – | dx = rxab * gab; |
515 | – | dy = ryab * gab; |
516 | – | dz = rzab * gab; |
515 | ||
516 | < | pos[3*a+0] += rma * dx; |
517 | < | pos[3*a+1] += rma * dy; |
518 | < | pos[3*a+2] += rma * dz; |
516 | > | dx = rab[0] * gab; |
517 | > | dy = rab[1] * gab; |
518 | > | dz = rab[2] * gab; |
519 | ||
520 | < | pos[3*b+0] -= rmb * dx; |
521 | < | pos[3*b+1] -= rmb * dy; |
522 | < | pos[3*b+2] -= rmb * dz; |
520 | > | posA[0] += rma * dx; |
521 | > | posA[1] += rma * dy; |
522 | > | posA[2] += rma * dz; |
523 | ||
524 | + | atoms[a]->setPos( posA ); |
525 | + | |
526 | + | posB[0] -= rmb * dx; |
527 | + | posB[1] -= rmb * dy; |
528 | + | posB[2] -= rmb * dz; |
529 | + | |
530 | + | atoms[b]->setPos( posB ); |
531 | + | |
532 | dx = dx / dt; | |
533 | dy = dy / dt; | |
534 | dz = dz / dt; | |
535 | ||
536 | < | vel[3*a+0] += rma * dx; |
531 | < | vel[3*a+1] += rma * dy; |
532 | < | vel[3*a+2] += rma * dz; |
536 | > | atoms[a]->getVel( velA ); |
537 | ||
538 | < | vel[3*b+0] -= rmb * dx; |
539 | < | vel[3*b+1] -= rmb * dy; |
540 | < | vel[3*b+2] -= rmb * dz; |
538 | > | velA[0] += rma * dx; |
539 | > | velA[1] += rma * dy; |
540 | > | velA[2] += rma * dz; |
541 | ||
542 | + | atoms[a]->setVel( velA ); |
543 | + | |
544 | + | atoms[b]->getVel( velB ); |
545 | + | |
546 | + | velB[0] -= rmb * dx; |
547 | + | velB[1] -= rmb * dy; |
548 | + | velB[2] -= rmb * dz; |
549 | + | |
550 | + | atoms[b]->setVel( velB ); |
551 | + | |
552 | moving[a] = 1; | |
553 | moving[b] = 1; | |
554 | done = 0; | |
# | Line 553 | Line 567 | void Integrator::constrainA(){ | |
567 | ||
568 | if( !done ){ | |
569 | ||
570 | < | sprintf( painCae.errMsg, |
570 | > | sprintf( painCave.errMsg, |
571 | "Constraint failure in constrainA, too many iterations: %d\n", | |
572 | < | iterations ); |
572 | > | iteration ); |
573 | painCave.isFatal = 1; | |
574 | simError(); | |
575 | } | |
# | Line 566 | Line 580 | void Integrator::constrainB( void ){ | |
580 | ||
581 | int i,j,k; | |
582 | int done; | |
583 | + | double posA[3], posB[3]; |
584 | + | double velA[3], velB[3]; |
585 | double vxab, vyab, vzab; | |
586 | < | double rxab, ryab, rzab; |
587 | < | int a, b; |
586 | > | double rab[3]; |
587 | > | int a, b, ax, ay, az, bx, by, bz; |
588 | double rma, rmb; | |
589 | double dx, dy, dz; | |
590 | double rabsq, pabsq, rvab; | |
# | Line 576 | Line 592 | void Integrator::constrainB( void ){ | |
592 | double gab; | |
593 | int iteration; | |
594 | ||
595 | < | for(i=0; i<nAtom; i++){ |
595 | > | for(i=0; i<nAtoms; i++){ |
596 | moving[i] = 0; | |
597 | moved[i] = 1; | |
598 | } | |
599 | ||
600 | done = 0; | |
601 | + | iteration = 0; |
602 | while( !done && (iteration < maxIteration ) ){ | |
603 | ||
604 | + | done = 1; |
605 | + | |
606 | for(i=0; i<nConstrained; i++){ | |
607 | ||
608 | a = constrainedA[i]; | |
609 | b = constrainedB[i]; | |
610 | ||
611 | + | ax = (a*3) + 0; |
612 | + | ay = (a*3) + 1; |
613 | + | az = (a*3) + 2; |
614 | + | |
615 | + | bx = (b*3) + 0; |
616 | + | by = (b*3) + 1; |
617 | + | bz = (b*3) + 2; |
618 | + | |
619 | if( moved[a] || moved[b] ){ | |
593 | – | |
594 | – | vxab = vel[3*a+0] - vel[3*b+0]; |
595 | – | vyab = vel[3*a+1] - vel[3*b+1]; |
596 | – | vzab = vel[3*a+2] - vel[3*b+2]; |
620 | ||
621 | < | rxab = pos[3*a+0] - pos[3*b+0];q |
622 | < | ryab = pos[3*a+1] - pos[3*b+1]; |
623 | < | rzab = pos[3*a+2] - pos[3*b+2]; |
624 | < | |
625 | < | rxab = rxab - info->box_x * copysign(1, rxab) |
626 | < | * int(rxab / info->box_x + 0.5); |
604 | < | ryab = ryab - info->box_y * copysign(1, ryab) |
605 | < | * int(ryab / info->box_y + 0.5); |
606 | < | rzab = rzab - info->box_z * copysign(1, rzab) |
607 | < | * int(rzab / info->box_z + 0.5); |
621 | > | atoms[a]->getVel( velA ); |
622 | > | atoms[b]->getVel( velB ); |
623 | > | |
624 | > | vxab = velA[0] - velB[0]; |
625 | > | vyab = velA[1] - velB[1]; |
626 | > | vzab = velA[2] - velB[2]; |
627 | ||
628 | + | atoms[a]->getPos( posA ); |
629 | + | atoms[b]->getPos( posB ); |
630 | + | |
631 | + | for (j = 0; j < 3; j++) |
632 | + | rab[j] = posA[j] - posB[j]; |
633 | + | |
634 | + | info->wrapVector( rab ); |
635 | + | |
636 | rma = 1.0 / atoms[a]->getMass(); | |
637 | rmb = 1.0 / atoms[b]->getMass(); | |
638 | ||
639 | < | rvab = rxab * vxab + ryab * vyab + rzab * vzab; |
639 | > | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
640 | ||
641 | < | gab = -rvab / ( ( rma + rmb ) * constraintsDsqr[i] ); |
641 | > | gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); |
642 | ||
643 | if (fabs(gab) > tol) { | |
644 | ||
645 | < | dx = rxab * gab; |
646 | < | dy = ryab * gab; |
647 | < | dz = rzab * gab; |
648 | < | |
649 | < | vel[3*a+0] += rma * dx; |
650 | < | vel[3*a+1] += rma * dy; |
651 | < | vel[3*a+2] += rma * dz; |
645 | > | dx = rab[0] * gab; |
646 | > | dy = rab[1] * gab; |
647 | > | dz = rab[2] * gab; |
648 | > | |
649 | > | velA[0] += rma * dx; |
650 | > | velA[1] += rma * dy; |
651 | > | velA[2] += rma * dz; |
652 | ||
653 | < | vel[3*b+0] -= rmb * dx; |
654 | < | vel[3*b+1] -= rmb * dy; |
655 | < | vel[3*b+2] -= rmb * dz; |
653 | > | atoms[a]->setVel( velA ); |
654 | > | |
655 | > | velB[0] -= rmb * dx; |
656 | > | velB[1] -= rmb * dy; |
657 | > | velB[2] -= rmb * dz; |
658 | > | |
659 | > | atoms[b]->setVel( velB ); |
660 | ||
661 | moving[a] = 1; | |
662 | moving[b] = 1; | |
# | Line 641 | Line 672 | void Integrator::constrainB( void ){ | |
672 | ||
673 | iteration++; | |
674 | } | |
675 | < | |
675 | > | |
676 | if( !done ){ | |
677 | ||
678 | ||
679 | < | sprintf( painCae.errMsg, |
679 | > | sprintf( painCave.errMsg, |
680 | "Constraint failure in constrainB, too many iterations: %d\n", | |
681 | < | iterations ); |
681 | > | iteration ); |
682 | painCave.isFatal = 1; | |
683 | simError(); | |
684 | } | |
685 | ||
686 | } | |
687 | ||
657 | – | |
658 | – | |
659 | – | |
660 | – | |
661 | – | |
662 | – | |
688 | void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], | |
689 | double A[3][3] ){ | |
690 | ||
# | Line 728 | Line 753 | void Integrator::rotate( int axes1, int axes2, double | |
753 | // A[][] = A[][] * transpose(rot[][]) | |
754 | ||
755 | ||
756 | < | // NOte for as yet unknown reason, we are setting the performing the |
756 | > | // NOte for as yet unknown reason, we are performing the |
757 | // calculation as: | |
758 | // transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | |
759 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |