# | Line 1 | Line 1 | |
---|---|---|
1 | #include <iostream> | |
2 | #include <cstdlib> | |
3 | + | #include <cmath> |
4 | ||
5 | #ifdef IS_MPI | |
6 | #include "mpiSimulation.hpp" | |
# | Line 10 | Line 11 | |
11 | #include "simError.h" | |
12 | ||
13 | ||
14 | < | Integrator::Integrator( SimInfo* theInfo, ForceFields* the_ff ){ |
14 | > | Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){ |
15 | ||
16 | info = theInfo; | |
17 | myFF = the_ff; | |
# | Line 33 | Line 34 | Integrator::Integrator( SimInfo* theInfo, ForceFields* | |
34 | constrainedDsqr = NULL; | |
35 | moving = NULL; | |
36 | moved = NULL; | |
37 | < | prePos = NULL; |
37 | > | oldPos = NULL; |
38 | ||
39 | nConstrained = 0; | |
40 | ||
# | Line 48 | Line 49 | Integrator::~Integrator() { | |
49 | delete[] constrainedDsqr; | |
50 | delete[] moving; | |
51 | delete[] moved; | |
52 | < | delete[] prePos; |
52 | < | k |
52 | > | delete[] oldPos; |
53 | } | |
54 | ||
55 | } | |
# | Line 72 | Line 72 | void Integrator::checkConstraints( void ){ | |
72 | for(int j=0; j<molecules[i].getNBonds(); j++){ | |
73 | ||
74 | constrained = theArray[j]->is_constrained(); | |
75 | + | |
76 | + | std::cerr << "Is the folowing bond constrained \n"; |
77 | + | theArray[j]->printMe(); |
78 | ||
79 | if(constrained){ | |
80 | ||
81 | + | std::cerr << "Yes\n"; |
82 | + | |
83 | dummy_plug = theArray[j]->get_constraint(); | |
84 | temp_con[nConstrained].set_a( dummy_plug->get_a() ); | |
85 | temp_con[nConstrained].set_b( dummy_plug->get_b() ); | |
# | Line 82 | Line 87 | void Integrator::checkConstraints( void ){ | |
87 | ||
88 | nConstrained++; | |
89 | constrained = 0; | |
90 | < | } |
90 | > | } |
91 | > | else std::cerr << "No.\n"; |
92 | } | |
93 | ||
94 | theArray = (SRI**) molecules[i].getMyBends(); | |
# | Line 137 | Line 143 | void Integrator::checkConstraints( void ){ | |
143 | constrainedA[i] = temp_con[i].get_a(); | |
144 | constrainedB[i] = temp_con[i].get_b(); | |
145 | constrainedDsqr[i] = temp_con[i].get_dsqr(); | |
146 | + | |
147 | } | |
148 | ||
149 | ||
# | Line 147 | Line 154 | void Integrator::checkConstraints( void ){ | |
154 | moving = new int[nAtoms]; | |
155 | moved = new int[nAtoms]; | |
156 | ||
157 | < | prePos = new double[nAtoms*3]; |
157 | > | oldPos = new double[nAtoms*3]; |
158 | } | |
159 | ||
160 | delete[] temp_con; | |
# | Line 157 | Line 164 | void Integrator::integrate( void ){ | |
164 | void Integrator::integrate( void ){ | |
165 | ||
166 | int i, j; // loop counters | |
160 | – | double kE = 0.0; // the kinetic energy |
161 | – | double rot_kE; |
162 | – | double trans_kE; |
163 | – | int tl; // the time loop conter |
164 | – | double dt2; // half the dt |
167 | ||
166 | – | double vx, vy, vz; // the velocities |
167 | – | double vx2, vy2, vz2; // the square of the velocities |
168 | – | double rx, ry, rz; // the postitions |
169 | – | |
170 | – | double ji[3]; // the body frame angular momentum |
171 | – | double jx2, jy2, jz2; // the square of the angular momentums |
172 | – | double Tb[3]; // torque in the body frame |
173 | – | double angle; // the angle through which to rotate the rotation matrix |
174 | – | double A[3][3]; // the rotation matrix |
175 | – | double press[9]; |
176 | – | |
177 | – | double dt = info->dt; |
168 | double runTime = info->run_time; | |
169 | double sampleTime = info->sampleTime; | |
170 | double statusTime = info->statusTime; | |
# | Line 189 | Line 179 | void Integrator::integrate( void ){ | |
179 | int isError; | |
180 | ||
181 | tStats = new Thermo( info ); | |
182 | < | e_out = new StatWriter( info ); |
183 | < | dump_out = new DumpWriter( info ); |
184 | < | |
185 | < | Atom** atoms = info->atoms; |
182 | > | statOut = new StatWriter( info ); |
183 | > | dumpOut = new DumpWriter( info ); |
184 | > | |
185 | > | atoms = info->atoms; |
186 | DirectionalAtom* dAtom; | |
187 | + | |
188 | + | dt = info->dt; |
189 | dt2 = 0.5 * dt; | |
190 | ||
191 | // initialize the forces before the first step | |
# | Line 205 | Line 197 | void Integrator::integrate( void ){ | |
197 | tStats->velocitize(); | |
198 | } | |
199 | ||
200 | < | dump_out->writeDump( 0.0 ); |
201 | < | e_out->writeStat( 0.0 ); |
200 | > | dumpOut->writeDump( 0.0 ); |
201 | > | statOut->writeStat( 0.0 ); |
202 | ||
203 | calcPot = 0; | |
204 | calcStress = 0; | |
# | Line 215 | Line 207 | void Integrator::integrate( void ){ | |
207 | currStatus = statusTime; | |
208 | currTime = 0.0;; | |
209 | ||
210 | + | |
211 | + | readyCheck(); |
212 | + | |
213 | + | #ifdef IS_MPI |
214 | + | strcpy( checkPointMsg, |
215 | + | "The integrator is ready to go." ); |
216 | + | MPIcheckPoint(); |
217 | + | #endif // is_mpi |
218 | + | |
219 | while( currTime < runTime ){ | |
220 | ||
221 | if( (currTime+dt) >= currStatus ){ | |
222 | calcPot = 1; | |
223 | calcStress = 1; | |
224 | } | |
225 | < | |
225 | > | |
226 | integrateStep( calcPot, calcStress ); | |
227 | ||
228 | currTime += dt; | |
# | Line 234 | Line 235 | void Integrator::integrate( void ){ | |
235 | } | |
236 | ||
237 | if( currTime >= currSample ){ | |
238 | < | dump_out->writeDump( currTime ); |
238 | > | dumpOut->writeDump( currTime ); |
239 | currSample += sampleTime; | |
240 | } | |
241 | ||
242 | if( currTime >= currStatus ){ | |
243 | < | e_out->writeStat( time * dt ); |
243 | > | statOut->writeStat( currTime ); |
244 | calcPot = 0; | |
245 | calcStress = 0; | |
246 | currStatus += statusTime; | |
247 | } | |
248 | + | |
249 | + | #ifdef IS_MPI |
250 | + | strcpy( checkPointMsg, |
251 | + | "successfully took a time step." ); |
252 | + | MPIcheckPoint(); |
253 | + | #endif // is_mpi |
254 | + | |
255 | } | |
256 | ||
257 | < | dump_out->writeFinal(); |
257 | > | dumpOut->writeFinal(currTime); |
258 | ||
259 | < | delete dump_out; |
260 | < | delete e_out; |
259 | > | delete dumpOut; |
260 | > | delete statOut; |
261 | } | |
262 | ||
263 | void Integrator::integrateStep( int calcPot, int calcStress ){ | |
264 | ||
265 | + | |
266 | + | |
267 | // Position full step, and velocity half step | |
268 | ||
269 | < | //preMove(); |
269 | > | preMove(); |
270 | moveA(); | |
271 | if( nConstrained ) constrainA(); | |
272 | ||
# | Line 274 | Line 284 | void Integrator::moveA( void ){ | |
284 | ||
285 | void Integrator::moveA( void ){ | |
286 | ||
287 | < | int i,j,k; |
278 | < | int atomIndex, aMatIndex; |
287 | > | int i, j; |
288 | DirectionalAtom* dAtom; | |
289 | < | double Tb[3]; |
290 | < | double ji[3]; |
289 | > | double Tb[3], ji[3]; |
290 | > | double A[3][3], I[3][3]; |
291 | > | double angle; |
292 | > | double vel[3], pos[3], frc[3]; |
293 | > | double mass; |
294 | ||
295 | for( i=0; i<nAtoms; i++ ){ | |
284 | – | atomIndex = i * 3; |
285 | – | aMatIndex = i * 9; |
286 | – | |
287 | – | // velocity half step |
288 | – | for( j=atomIndex; j<(atomIndex+3); j++ ) |
289 | – | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
296 | ||
297 | < | // position whole step |
298 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
297 | > | atoms[i]->getVel( vel ); |
298 | > | atoms[i]->getPos( pos ); |
299 | > | atoms[i]->getFrc( frc ); |
300 | > | |
301 | > | mass = atoms[i]->getMass(); |
302 | > | |
303 | > | for (j=0; j < 3; j++) { |
304 | > | // velocity half step |
305 | > | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
306 | > | // position whole step |
307 | pos[j] += dt * vel[j]; | |
308 | + | } |
309 | ||
310 | < | |
310 | > | atoms[i]->setVel( vel ); |
311 | > | atoms[i]->setPos( pos ); |
312 | > | |
313 | if( atoms[i]->isDirectional() ){ | |
314 | ||
315 | dAtom = (DirectionalAtom *)atoms[i]; | |
316 | ||
317 | // get and convert the torque to body frame | |
318 | ||
319 | < | Tb[0] = dAtom->getTx(); |
303 | < | Tb[1] = dAtom->getTy(); |
304 | < | Tb[2] = dAtom->getTz(); |
305 | < | |
319 | > | dAtom->getTrq( Tb ); |
320 | dAtom->lab2Body( Tb ); | |
321 | < | |
321 | > | |
322 | // get the angular momentum, and propagate a half step | |
323 | + | |
324 | + | dAtom->getJ( ji ); |
325 | + | |
326 | + | for (j=0; j < 3; j++) |
327 | + | ji[j] += (dt2 * Tb[j]) * eConvert; |
328 | ||
310 | – | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
311 | – | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
312 | – | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
313 | – | |
329 | // use the angular velocities to propagate the rotation matrix a | |
330 | // full time step | |
331 | < | |
331 | > | |
332 | > | dAtom->getA(A); |
333 | > | dAtom->getI(I); |
334 | > | |
335 | // rotate about the x-axis | |
336 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
337 | < | this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
338 | < | |
336 | > | angle = dt2 * ji[0] / I[0][0]; |
337 | > | this->rotate( 1, 2, angle, ji, A ); |
338 | > | |
339 | // rotate about the y-axis | |
340 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
341 | < | this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
340 | > | angle = dt2 * ji[1] / I[1][1]; |
341 | > | this->rotate( 2, 0, angle, ji, A ); |
342 | ||
343 | // rotate about the z-axis | |
344 | < | angle = dt * ji[2] / dAtom->getIzz(); |
345 | < | this->rotate( 0, 1, angle, ji, &aMat[aMatIndex] ); |
344 | > | angle = dt * ji[2] / I[2][2]; |
345 | > | this->rotate( 0, 1, angle, ji, A); |
346 | ||
347 | // rotate about the y-axis | |
348 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
349 | < | this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
348 | > | angle = dt2 * ji[1] / I[1][1]; |
349 | > | this->rotate( 2, 0, angle, ji, A ); |
350 | ||
351 | // rotate about the x-axis | |
352 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
353 | < | this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
352 | > | angle = dt2 * ji[0] / I[0][0]; |
353 | > | this->rotate( 1, 2, angle, ji, A ); |
354 | ||
355 | < | dAtom->setJx( ji[0] ); |
356 | < | dAtom->setJy( ji[1] ); |
357 | < | dAtom->setJz( ji[2] ); |
358 | < | } |
359 | < | |
355 | > | |
356 | > | dAtom->setJ( ji ); |
357 | > | dAtom->setA( A ); |
358 | > | |
359 | > | } |
360 | } | |
361 | } | |
362 | ||
363 | ||
364 | void Integrator::moveB( void ){ | |
365 | < | int i,j,k; |
348 | < | int atomIndex; |
365 | > | int i, j; |
366 | DirectionalAtom* dAtom; | |
367 | < | double Tb[3]; |
368 | < | double ji[3]; |
367 | > | double Tb[3], ji[3]; |
368 | > | double vel[3], frc[3]; |
369 | > | double mass; |
370 | ||
371 | for( i=0; i<nAtoms; i++ ){ | |
372 | < | atomIndex = i * 3; |
372 | > | |
373 | > | atoms[i]->getVel( vel ); |
374 | > | atoms[i]->getFrc( frc ); |
375 | ||
376 | < | // velocity half step |
357 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
358 | < | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
376 | > | mass = atoms[i]->getMass(); |
377 | ||
378 | + | // velocity half step |
379 | + | for (j=0; j < 3; j++) |
380 | + | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
381 | + | |
382 | + | atoms[i]->setVel( vel ); |
383 | + | |
384 | if( atoms[i]->isDirectional() ){ | |
385 | < | |
385 | > | |
386 | dAtom = (DirectionalAtom *)atoms[i]; | |
387 | < | |
388 | < | // get and convert the torque to body frame |
389 | < | |
390 | < | Tb[0] = dAtom->getTx(); |
367 | < | Tb[1] = dAtom->getTy(); |
368 | < | Tb[2] = dAtom->getTz(); |
369 | < | |
387 | > | |
388 | > | // get and convert the torque to body frame |
389 | > | |
390 | > | dAtom->getTrq( Tb ); |
391 | dAtom->lab2Body( Tb ); | |
392 | + | |
393 | + | // get the angular momentum, and propagate a half step |
394 | + | |
395 | + | dAtom->getJ( ji ); |
396 | + | |
397 | + | for (j=0; j < 3; j++) |
398 | + | ji[j] += (dt2 * Tb[j]) * eConvert; |
399 | ||
400 | < | // get the angular momentum, and complete the angular momentum |
401 | < | // half step |
374 | < | |
375 | < | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
376 | < | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
377 | < | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
378 | < | |
379 | < | jx2 = ji[0] * ji[0]; |
380 | < | jy2 = ji[1] * ji[1]; |
381 | < | jz2 = ji[2] * ji[2]; |
382 | < | |
383 | < | dAtom->setJx( ji[0] ); |
384 | < | dAtom->setJy( ji[1] ); |
385 | < | dAtom->setJz( ji[2] ); |
400 | > | |
401 | > | dAtom->setJ( ji ); |
402 | } | |
403 | } | |
388 | – | |
404 | } | |
405 | ||
406 | void Integrator::preMove( void ){ | |
407 | < | int i; |
407 | > | int i, j; |
408 | > | double pos[3]; |
409 | ||
410 | if( nConstrained ){ | |
411 | < | if( oldAtoms != nAtoms ){ |
412 | < | |
413 | < | // save oldAtoms to check for lode balanceing later on. |
414 | < | |
415 | < | oldAtoms = nAtoms; |
416 | < | |
417 | < | delete[] moving; |
418 | < | delete[] moved; |
419 | < | delete[] oldPos; |
404 | < | |
405 | < | moving = new int[nAtoms]; |
406 | < | moved = new int[nAtoms]; |
407 | < | |
408 | < | oldPos = new double[nAtoms*3]; |
411 | > | |
412 | > | for(i=0; i < nAtoms; i++) { |
413 | > | |
414 | > | atoms[i]->getPos( pos ); |
415 | > | |
416 | > | for (j = 0; j < 3; j++) { |
417 | > | oldPos[3*i + j] = pos[j]; |
418 | > | } |
419 | > | |
420 | } | |
421 | < | |
422 | < | for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i]; |
412 | < | } |
413 | < | } |
421 | > | } |
422 | > | } |
423 | ||
424 | void Integrator::constrainA(){ | |
425 | ||
426 | int i,j,k; | |
427 | int done; | |
428 | < | double pxab, pyab, pzab; |
429 | < | double rxab, ryab, rzab; |
430 | < | int a, b; |
428 | > | double posA[3], posB[3]; |
429 | > | double velA[3], velB[3]; |
430 | > | double pab[3]; |
431 | > | double rab[3]; |
432 | > | int a, b, ax, ay, az, bx, by, bz; |
433 | double rma, rmb; | |
434 | double dx, dy, dz; | |
435 | + | double rpab; |
436 | double rabsq, pabsq, rpabsq; | |
437 | double diffsq; | |
438 | double gab; | |
439 | int iteration; | |
440 | ||
441 | < | |
430 | < | |
431 | < | for( i=0; i<nAtoms; i++){ |
432 | < | |
441 | > | for( i=0; i<nAtoms; i++){ |
442 | moving[i] = 0; | |
443 | moved[i] = 1; | |
444 | } | |
445 | < | |
437 | < | |
445 | > | |
446 | iteration = 0; | |
447 | done = 0; | |
448 | while( !done && (iteration < maxIteration )){ | |
# | Line 444 | Line 452 | void Integrator::constrainA(){ | |
452 | ||
453 | a = constrainedA[i]; | |
454 | b = constrainedB[i]; | |
455 | < | |
455 | > | |
456 | > | ax = (a*3) + 0; |
457 | > | ay = (a*3) + 1; |
458 | > | az = (a*3) + 2; |
459 | > | |
460 | > | bx = (b*3) + 0; |
461 | > | by = (b*3) + 1; |
462 | > | bz = (b*3) + 2; |
463 | > | |
464 | if( moved[a] || moved[b] ){ | |
465 | < | |
466 | < | pxab = pos[3*a+0] - pos[3*b+0]; |
467 | < | pyab = pos[3*a+1] - pos[3*b+1]; |
468 | < | pzab = pos[3*a+2] - pos[3*b+2]; |
465 | > | |
466 | > | atoms[a]->getPos( posA ); |
467 | > | atoms[b]->getPos( posB ); |
468 | > | |
469 | > | for (j = 0; j < 3; j++ ) |
470 | > | pab[j] = posA[j] - posB[j]; |
471 | > | |
472 | > | //periodic boundary condition |
473 | ||
474 | < | //periodic boundary condition |
455 | < | pxab = pxab - info->box_x * copysign(1, pxab) |
456 | < | * int(pxab / info->box_x + 0.5); |
457 | < | pyab = pyab - info->box_y * copysign(1, pyab) |
458 | < | * int(pyab / info->box_y + 0.5); |
459 | < | pzab = pzab - info->box_z * copysign(1, pzab) |
460 | < | * int(pzab / info->box_z + 0.5); |
461 | < | |
462 | < | pabsq = pxab * pxab + pyab * pyab + pzab * pzab; |
463 | < | rabsq = constraintedDsqr[i]; |
464 | < | diffsq = pabsq - rabsq; |
474 | > | info->wrapVector( pab ); |
475 | ||
476 | + | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
477 | + | |
478 | + | rabsq = constrainedDsqr[i]; |
479 | + | diffsq = rabsq - pabsq; |
480 | + | |
481 | // the original rattle code from alan tidesley | |
482 | < | if (fabs(diffsq) > tol*rabsq*2) { |
483 | < | rxab = oldPos[3*a+0] - oldPos[3*b+0]; |
484 | < | ryab = oldPos[3*a+1] - oldPos[3*b+1]; |
485 | < | rzab = oldPos[3*a+2] - oldPos[3*b+2]; |
471 | < | |
472 | < | rxab = rxab - info->box_x * copysign(1, rxab) |
473 | < | * int(rxab / info->box_x + 0.5); |
474 | < | ryab = ryab - info->box_y * copysign(1, ryab) |
475 | < | * int(ryab / info->box_y + 0.5); |
476 | < | rzab = rzab - info->box_z * copysign(1, rzab) |
477 | < | * int(rzab / info->box_z + 0.5); |
482 | > | if (fabs(diffsq) > (tol*rabsq*2)) { |
483 | > | rab[0] = oldPos[ax] - oldPos[bx]; |
484 | > | rab[1] = oldPos[ay] - oldPos[by]; |
485 | > | rab[2] = oldPos[az] - oldPos[bz]; |
486 | ||
487 | < | rpab = rxab * pxab + ryab * pyab + rzab * pzab; |
487 | > | info->wrapVector( rab ); |
488 | > | |
489 | > | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
490 | > | |
491 | rpabsq = rpab * rpab; | |
492 | ||
493 | ||
494 | if (rpabsq < (rabsq * -diffsq)){ | |
495 | + | |
496 | #ifdef IS_MPI | |
497 | a = atoms[a]->getGlobalIndex(); | |
498 | b = atoms[b]->getGlobalIndex(); | |
499 | #endif //is_mpi | |
500 | sprintf( painCave.errMsg, | |
501 | < | "Constraint failure in constrainA at atom %d and %d\n.", |
501 | > | "Constraint failure in constrainA at atom %d and %d.\n", |
502 | a, b ); | |
503 | painCave.isFatal = 1; | |
504 | simError(); | |
# | Line 494 | Line 506 | void Integrator::constrainA(){ | |
506 | ||
507 | rma = 1.0 / atoms[a]->getMass(); | |
508 | rmb = 1.0 / atoms[b]->getMass(); | |
509 | < | |
509 | > | |
510 | gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); | |
499 | – | dx = rxab * gab; |
500 | – | dy = ryab * gab; |
501 | – | dz = rzab * gab; |
511 | ||
512 | < | pos[3*a+0] += rma * dx; |
513 | < | pos[3*a+1] += rma * dy; |
514 | < | pos[3*a+2] += rma * dz; |
512 | > | dx = rab[0] * gab; |
513 | > | dy = rab[1] * gab; |
514 | > | dz = rab[2] * gab; |
515 | ||
516 | < | pos[3*b+0] -= rmb * dx; |
517 | < | pos[3*b+1] -= rmb * dy; |
518 | < | pos[3*b+2] -= rmb * dz; |
516 | > | posA[0] += rma * dx; |
517 | > | posA[1] += rma * dy; |
518 | > | posA[2] += rma * dz; |
519 | ||
520 | + | atoms[a]->setPos( posA ); |
521 | + | |
522 | + | posB[0] -= rmb * dx; |
523 | + | posB[1] -= rmb * dy; |
524 | + | posB[2] -= rmb * dz; |
525 | + | |
526 | + | atoms[b]->setPos( posB ); |
527 | + | |
528 | dx = dx / dt; | |
529 | dy = dy / dt; | |
530 | dz = dz / dt; | |
531 | ||
532 | < | vel[3*a+0] += rma * dx; |
516 | < | vel[3*a+1] += rma * dy; |
517 | < | vel[3*a+2] += rma * dz; |
532 | > | atoms[a]->getVel( velA ); |
533 | ||
534 | < | vel[3*b+0] -= rmb * dx; |
535 | < | vel[3*b+1] -= rmb * dy; |
536 | < | vel[3*b+2] -= rmb * dz; |
534 | > | velA[0] += rma * dx; |
535 | > | velA[1] += rma * dy; |
536 | > | velA[2] += rma * dz; |
537 | ||
538 | + | atoms[a]->setVel( velA ); |
539 | + | |
540 | + | atoms[b]->getVel( velB ); |
541 | + | |
542 | + | velB[0] -= rmb * dx; |
543 | + | velB[1] -= rmb * dy; |
544 | + | velB[2] -= rmb * dz; |
545 | + | |
546 | + | atoms[b]->setVel( velB ); |
547 | + | |
548 | moving[a] = 1; | |
549 | moving[b] = 1; | |
550 | done = 0; | |
# | Line 538 | Line 563 | void Integrator::constrainA(){ | |
563 | ||
564 | if( !done ){ | |
565 | ||
566 | < | sprintf( painCae.errMsg, |
566 | > | sprintf( painCave.errMsg, |
567 | "Constraint failure in constrainA, too many iterations: %d\n", | |
568 | < | iterations ); |
568 | > | iteration ); |
569 | painCave.isFatal = 1; | |
570 | simError(); | |
571 | } | |
# | Line 551 | Line 576 | void Integrator::constrainB( void ){ | |
576 | ||
577 | int i,j,k; | |
578 | int done; | |
579 | + | double posA[3], posB[3]; |
580 | + | double velA[3], velB[3]; |
581 | double vxab, vyab, vzab; | |
582 | < | double rxab, ryab, rzab; |
583 | < | int a, b; |
582 | > | double rab[3]; |
583 | > | int a, b, ax, ay, az, bx, by, bz; |
584 | double rma, rmb; | |
585 | double dx, dy, dz; | |
586 | double rabsq, pabsq, rvab; | |
# | Line 561 | Line 588 | void Integrator::constrainB( void ){ | |
588 | double gab; | |
589 | int iteration; | |
590 | ||
591 | < | for(i=0; i<nAtom; i++){ |
591 | > | for(i=0; i<nAtoms; i++){ |
592 | moving[i] = 0; | |
593 | moved[i] = 1; | |
594 | } | |
595 | ||
596 | done = 0; | |
597 | + | iteration = 0; |
598 | while( !done && (iteration < maxIteration ) ){ | |
599 | ||
600 | + | done = 1; |
601 | + | |
602 | for(i=0; i<nConstrained; i++){ | |
603 | ||
604 | a = constrainedA[i]; | |
605 | b = constrainedB[i]; | |
606 | ||
607 | + | ax = (a*3) + 0; |
608 | + | ay = (a*3) + 1; |
609 | + | az = (a*3) + 2; |
610 | + | |
611 | + | bx = (b*3) + 0; |
612 | + | by = (b*3) + 1; |
613 | + | bz = (b*3) + 2; |
614 | + | |
615 | if( moved[a] || moved[b] ){ | |
578 | – | |
579 | – | vxab = vel[3*a+0] - vel[3*b+0]; |
580 | – | vyab = vel[3*a+1] - vel[3*b+1]; |
581 | – | vzab = vel[3*a+2] - vel[3*b+2]; |
616 | ||
617 | < | rxab = pos[3*a+0] - pos[3*b+0];q |
618 | < | ryab = pos[3*a+1] - pos[3*b+1]; |
619 | < | rzab = pos[3*a+2] - pos[3*b+2]; |
620 | < | |
621 | < | rxab = rxab - info->box_x * copysign(1, rxab) |
622 | < | * int(rxab / info->box_x + 0.5); |
589 | < | ryab = ryab - info->box_y * copysign(1, ryab) |
590 | < | * int(ryab / info->box_y + 0.5); |
591 | < | rzab = rzab - info->box_z * copysign(1, rzab) |
592 | < | * int(rzab / info->box_z + 0.5); |
617 | > | atoms[a]->getVel( velA ); |
618 | > | atoms[b]->getVel( velB ); |
619 | > | |
620 | > | vxab = velA[0] - velB[0]; |
621 | > | vyab = velA[1] - velB[1]; |
622 | > | vzab = velA[2] - velB[2]; |
623 | ||
624 | + | atoms[a]->getPos( posA ); |
625 | + | atoms[b]->getPos( posB ); |
626 | + | |
627 | + | for (j = 0; j < 3; j++) |
628 | + | rab[j] = posA[j] - posB[j]; |
629 | + | |
630 | + | info->wrapVector( rab ); |
631 | + | |
632 | rma = 1.0 / atoms[a]->getMass(); | |
633 | rmb = 1.0 / atoms[b]->getMass(); | |
634 | ||
635 | < | rvab = rxab * vxab + ryab * vyab + rzab * vzab; |
635 | > | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
636 | ||
637 | < | gab = -rvab / ( ( rma + rmb ) * constraintsDsqr[i] ); |
637 | > | gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); |
638 | ||
639 | if (fabs(gab) > tol) { | |
640 | ||
641 | < | dx = rxab * gab; |
642 | < | dy = ryab * gab; |
643 | < | dz = rzab * gab; |
644 | < | |
645 | < | vel[3*a+0] += rma * dx; |
646 | < | vel[3*a+1] += rma * dy; |
647 | < | vel[3*a+2] += rma * dz; |
641 | > | dx = rab[0] * gab; |
642 | > | dy = rab[1] * gab; |
643 | > | dz = rab[2] * gab; |
644 | > | |
645 | > | velA[0] += rma * dx; |
646 | > | velA[1] += rma * dy; |
647 | > | velA[2] += rma * dz; |
648 | ||
649 | < | vel[3*b+0] -= rmb * dx; |
650 | < | vel[3*b+1] -= rmb * dy; |
651 | < | vel[3*b+2] -= rmb * dz; |
649 | > | atoms[a]->setVel( velA ); |
650 | > | |
651 | > | velB[0] -= rmb * dx; |
652 | > | velB[1] -= rmb * dy; |
653 | > | velB[2] -= rmb * dz; |
654 | > | |
655 | > | atoms[b]->setVel( velB ); |
656 | ||
657 | moving[a] = 1; | |
658 | moving[b] = 1; | |
# | Line 626 | Line 668 | void Integrator::constrainB( void ){ | |
668 | ||
669 | iteration++; | |
670 | } | |
671 | < | |
671 | > | |
672 | if( !done ){ | |
673 | ||
674 | ||
675 | < | sprintf( painCae.errMsg, |
675 | > | sprintf( painCave.errMsg, |
676 | "Constraint failure in constrainB, too many iterations: %d\n", | |
677 | < | iterations ); |
677 | > | iteration ); |
678 | painCave.isFatal = 1; | |
679 | simError(); | |
680 | } | |
681 | ||
682 | } | |
683 | ||
642 | – | |
643 | – | |
644 | – | |
645 | – | |
646 | – | |
647 | – | |
684 | void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], | |
685 | double A[3][3] ){ | |
686 | ||
# | Line 713 | Line 749 | void Integrator::rotate( int axes1, int axes2, double | |
749 | // A[][] = A[][] * transpose(rot[][]) | |
750 | ||
751 | ||
752 | < | // NOte for as yet unknown reason, we are setting the performing the |
752 | > | // NOte for as yet unknown reason, we are performing the |
753 | // calculation as: | |
754 | // transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | |
755 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |