# | Line 27 | Line 27 | Integrator::Integrator( SimInfo *theInfo, ForceFields* | |
---|---|---|
27 | ||
28 | nAtoms = info->n_atoms; | |
29 | ||
30 | – | std::cerr << "integ nAtoms = " << nAtoms << "\n"; |
31 | – | |
30 | // check for constraints | |
31 | ||
32 | constrainedA = NULL; | |
# | Line 180 | Line 178 | void Integrator::integrate( void ){ | |
178 | int calcPot, calcStress; | |
179 | int isError; | |
180 | ||
183 | – | |
184 | – | |
181 | tStats = new Thermo( info ); | |
182 | statOut = new StatWriter( info ); | |
183 | dumpOut = new DumpWriter( info ); | |
# | Line 220 | Line 216 | void Integrator::integrate( void ){ | |
216 | MPIcheckPoint(); | |
217 | #endif // is_mpi | |
218 | ||
223 | – | |
224 | – | pos = Atom::getPosArray(); |
225 | – | vel = Atom::getVelArray(); |
226 | – | frc = Atom::getFrcArray(); |
227 | – | |
219 | while( currTime < runTime ){ | |
220 | ||
221 | if( (currTime+dt) >= currStatus ){ | |
# | Line 232 | Line 223 | void Integrator::integrate( void ){ | |
223 | calcStress = 1; | |
224 | } | |
225 | ||
235 | – | std::cerr << currTime << "\n"; |
236 | – | |
226 | integrateStep( calcPot, calcStress ); | |
227 | ||
228 | currTime += dt; | |
# | Line 279 | Line 268 | void Integrator::integrateStep( int calcPot, int calcS | |
268 | ||
269 | preMove(); | |
270 | moveA(); | |
271 | < | //if( nConstrained ) constrainA(); |
271 | > | if( nConstrained ) constrainA(); |
272 | ||
273 | // calc forces | |
274 | ||
# | Line 295 | Line 284 | void Integrator::moveA( void ){ | |
284 | ||
285 | void Integrator::moveA( void ){ | |
286 | ||
287 | < | int i,j,k; |
299 | < | int atomIndex, aMatIndex; |
287 | > | int i, j; |
288 | DirectionalAtom* dAtom; | |
289 | < | double Tb[3]; |
290 | < | double ji[3]; |
289 | > | double Tb[3], ji[3]; |
290 | > | double A[3][3], I[3][3]; |
291 | double angle; | |
292 | < | double A[3][3], At[3][3]; |
292 | > | double vel[3], pos[3], frc[3]; |
293 | > | double mass; |
294 | ||
306 | – | |
295 | for( i=0; i<nAtoms; i++ ){ | |
308 | – | atomIndex = i * 3; |
309 | – | aMatIndex = i * 9; |
296 | ||
297 | < | // velocity half step |
298 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
299 | < | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
297 | > | atoms[i]->getVel( vel ); |
298 | > | atoms[i]->getPos( pos ); |
299 | > | atoms[i]->getFrc( frc ); |
300 | ||
301 | + | mass = atoms[i]->getMass(); |
302 | ||
303 | < | // position whole step |
304 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) pos[j] += dt * vel[j]; |
305 | < | |
303 | > | for (j=0; j < 3; j++) { |
304 | > | // velocity half step |
305 | > | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
306 | > | // position whole step |
307 | > | pos[j] += dt * vel[j]; |
308 | > | } |
309 | ||
310 | + | atoms[i]->setVel( vel ); |
311 | + | atoms[i]->setPos( pos ); |
312 | + | |
313 | if( atoms[i]->isDirectional() ){ | |
314 | ||
315 | dAtom = (DirectionalAtom *)atoms[i]; | |
316 | ||
317 | // get and convert the torque to body frame | |
318 | ||
319 | < | Tb[0] = dAtom->getTx(); |
327 | < | Tb[1] = dAtom->getTy(); |
328 | < | Tb[2] = dAtom->getTz(); |
329 | < | |
319 | > | dAtom->getTrq( Tb ); |
320 | dAtom->lab2Body( Tb ); | |
321 | ||
322 | // get the angular momentum, and propagate a half step | |
323 | + | |
324 | + | dAtom->getJ( ji ); |
325 | + | |
326 | + | for (j=0; j < 3; j++) |
327 | + | ji[j] += (dt2 * Tb[j]) * eConvert; |
328 | ||
334 | – | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
335 | – | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
336 | – | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
337 | – | |
329 | // use the angular velocities to propagate the rotation matrix a | |
330 | // full time step | |
331 | < | |
331 | > | |
332 | > | dAtom->getA(A); |
333 | > | dAtom->getI(I); |
334 | > | |
335 | // rotate about the x-axis | |
336 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
337 | < | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
336 | > | angle = dt2 * ji[0] / I[0][0]; |
337 | > | this->rotate( 1, 2, angle, ji, A ); |
338 | ||
339 | // rotate about the y-axis | |
340 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
341 | < | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
340 | > | angle = dt2 * ji[1] / I[1][1]; |
341 | > | this->rotate( 2, 0, angle, ji, A ); |
342 | ||
343 | // rotate about the z-axis | |
344 | < | angle = dt * ji[2] / dAtom->getIzz(); |
345 | < | this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
344 | > | angle = dt * ji[2] / I[2][2]; |
345 | > | this->rotate( 0, 1, angle, ji, A); |
346 | ||
347 | // rotate about the y-axis | |
348 | < | angle = dt2 * ji[1] / dAtom->getIyy(); |
349 | < | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
348 | > | angle = dt2 * ji[1] / I[1][1]; |
349 | > | this->rotate( 2, 0, angle, ji, A ); |
350 | ||
351 | // rotate about the x-axis | |
352 | < | angle = dt2 * ji[0] / dAtom->getIxx(); |
353 | < | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
352 | > | angle = dt2 * ji[0] / I[0][0]; |
353 | > | this->rotate( 1, 2, angle, ji, A ); |
354 | ||
361 | – | dAtom->setJx( ji[0] ); |
362 | – | dAtom->setJy( ji[1] ); |
363 | – | dAtom->setJz( ji[2] ); |
355 | ||
356 | < | std::cerr << "Amat[" << i << "]\n"; |
357 | < | info->printMat9( &Amat[aMatIndex] ); |
356 | > | dAtom->setJ( ji ); |
357 | > | dAtom->setA( A ); |
358 | ||
359 | < | std::cerr << "ji[" << i << "]\t" |
369 | < | << ji[0] << "\t" |
370 | < | << ji[1] << "\t" |
371 | < | << ji[2] << "\n"; |
372 | < | |
373 | < | } |
374 | < | |
359 | > | } |
360 | } | |
361 | } | |
362 | ||
363 | ||
364 | void Integrator::moveB( void ){ | |
365 | < | int i,j,k; |
381 | < | int atomIndex, aMatIndex; |
365 | > | int i, j; |
366 | DirectionalAtom* dAtom; | |
367 | < | double Tb[3]; |
368 | < | double ji[3]; |
367 | > | double Tb[3], ji[3]; |
368 | > | double vel[3], frc[3]; |
369 | > | double mass; |
370 | ||
371 | for( i=0; i<nAtoms; i++ ){ | |
372 | < | atomIndex = i * 3; |
373 | < | aMatIndex = i * 9; |
372 | > | |
373 | > | atoms[i]->getVel( vel ); |
374 | > | atoms[i]->getFrc( frc ); |
375 | ||
376 | < | // velocity half step |
391 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
392 | < | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
376 | > | mass = atoms[i]->getMass(); |
377 | ||
378 | + | // velocity half step |
379 | + | for (j=0; j < 3; j++) |
380 | + | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
381 | + | |
382 | + | atoms[i]->setVel( vel ); |
383 | ||
384 | if( atoms[i]->isDirectional() ){ | |
385 | < | |
385 | > | |
386 | dAtom = (DirectionalAtom *)atoms[i]; | |
398 | – | |
399 | – | // get and convert the torque to body frame |
400 | – | |
401 | – | Tb[0] = dAtom->getTx(); |
402 | – | Tb[1] = dAtom->getTy(); |
403 | – | Tb[2] = dAtom->getTz(); |
404 | – | |
405 | – | std::cerr << "TrqB[" << i << "]\t" |
406 | – | << Tb[0] << "\t" |
407 | – | << Tb[1] << "\t" |
408 | – | << Tb[2] << "\n"; |
387 | ||
388 | + | // get and convert the torque to body frame |
389 | + | |
390 | + | dAtom->getTrq( Tb ); |
391 | dAtom->lab2Body( Tb ); | |
411 | – | |
412 | – | // get the angular momentum, and complete the angular momentum |
413 | – | // half step |
414 | – | |
415 | – | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
416 | – | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
417 | – | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
418 | – | |
419 | – | dAtom->setJx( ji[0] ); |
420 | – | dAtom->setJy( ji[1] ); |
421 | – | dAtom->setJz( ji[2] ); |
392 | ||
393 | + | // get the angular momentum, and propagate a half step |
394 | ||
395 | < | std::cerr << "Amat[" << i << "]\n"; |
396 | < | info->printMat9( &Amat[aMatIndex] ); |
397 | < | |
398 | < | std::cerr << "ji[" << i << "]\t" |
399 | < | << ji[0] << "\t" |
400 | < | << ji[1] << "\t" |
401 | < | << ji[2] << "\n"; |
395 | > | dAtom->getJ( ji ); |
396 | > | |
397 | > | for (j=0; j < 3; j++) |
398 | > | ji[j] += (dt2 * Tb[j]) * eConvert; |
399 | > | |
400 | > | |
401 | > | dAtom->setJ( ji ); |
402 | } | |
403 | } | |
433 | – | |
404 | } | |
405 | ||
406 | void Integrator::preMove( void ){ | |
407 | < | int i; |
407 | > | int i, j; |
408 | > | double pos[3]; |
409 | ||
410 | if( nConstrained ){ | |
411 | ||
412 | < | for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i]; |
413 | < | } |
414 | < | } |
412 | > | for(i=0; i < nAtoms; i++) { |
413 | > | |
414 | > | atoms[i]->getPos( pos ); |
415 | ||
416 | + | for (j = 0; j < 3; j++) { |
417 | + | oldPos[3*i + j] = pos[j]; |
418 | + | } |
419 | + | |
420 | + | } |
421 | + | } |
422 | + | } |
423 | + | |
424 | void Integrator::constrainA(){ | |
425 | ||
426 | int i,j,k; | |
427 | int done; | |
428 | + | double posA[3], posB[3]; |
429 | + | double velA[3], velB[3]; |
430 | double pab[3]; | |
431 | double rab[3]; | |
432 | int a, b, ax, ay, az, bx, by, bz; | |
# | Line 457 | Line 438 | void Integrator::constrainA(){ | |
438 | double gab; | |
439 | int iteration; | |
440 | ||
441 | < | for( i=0; i<nAtoms; i++){ |
461 | < | |
441 | > | for( i=0; i<nAtoms; i++){ |
442 | moving[i] = 0; | |
443 | moved[i] = 1; | |
444 | } | |
# | Line 482 | Line 462 | void Integrator::constrainA(){ | |
462 | bz = (b*3) + 2; | |
463 | ||
464 | if( moved[a] || moved[b] ){ | |
465 | < | |
466 | < | pab[0] = pos[ax] - pos[bx]; |
467 | < | pab[1] = pos[ay] - pos[by]; |
468 | < | pab[2] = pos[az] - pos[bz]; |
469 | < | |
465 | > | |
466 | > | atoms[a]->getPos( posA ); |
467 | > | atoms[b]->getPos( posB ); |
468 | > | |
469 | > | for (j = 0; j < 3; j++ ) |
470 | > | pab[j] = posA[j] - posB[j]; |
471 | > | |
472 | //periodic boundary condition | |
473 | ||
474 | info->wrapVector( pab ); | |
# | Line 531 | Line 513 | void Integrator::constrainA(){ | |
513 | dy = rab[1] * gab; | |
514 | dz = rab[2] * gab; | |
515 | ||
516 | < | pos[ax] += rma * dx; |
517 | < | pos[ay] += rma * dy; |
518 | < | pos[az] += rma * dz; |
516 | > | posA[0] += rma * dx; |
517 | > | posA[1] += rma * dy; |
518 | > | posA[2] += rma * dz; |
519 | ||
520 | < | pos[bx] -= rmb * dx; |
539 | < | pos[by] -= rmb * dy; |
540 | < | pos[bz] -= rmb * dz; |
520 | > | atoms[a]->setPos( posA ); |
521 | ||
522 | + | posB[0] -= rmb * dx; |
523 | + | posB[1] -= rmb * dy; |
524 | + | posB[2] -= rmb * dz; |
525 | + | |
526 | + | atoms[b]->setPos( posB ); |
527 | + | |
528 | dx = dx / dt; | |
529 | dy = dy / dt; | |
530 | dz = dz / dt; | |
531 | ||
532 | < | vel[ax] += rma * dx; |
547 | < | vel[ay] += rma * dy; |
548 | < | vel[az] += rma * dz; |
532 | > | atoms[a]->getVel( velA ); |
533 | ||
534 | < | vel[bx] -= rmb * dx; |
535 | < | vel[by] -= rmb * dy; |
536 | < | vel[bz] -= rmb * dz; |
534 | > | velA[0] += rma * dx; |
535 | > | velA[1] += rma * dy; |
536 | > | velA[2] += rma * dz; |
537 | > | |
538 | > | atoms[a]->setVel( velA ); |
539 | ||
540 | + | atoms[b]->getVel( velB ); |
541 | + | |
542 | + | velB[0] -= rmb * dx; |
543 | + | velB[1] -= rmb * dy; |
544 | + | velB[2] -= rmb * dz; |
545 | + | |
546 | + | atoms[b]->setVel( velB ); |
547 | + | |
548 | moving[a] = 1; | |
549 | moving[b] = 1; | |
550 | done = 0; | |
# | Line 582 | Line 576 | void Integrator::constrainB( void ){ | |
576 | ||
577 | int i,j,k; | |
578 | int done; | |
579 | + | double posA[3], posB[3]; |
580 | + | double velA[3], velB[3]; |
581 | double vxab, vyab, vzab; | |
582 | double rab[3]; | |
583 | int a, b, ax, ay, az, bx, by, bz; | |
# | Line 617 | Line 613 | void Integrator::constrainB( void ){ | |
613 | bz = (b*3) + 2; | |
614 | ||
615 | if( moved[a] || moved[b] ){ | |
620 | – | |
621 | – | vxab = vel[ax] - vel[bx]; |
622 | – | vyab = vel[ay] - vel[by]; |
623 | – | vzab = vel[az] - vel[bz]; |
616 | ||
617 | < | rab[0] = pos[ax] - pos[bx]; |
618 | < | rab[1] = pos[ay] - pos[by]; |
619 | < | rab[2] = pos[az] - pos[bz]; |
620 | < | |
617 | > | atoms[a]->getVel( velA ); |
618 | > | atoms[b]->getVel( velB ); |
619 | > | |
620 | > | vxab = velA[0] - velB[0]; |
621 | > | vyab = velA[1] - velB[1]; |
622 | > | vzab = velA[2] - velB[2]; |
623 | > | |
624 | > | atoms[a]->getPos( posA ); |
625 | > | atoms[b]->getPos( posB ); |
626 | > | |
627 | > | for (j = 0; j < 3; j++) |
628 | > | rab[j] = posA[j] - posB[j]; |
629 | > | |
630 | info->wrapVector( rab ); | |
631 | ||
632 | rma = 1.0 / atoms[a]->getMass(); | |
# | Line 640 | Line 641 | void Integrator::constrainB( void ){ | |
641 | dx = rab[0] * gab; | |
642 | dy = rab[1] * gab; | |
643 | dz = rab[2] * gab; | |
644 | < | |
645 | < | vel[ax] += rma * dx; |
646 | < | vel[ay] += rma * dy; |
647 | < | vel[az] += rma * dz; |
644 | > | |
645 | > | velA[0] += rma * dx; |
646 | > | velA[1] += rma * dy; |
647 | > | velA[2] += rma * dz; |
648 | ||
649 | < | vel[bx] -= rmb * dx; |
650 | < | vel[by] -= rmb * dy; |
651 | < | vel[bz] -= rmb * dz; |
649 | > | atoms[a]->setVel( velA ); |
650 | > | |
651 | > | velB[0] -= rmb * dx; |
652 | > | velB[1] -= rmb * dy; |
653 | > | velB[2] -= rmb * dz; |
654 | > | |
655 | > | atoms[b]->setVel( velB ); |
656 | ||
657 | moving[a] = 1; | |
658 | moving[b] = 1; | |
# | Line 663 | Line 668 | void Integrator::constrainB( void ){ | |
668 | ||
669 | iteration++; | |
670 | } | |
671 | < | |
671 | > | |
672 | if( !done ){ | |
673 | ||
674 | ||
# | Line 676 | Line 681 | void Integrator::constrainB( void ){ | |
681 | ||
682 | } | |
683 | ||
679 | – | |
680 | – | |
681 | – | |
682 | – | |
683 | – | |
684 | – | |
684 | void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], | |
685 | < | double A[9] ){ |
685 | > | double A[3][3] ){ |
686 | ||
687 | int i,j,k; | |
688 | double sinAngle; | |
# | Line 695 | Line 694 | void Integrator::rotate( int axes1, int axes2, double | |
694 | double tempA[3][3]; | |
695 | double tempJ[3]; | |
696 | ||
698 | – | |
697 | // initialize the tempA | |
698 | ||
699 | for(i=0; i<3; i++){ | |
700 | for(j=0; j<3; j++){ | |
701 | < | tempA[j][i] = A[3*i+j]; |
701 | > | tempA[j][i] = A[i][j]; |
702 | } | |
703 | } | |
704 | ||
# | Line 757 | Line 755 | void Integrator::rotate( int axes1, int axes2, double | |
755 | ||
756 | for(i=0; i<3; i++){ | |
757 | for(j=0; j<3; j++){ | |
758 | < | A[3*j+i] = 0.0; |
758 | > | A[j][i] = 0.0; |
759 | for(k=0; k<3; k++){ | |
760 | < | A[3*j+i] += tempA[i][k] * rot[j][k]; |
760 | > | A[j][i] += tempA[i][k] * rot[j][k]; |
761 | } | |
762 | } | |
763 | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |