# | Line 11 | Line 11 | |
---|---|---|
11 | #include "simError.h" | |
12 | ||
13 | ||
14 | < | Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){ |
15 | < | |
14 | > | template<typename T> Integrator<T>::Integrator(SimInfo* theInfo, |
15 | > | ForceFields* the_ff){ |
16 | info = theInfo; | |
17 | myFF = the_ff; | |
18 | isFirst = 1; | |
# | Line 21 | Line 21 | Integrator::Integrator( SimInfo *theInfo, ForceFields* | |
21 | nMols = info->n_mol; | |
22 | ||
23 | // give a little love back to the SimInfo object | |
24 | < | |
25 | < | if( info->the_integrator != NULL ) delete info->the_integrator; |
24 | > | |
25 | > | if (info->the_integrator != NULL){ |
26 | > | delete info->the_integrator; |
27 | > | } |
28 | info->the_integrator = this; | |
29 | ||
30 | nAtoms = info->n_atoms; | |
31 | ||
32 | // check for constraints | |
33 | < | |
34 | < | constrainedA = NULL; |
35 | < | constrainedB = NULL; |
33 | > | |
34 | > | constrainedA = NULL; |
35 | > | constrainedB = NULL; |
36 | constrainedDsqr = NULL; | |
37 | < | moving = NULL; |
38 | < | moved = NULL; |
39 | < | oldPos = NULL; |
40 | < | |
37 | > | moving = NULL; |
38 | > | moved = NULL; |
39 | > | oldPos = NULL; |
40 | > | |
41 | nConstrained = 0; | |
42 | ||
43 | checkConstraints(); | |
44 | } | |
45 | ||
46 | < | Integrator::~Integrator() { |
47 | < | |
46 | < | if( nConstrained ){ |
46 | > | template<typename T> Integrator<T>::~Integrator(){ |
47 | > | if (nConstrained){ |
48 | delete[] constrainedA; | |
49 | delete[] constrainedB; | |
50 | delete[] constrainedDsqr; | |
# | Line 51 | Line 52 | Integrator::~Integrator() { | |
52 | delete[] moved; | |
53 | delete[] oldPos; | |
54 | } | |
54 | – | |
55 | } | |
56 | ||
57 | < | void Integrator::checkConstraints( void ){ |
58 | < | |
59 | < | |
57 | > | template<typename T> void Integrator<T>::checkConstraints(void){ |
58 | isConstrained = 0; | |
59 | ||
60 | < | Constraint *temp_con; |
61 | < | Constraint *dummy_plug; |
60 | > | Constraint* temp_con; |
61 | > | Constraint* dummy_plug; |
62 | temp_con = new Constraint[info->n_SRI]; | |
63 | nConstrained = 0; | |
64 | int constrained = 0; | |
65 | < | |
65 | > | |
66 | SRI** theArray; | |
67 | < | for(int i = 0; i < nMols; i++){ |
68 | < | |
69 | < | theArray = (SRI**) molecules[i].getMyBonds(); |
72 | < | for(int j=0; j<molecules[i].getNBonds(); j++){ |
73 | < | |
67 | > | for (int i = 0; i < nMols; i++){ |
68 | > | theArray = (SRI * *) molecules[i].getMyBonds(); |
69 | > | for (int j = 0; j < molecules[i].getNBonds(); j++){ |
70 | constrained = theArray[j]->is_constrained(); | |
71 | ||
72 | < | if(constrained){ |
72 | > | if (constrained){ |
73 | > | dummy_plug = theArray[j]->get_constraint(); |
74 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
75 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
76 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
77 | ||
78 | < | dummy_plug = theArray[j]->get_constraint(); |
79 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
80 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
81 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
82 | < | |
83 | < | nConstrained++; |
84 | < | constrained = 0; |
85 | < | } |
78 | > | nConstrained++; |
79 | > | constrained = 0; |
80 | > | } |
81 | } | |
82 | ||
83 | < | theArray = (SRI**) molecules[i].getMyBends(); |
84 | < | for(int j=0; j<molecules[i].getNBends(); j++){ |
90 | < | |
83 | > | theArray = (SRI * *) molecules[i].getMyBends(); |
84 | > | for (int j = 0; j < molecules[i].getNBends(); j++){ |
85 | constrained = theArray[j]->is_constrained(); | |
86 | < | |
87 | < | if(constrained){ |
88 | < | |
89 | < | dummy_plug = theArray[j]->get_constraint(); |
90 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
91 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
92 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
93 | < | |
94 | < | nConstrained++; |
101 | < | constrained = 0; |
86 | > | |
87 | > | if (constrained){ |
88 | > | dummy_plug = theArray[j]->get_constraint(); |
89 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
90 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
91 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
92 | > | |
93 | > | nConstrained++; |
94 | > | constrained = 0; |
95 | } | |
96 | } | |
97 | ||
98 | < | theArray = (SRI**) molecules[i].getMyTorsions(); |
99 | < | for(int j=0; j<molecules[i].getNTorsions(); j++){ |
107 | < | |
98 | > | theArray = (SRI * *) molecules[i].getMyTorsions(); |
99 | > | for (int j = 0; j < molecules[i].getNTorsions(); j++){ |
100 | constrained = theArray[j]->is_constrained(); | |
101 | < | |
102 | < | if(constrained){ |
103 | < | |
104 | < | dummy_plug = theArray[j]->get_constraint(); |
105 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
106 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
107 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
108 | < | |
109 | < | nConstrained++; |
118 | < | constrained = 0; |
101 | > | |
102 | > | if (constrained){ |
103 | > | dummy_plug = theArray[j]->get_constraint(); |
104 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
105 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
106 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
107 | > | |
108 | > | nConstrained++; |
109 | > | constrained = 0; |
110 | } | |
111 | } | |
112 | } | |
113 | ||
114 | < | if(nConstrained > 0){ |
124 | < | |
114 | > | if (nConstrained > 0){ |
115 | isConstrained = 1; | |
116 | ||
117 | < | if(constrainedA != NULL ) delete[] constrainedA; |
118 | < | if(constrainedB != NULL ) delete[] constrainedB; |
119 | < | if(constrainedDsqr != NULL ) delete[] constrainedDsqr; |
117 | > | if (constrainedA != NULL) |
118 | > | delete[] constrainedA; |
119 | > | if (constrainedB != NULL) |
120 | > | delete[] constrainedB; |
121 | > | if (constrainedDsqr != NULL) |
122 | > | delete[] constrainedDsqr; |
123 | ||
124 | < | constrainedA = new int[nConstrained]; |
125 | < | constrainedB = new int[nConstrained]; |
124 | > | constrainedA = new int[nConstrained]; |
125 | > | constrainedB = new int[nConstrained]; |
126 | constrainedDsqr = new double[nConstrained]; | |
127 | < | |
128 | < | for( int i = 0; i < nConstrained; i++){ |
136 | < | |
127 | > | |
128 | > | for (int i = 0; i < nConstrained; i++){ |
129 | constrainedA[i] = temp_con[i].get_a(); | |
130 | constrainedB[i] = temp_con[i].get_b(); | |
131 | constrainedDsqr[i] = temp_con[i].get_dsqr(); | |
140 | – | |
132 | } | |
133 | ||
134 | < | |
134 | > | |
135 | // save oldAtoms to check for lode balanceing later on. | |
136 | < | |
136 | > | |
137 | oldAtoms = nAtoms; | |
138 | < | |
138 | > | |
139 | moving = new int[nAtoms]; | |
140 | < | moved = new int[nAtoms]; |
140 | > | moved = new int[nAtoms]; |
141 | ||
142 | < | oldPos = new double[nAtoms*3]; |
142 | > | oldPos = new double[nAtoms * 3]; |
143 | } | |
144 | < | |
144 | > | |
145 | delete[] temp_con; | |
146 | } | |
147 | ||
148 | ||
149 | < | void Integrator::integrate( void ){ |
159 | < | |
149 | > | template<typename T> void Integrator<T>::integrate(void){ |
150 | int i, j; // loop counters | |
151 | ||
152 | < | double runTime = info->run_time; |
153 | < | double sampleTime = info->sampleTime; |
154 | < | double statusTime = info->statusTime; |
152 | > | double runTime = info->run_time; |
153 | > | double sampleTime = info->sampleTime; |
154 | > | double statusTime = info->statusTime; |
155 | double thermalTime = info->thermalTime; | |
156 | + | double resetTime = info->resetTime; |
157 | ||
158 | + | |
159 | double currSample; | |
160 | double currThermal; | |
161 | double currStatus; | |
162 | < | double currTime; |
163 | < | |
162 | > | double currReset; |
163 | > | |
164 | int calcPot, calcStress; | |
165 | int isError; | |
166 | ||
167 | < | tStats = new Thermo( info ); |
168 | < | statOut = new StatWriter( info ); |
169 | < | dumpOut = new DumpWriter( info ); |
167 | > | tStats = new Thermo(info); |
168 | > | statOut = new StatWriter(info); |
169 | > | dumpOut = new DumpWriter(info); |
170 | ||
171 | atoms = info->atoms; | |
172 | DirectionalAtom* dAtom; | |
# | Line 184 | Line 176 | void Integrator::integrate( void ){ | |
176 | ||
177 | // initialize the forces before the first step | |
178 | ||
179 | < | myFF->doForces(1,1); |
180 | < | |
181 | < | if( info->setTemp ){ |
182 | < | |
183 | < | tStats->velocitize(); |
179 | > | calcForce(1, 1); |
180 | > | |
181 | > | if (nConstrained){ |
182 | > | preMove(); |
183 | > | constrainA(); |
184 | > | calcForce(1, 1); |
185 | > | constrainB(); |
186 | } | |
187 | ||
188 | < | dumpOut->writeDump( 0.0 ); |
189 | < | statOut->writeStat( 0.0 ); |
190 | < | |
188 | > | if (info->setTemp){ |
189 | > | thermalize(); |
190 | > | } |
191 | > | |
192 | calcPot = 0; | |
193 | calcStress = 0; | |
194 | < | currSample = sampleTime; |
195 | < | currThermal = thermalTime; |
196 | < | currStatus = statusTime; |
197 | < | currTime = 0.0;; |
194 | > | currSample = sampleTime + info->getTime(); |
195 | > | currThermal = thermalTime+ info->getTime(); |
196 | > | currStatus = statusTime + info->getTime(); |
197 | > | currReset = resetTime + info->getTime(); |
198 | ||
199 | + | dumpOut->writeDump(info->getTime()); |
200 | + | statOut->writeStat(info->getTime()); |
201 | ||
202 | readyCheck(); | |
203 | ||
204 | #ifdef IS_MPI | |
205 | < | strcpy( checkPointMsg, |
209 | < | "The integrator is ready to go." ); |
205 | > | strcpy(checkPointMsg, "The integrator is ready to go."); |
206 | MPIcheckPoint(); | |
207 | #endif // is_mpi | |
208 | ||
209 | < | while( currTime < runTime ){ |
210 | < | |
215 | < | if( (currTime+dt) >= currStatus ){ |
209 | > | while (info->getTime() < runTime){ |
210 | > | if ((info->getTime() + dt) >= currStatus){ |
211 | calcPot = 1; | |
212 | calcStress = 1; | |
213 | } | |
214 | ||
215 | < | integrateStep( calcPot, calcStress ); |
221 | < | |
222 | < | currTime += dt; |
215 | > | integrateStep(calcPot, calcStress); |
216 | ||
217 | < | if( info->setTemp ){ |
218 | < | if( currTime >= currThermal ){ |
219 | < | tStats->velocitize(); |
220 | < | currThermal += thermalTime; |
217 | > | info->incrTime(dt); |
218 | > | |
219 | > | if (info->setTemp){ |
220 | > | if (info->getTime() >= currThermal){ |
221 | > | thermalize(); |
222 | > | currThermal += thermalTime; |
223 | } | |
224 | } | |
225 | ||
226 | < | if( currTime >= currSample ){ |
227 | < | dumpOut->writeDump( currTime ); |
226 | > | if (info->getTime() >= currSample){ |
227 | > | dumpOut->writeDump(info->getTime()); |
228 | currSample += sampleTime; | |
229 | } | |
230 | ||
231 | < | if( currTime >= currStatus ){ |
232 | < | statOut->writeStat( currTime ); |
231 | > | if (info->getTime() >= currStatus){ |
232 | > | statOut->writeStat(info->getTime()); |
233 | calcPot = 0; | |
234 | calcStress = 0; | |
235 | currStatus += statusTime; | |
236 | } | |
237 | ||
238 | + | if (info->resetIntegrator){ |
239 | + | if (info->getTime() >= currReset){ |
240 | + | this->resetIntegrator(); |
241 | + | currReset += resetTime; |
242 | + | } |
243 | + | } |
244 | + | |
245 | #ifdef IS_MPI | |
246 | < | strcpy( checkPointMsg, |
245 | < | "successfully took a time step." ); |
246 | > | strcpy(checkPointMsg, "successfully took a time step."); |
247 | MPIcheckPoint(); | |
248 | #endif // is_mpi | |
248 | – | |
249 | } | |
250 | ||
251 | < | dumpOut->writeFinal(currTime); |
251 | > | dumpOut->writeFinal(info->getTime()); |
252 | ||
253 | delete dumpOut; | |
254 | delete statOut; | |
255 | } | |
256 | ||
257 | < | void Integrator::integrateStep( int calcPot, int calcStress ){ |
258 | < | |
259 | < | |
260 | < | |
257 | > | template<typename T> void Integrator<T>::integrateStep(int calcPot, |
258 | > | int calcStress){ |
259 | // Position full step, and velocity half step | |
262 | – | |
260 | preMove(); | |
261 | + | |
262 | moveA(); | |
265 | – | if( nConstrained ) constrainA(); |
263 | ||
264 | < | |
264 | > | |
265 | > | |
266 | > | |
267 | #ifdef IS_MPI | |
268 | < | strcpy( checkPointMsg, "Succesful moveA\n" ); |
268 | > | strcpy(checkPointMsg, "Succesful moveA\n"); |
269 | MPIcheckPoint(); | |
270 | #endif // is_mpi | |
272 | – | |
271 | ||
272 | + | |
273 | // calc forces | |
274 | ||
275 | < | myFF->doForces(calcPot,calcStress); |
275 | > | calcForce(calcPot, calcStress); |
276 | ||
277 | #ifdef IS_MPI | |
278 | < | strcpy( checkPointMsg, "Succesful doForces\n" ); |
278 | > | strcpy(checkPointMsg, "Succesful doForces\n"); |
279 | MPIcheckPoint(); | |
280 | #endif // is_mpi | |
282 | – | |
281 | ||
282 | + | |
283 | // finish the velocity half step | |
284 | < | |
284 | > | |
285 | moveB(); | |
286 | < | if( nConstrained ) constrainB(); |
287 | < | |
286 | > | |
287 | > | |
288 | > | |
289 | #ifdef IS_MPI | |
290 | < | strcpy( checkPointMsg, "Succesful moveB\n" ); |
290 | > | strcpy(checkPointMsg, "Succesful moveB\n"); |
291 | MPIcheckPoint(); | |
292 | #endif // is_mpi | |
293 | – | |
294 | – | |
293 | } | |
294 | ||
295 | ||
296 | < | void Integrator::moveA( void ){ |
299 | < | |
296 | > | template<typename T> void Integrator<T>::moveA(void){ |
297 | int i, j; | |
298 | DirectionalAtom* dAtom; | |
299 | double Tb[3], ji[3]; | |
303 | – | double A[3][3], I[3][3]; |
304 | – | double angle; |
300 | double vel[3], pos[3], frc[3]; | |
301 | double mass; | |
302 | ||
303 | < | for( i=0; i<nAtoms; i++ ){ |
303 | > | for (i = 0; i < nAtoms; i++){ |
304 | > | atoms[i]->getVel(vel); |
305 | > | atoms[i]->getPos(pos); |
306 | > | atoms[i]->getFrc(frc); |
307 | ||
310 | – | atoms[i]->getVel( vel ); |
311 | – | atoms[i]->getPos( pos ); |
312 | – | atoms[i]->getFrc( frc ); |
313 | – | |
308 | mass = atoms[i]->getMass(); | |
309 | ||
310 | < | for (j=0; j < 3; j++) { |
310 | > | for (j = 0; j < 3; j++){ |
311 | // velocity half step | |
312 | < | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
312 | > | vel[j] += (dt2 * frc[j] / mass) * eConvert; |
313 | // position whole step | |
314 | pos[j] += dt * vel[j]; | |
315 | } | |
316 | ||
317 | < | atoms[i]->setVel( vel ); |
318 | < | atoms[i]->setPos( pos ); |
317 | > | atoms[i]->setVel(vel); |
318 | > | atoms[i]->setPos(pos); |
319 | ||
320 | < | if( atoms[i]->isDirectional() ){ |
320 | > | if (atoms[i]->isDirectional()){ |
321 | > | dAtom = (DirectionalAtom *) atoms[i]; |
322 | ||
328 | – | dAtom = (DirectionalAtom *)atoms[i]; |
329 | – | |
323 | // get and convert the torque to body frame | |
331 | – | |
332 | – | dAtom->getTrq( Tb ); |
333 | – | dAtom->lab2Body( Tb ); |
324 | ||
325 | + | dAtom->getTrq(Tb); |
326 | + | dAtom->lab2Body(Tb); |
327 | + | |
328 | // get the angular momentum, and propagate a half step | |
329 | ||
330 | < | dAtom->getJ( ji ); |
330 | > | dAtom->getJ(ji); |
331 | ||
332 | < | for (j=0; j < 3; j++) |
332 | > | for (j = 0; j < 3; j++) |
333 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
341 | – | |
342 | – | // use the angular velocities to propagate the rotation matrix a |
343 | – | // full time step |
334 | ||
335 | < | dAtom->getA(A); |
346 | < | dAtom->getI(I); |
347 | < | |
348 | < | // rotate about the x-axis |
349 | < | angle = dt2 * ji[0] / I[0][0]; |
350 | < | this->rotate( 1, 2, angle, ji, A ); |
335 | > | this->rotationPropagation( dAtom, ji ); |
336 | ||
337 | < | // rotate about the y-axis |
338 | < | angle = dt2 * ji[1] / I[1][1]; |
339 | < | this->rotate( 2, 0, angle, ji, A ); |
355 | < | |
356 | < | // rotate about the z-axis |
357 | < | angle = dt * ji[2] / I[2][2]; |
358 | < | this->rotate( 0, 1, angle, ji, A); |
359 | < | |
360 | < | // rotate about the y-axis |
361 | < | angle = dt2 * ji[1] / I[1][1]; |
362 | < | this->rotate( 2, 0, angle, ji, A ); |
363 | < | |
364 | < | // rotate about the x-axis |
365 | < | angle = dt2 * ji[0] / I[0][0]; |
366 | < | this->rotate( 1, 2, angle, ji, A ); |
367 | < | |
337 | > | dAtom->setJ(ji); |
338 | > | } |
339 | > | } |
340 | ||
341 | < | dAtom->setJ( ji ); |
342 | < | dAtom->setA( A ); |
371 | < | |
372 | < | } |
341 | > | if (nConstrained){ |
342 | > | constrainA(); |
343 | } | |
344 | } | |
345 | ||
346 | ||
347 | < | void Integrator::moveB( void ){ |
347 | > | template<typename T> void Integrator<T>::moveB(void){ |
348 | int i, j; | |
349 | DirectionalAtom* dAtom; | |
350 | double Tb[3], ji[3]; | |
351 | double vel[3], frc[3]; | |
352 | double mass; | |
353 | ||
354 | < | for( i=0; i<nAtoms; i++ ){ |
355 | < | |
356 | < | atoms[i]->getVel( vel ); |
387 | < | atoms[i]->getFrc( frc ); |
354 | > | for (i = 0; i < nAtoms; i++){ |
355 | > | atoms[i]->getVel(vel); |
356 | > | atoms[i]->getFrc(frc); |
357 | ||
358 | mass = atoms[i]->getMass(); | |
359 | ||
360 | // velocity half step | |
361 | < | for (j=0; j < 3; j++) |
362 | < | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
394 | < | |
395 | < | atoms[i]->setVel( vel ); |
396 | < | |
397 | < | if( atoms[i]->isDirectional() ){ |
361 | > | for (j = 0; j < 3; j++) |
362 | > | vel[j] += (dt2 * frc[j] / mass) * eConvert; |
363 | ||
364 | < | dAtom = (DirectionalAtom *)atoms[i]; |
364 | > | atoms[i]->setVel(vel); |
365 | ||
366 | + | if (atoms[i]->isDirectional()){ |
367 | + | dAtom = (DirectionalAtom *) atoms[i]; |
368 | + | |
369 | // get and convert the torque to body frame | |
370 | ||
371 | < | dAtom->getTrq( Tb ); |
372 | < | dAtom->lab2Body( Tb ); |
371 | > | dAtom->getTrq(Tb); |
372 | > | dAtom->lab2Body(Tb); |
373 | ||
374 | // get the angular momentum, and propagate a half step | |
375 | ||
376 | < | dAtom->getJ( ji ); |
376 | > | dAtom->getJ(ji); |
377 | ||
378 | < | for (j=0; j < 3; j++) |
378 | > | for (j = 0; j < 3; j++) |
379 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
412 | – | |
380 | ||
381 | < | dAtom->setJ( ji ); |
381 | > | |
382 | > | dAtom->setJ(ji); |
383 | } | |
384 | } | |
385 | + | |
386 | + | if (nConstrained){ |
387 | + | constrainB(); |
388 | + | } |
389 | } | |
390 | ||
391 | < | void Integrator::preMove( void ){ |
391 | > | template<typename T> void Integrator<T>::preMove(void){ |
392 | int i, j; | |
393 | double pos[3]; | |
394 | ||
395 | < | if( nConstrained ){ |
395 | > | if (nConstrained){ |
396 | > | for (i = 0; i < nAtoms; i++){ |
397 | > | atoms[i]->getPos(pos); |
398 | ||
399 | < | for(i=0; i < nAtoms; i++) { |
400 | < | |
427 | < | atoms[i]->getPos( pos ); |
428 | < | |
429 | < | for (j = 0; j < 3; j++) { |
430 | < | oldPos[3*i + j] = pos[j]; |
399 | > | for (j = 0; j < 3; j++){ |
400 | > | oldPos[3 * i + j] = pos[j]; |
401 | } | |
432 | – | |
402 | } | |
403 | < | } |
403 | > | } |
404 | } | |
405 | ||
406 | < | void Integrator::constrainA(){ |
407 | < | |
439 | < | int i,j,k; |
406 | > | template<typename T> void Integrator<T>::constrainA(){ |
407 | > | int i, j, k; |
408 | int done; | |
409 | double posA[3], posB[3]; | |
410 | double velA[3], velB[3]; | |
# | Line 451 | Line 419 | void Integrator::constrainA(){ | |
419 | double gab; | |
420 | int iteration; | |
421 | ||
422 | < | for( i=0; i<nAtoms; i++){ |
422 | > | for (i = 0; i < nAtoms; i++){ |
423 | moving[i] = 0; | |
424 | < | moved[i] = 1; |
424 | > | moved[i] = 1; |
425 | } | |
426 | ||
427 | iteration = 0; | |
428 | done = 0; | |
429 | < | while( !done && (iteration < maxIteration )){ |
462 | < | |
429 | > | while (!done && (iteration < maxIteration)){ |
430 | done = 1; | |
431 | < | for(i=0; i<nConstrained; i++){ |
465 | < | |
431 | > | for (i = 0; i < nConstrained; i++){ |
432 | a = constrainedA[i]; | |
433 | b = constrainedB[i]; | |
434 | < | |
435 | < | ax = (a*3) + 0; |
436 | < | ay = (a*3) + 1; |
437 | < | az = (a*3) + 2; |
434 | > | |
435 | > | ax = (a * 3) + 0; |
436 | > | ay = (a * 3) + 1; |
437 | > | az = (a * 3) + 2; |
438 | ||
439 | < | bx = (b*3) + 0; |
440 | < | by = (b*3) + 1; |
441 | < | bz = (b*3) + 2; |
439 | > | bx = (b * 3) + 0; |
440 | > | by = (b * 3) + 1; |
441 | > | bz = (b * 3) + 2; |
442 | ||
443 | < | if( moved[a] || moved[b] ){ |
444 | < | |
445 | < | atoms[a]->getPos( posA ); |
446 | < | atoms[b]->getPos( posB ); |
447 | < | |
482 | < | for (j = 0; j < 3; j++ ) |
443 | > | if (moved[a] || moved[b]){ |
444 | > | atoms[a]->getPos(posA); |
445 | > | atoms[b]->getPos(posB); |
446 | > | |
447 | > | for (j = 0; j < 3; j++) |
448 | pab[j] = posA[j] - posB[j]; | |
484 | – | |
485 | – | //periodic boundary condition |
449 | ||
450 | < | info->wrapVector( pab ); |
450 | > | //periodic boundary condition |
451 | ||
452 | < | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
452 | > | info->wrapVector(pab); |
453 | ||
454 | < | rabsq = constrainedDsqr[i]; |
492 | < | diffsq = rabsq - pabsq; |
454 | > | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
455 | ||
456 | < | // the original rattle code from alan tidesley |
457 | < | if (fabs(diffsq) > (tol*rabsq*2)) { |
496 | < | rab[0] = oldPos[ax] - oldPos[bx]; |
497 | < | rab[1] = oldPos[ay] - oldPos[by]; |
498 | < | rab[2] = oldPos[az] - oldPos[bz]; |
456 | > | rabsq = constrainedDsqr[i]; |
457 | > | diffsq = rabsq - pabsq; |
458 | ||
459 | < | info->wrapVector( rab ); |
459 | > | // the original rattle code from alan tidesley |
460 | > | if (fabs(diffsq) > (tol * rabsq * 2)){ |
461 | > | rab[0] = oldPos[ax] - oldPos[bx]; |
462 | > | rab[1] = oldPos[ay] - oldPos[by]; |
463 | > | rab[2] = oldPos[az] - oldPos[bz]; |
464 | ||
465 | < | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
465 | > | info->wrapVector(rab); |
466 | ||
467 | < | rpabsq = rpab * rpab; |
467 | > | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
468 | ||
469 | + | rpabsq = rpab * rpab; |
470 | ||
507 | – | if (rpabsq < (rabsq * -diffsq)){ |
471 | ||
472 | + | if (rpabsq < (rabsq * -diffsq)){ |
473 | #ifdef IS_MPI | |
474 | < | a = atoms[a]->getGlobalIndex(); |
475 | < | b = atoms[b]->getGlobalIndex(); |
474 | > | a = atoms[a]->getGlobalIndex(); |
475 | > | b = atoms[b]->getGlobalIndex(); |
476 | #endif //is_mpi | |
477 | < | sprintf( painCave.errMsg, |
478 | < | "Constraint failure in constrainA at atom %d and %d.\n", |
479 | < | a, b ); |
480 | < | painCave.isFatal = 1; |
481 | < | simError(); |
482 | < | } |
477 | > | sprintf(painCave.errMsg, |
478 | > | "Constraint failure in constrainA at atom %d and %d.\n", a, |
479 | > | b); |
480 | > | painCave.isFatal = 1; |
481 | > | simError(); |
482 | > | } |
483 | ||
484 | < | rma = 1.0 / atoms[a]->getMass(); |
485 | < | rmb = 1.0 / atoms[b]->getMass(); |
484 | > | rma = 1.0 / atoms[a]->getMass(); |
485 | > | rmb = 1.0 / atoms[b]->getMass(); |
486 | ||
487 | < | gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); |
487 | > | gab = diffsq / (2.0 * (rma + rmb) * rpab); |
488 | ||
489 | dx = rab[0] * gab; | |
490 | dy = rab[1] * gab; | |
491 | dz = rab[2] * gab; | |
492 | ||
493 | < | posA[0] += rma * dx; |
494 | < | posA[1] += rma * dy; |
495 | < | posA[2] += rma * dz; |
493 | > | posA[0] += rma * dx; |
494 | > | posA[1] += rma * dy; |
495 | > | posA[2] += rma * dz; |
496 | ||
497 | < | atoms[a]->setPos( posA ); |
497 | > | atoms[a]->setPos(posA); |
498 | ||
499 | < | posB[0] -= rmb * dx; |
500 | < | posB[1] -= rmb * dy; |
501 | < | posB[2] -= rmb * dz; |
499 | > | posB[0] -= rmb * dx; |
500 | > | posB[1] -= rmb * dy; |
501 | > | posB[2] -= rmb * dz; |
502 | ||
503 | < | atoms[b]->setPos( posB ); |
503 | > | atoms[b]->setPos(posB); |
504 | ||
505 | dx = dx / dt; | |
506 | dy = dy / dt; | |
507 | dz = dz / dt; | |
508 | ||
509 | < | atoms[a]->getVel( velA ); |
509 | > | atoms[a]->getVel(velA); |
510 | ||
511 | < | velA[0] += rma * dx; |
512 | < | velA[1] += rma * dy; |
513 | < | velA[2] += rma * dz; |
511 | > | velA[0] += rma * dx; |
512 | > | velA[1] += rma * dy; |
513 | > | velA[2] += rma * dz; |
514 | ||
515 | < | atoms[a]->setVel( velA ); |
515 | > | atoms[a]->setVel(velA); |
516 | ||
517 | < | atoms[b]->getVel( velB ); |
517 | > | atoms[b]->getVel(velB); |
518 | ||
519 | < | velB[0] -= rmb * dx; |
520 | < | velB[1] -= rmb * dy; |
521 | < | velB[2] -= rmb * dz; |
519 | > | velB[0] -= rmb * dx; |
520 | > | velB[1] -= rmb * dy; |
521 | > | velB[2] -= rmb * dz; |
522 | ||
523 | < | atoms[b]->setVel( velB ); |
523 | > | atoms[b]->setVel(velB); |
524 | ||
525 | < | moving[a] = 1; |
526 | < | moving[b] = 1; |
527 | < | done = 0; |
528 | < | } |
525 | > | moving[a] = 1; |
526 | > | moving[b] = 1; |
527 | > | done = 0; |
528 | > | } |
529 | } | |
530 | } | |
531 | < | |
532 | < | for(i=0; i<nAtoms; i++){ |
569 | < | |
531 | > | |
532 | > | for (i = 0; i < nAtoms; i++){ |
533 | moved[i] = moving[i]; | |
534 | moving[i] = 0; | |
535 | } | |
# | Line 574 | Line 537 | void Integrator::constrainA(){ | |
537 | iteration++; | |
538 | } | |
539 | ||
540 | < | if( !done ){ |
541 | < | |
542 | < | sprintf( painCave.errMsg, |
543 | < | "Constraint failure in constrainA, too many iterations: %d\n", |
581 | < | iteration ); |
540 | > | if (!done){ |
541 | > | sprintf(painCave.errMsg, |
542 | > | "Constraint failure in constrainA, too many iterations: %d\n", |
543 | > | iteration); |
544 | painCave.isFatal = 1; | |
545 | simError(); | |
546 | } | |
547 | ||
548 | } | |
549 | ||
550 | < | void Integrator::constrainB( void ){ |
551 | < | |
590 | < | int i,j,k; |
550 | > | template<typename T> void Integrator<T>::constrainB(void){ |
551 | > | int i, j, k; |
552 | int done; | |
553 | double posA[3], posB[3]; | |
554 | double velA[3], velB[3]; | |
# | Line 601 | Line 562 | void Integrator::constrainB( void ){ | |
562 | double gab; | |
563 | int iteration; | |
564 | ||
565 | < | for(i=0; i<nAtoms; i++){ |
565 | > | for (i = 0; i < nAtoms; i++){ |
566 | moving[i] = 0; | |
567 | moved[i] = 1; | |
568 | } | |
569 | ||
570 | done = 0; | |
571 | iteration = 0; | |
572 | < | while( !done && (iteration < maxIteration ) ){ |
612 | < | |
572 | > | while (!done && (iteration < maxIteration)){ |
573 | done = 1; | |
574 | ||
575 | < | for(i=0; i<nConstrained; i++){ |
616 | < | |
575 | > | for (i = 0; i < nConstrained; i++){ |
576 | a = constrainedA[i]; | |
577 | b = constrainedB[i]; | |
578 | ||
579 | < | ax = (a*3) + 0; |
580 | < | ay = (a*3) + 1; |
581 | < | az = (a*3) + 2; |
579 | > | ax = (a * 3) + 0; |
580 | > | ay = (a * 3) + 1; |
581 | > | az = (a * 3) + 2; |
582 | ||
583 | < | bx = (b*3) + 0; |
584 | < | by = (b*3) + 1; |
585 | < | bz = (b*3) + 2; |
583 | > | bx = (b * 3) + 0; |
584 | > | by = (b * 3) + 1; |
585 | > | bz = (b * 3) + 2; |
586 | ||
587 | < | if( moved[a] || moved[b] ){ |
587 | > | if (moved[a] || moved[b]){ |
588 | > | atoms[a]->getVel(velA); |
589 | > | atoms[b]->getVel(velB); |
590 | ||
591 | < | atoms[a]->getVel( velA ); |
592 | < | atoms[b]->getVel( velB ); |
593 | < | |
633 | < | vxab = velA[0] - velB[0]; |
634 | < | vyab = velA[1] - velB[1]; |
635 | < | vzab = velA[2] - velB[2]; |
591 | > | vxab = velA[0] - velB[0]; |
592 | > | vyab = velA[1] - velB[1]; |
593 | > | vzab = velA[2] - velB[2]; |
594 | ||
595 | < | atoms[a]->getPos( posA ); |
596 | < | atoms[b]->getPos( posB ); |
595 | > | atoms[a]->getPos(posA); |
596 | > | atoms[b]->getPos(posB); |
597 | ||
598 | < | for (j = 0; j < 3; j++) |
598 | > | for (j = 0; j < 3; j++) |
599 | rab[j] = posA[j] - posB[j]; | |
642 | – | |
643 | – | info->wrapVector( rab ); |
644 | – | |
645 | – | rma = 1.0 / atoms[a]->getMass(); |
646 | – | rmb = 1.0 / atoms[b]->getMass(); |
600 | ||
601 | < | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
649 | < | |
650 | < | gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); |
601 | > | info->wrapVector(rab); |
602 | ||
603 | < | if (fabs(gab) > tol) { |
604 | < | |
654 | < | dx = rab[0] * gab; |
655 | < | dy = rab[1] * gab; |
656 | < | dz = rab[2] * gab; |
657 | < | |
658 | < | velA[0] += rma * dx; |
659 | < | velA[1] += rma * dy; |
660 | < | velA[2] += rma * dz; |
603 | > | rma = 1.0 / atoms[a]->getMass(); |
604 | > | rmb = 1.0 / atoms[b]->getMass(); |
605 | ||
606 | < | atoms[a]->setVel( velA ); |
606 | > | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
607 | ||
608 | < | velB[0] -= rmb * dx; |
665 | < | velB[1] -= rmb * dy; |
666 | < | velB[2] -= rmb * dz; |
608 | > | gab = -rvab / ((rma + rmb) * constrainedDsqr[i]); |
609 | ||
610 | < | atoms[b]->setVel( velB ); |
611 | < | |
612 | < | moving[a] = 1; |
613 | < | moving[b] = 1; |
614 | < | done = 0; |
615 | < | } |
610 | > | if (fabs(gab) > tol){ |
611 | > | dx = rab[0] * gab; |
612 | > | dy = rab[1] * gab; |
613 | > | dz = rab[2] * gab; |
614 | > | |
615 | > | velA[0] += rma * dx; |
616 | > | velA[1] += rma * dy; |
617 | > | velA[2] += rma * dz; |
618 | > | |
619 | > | atoms[a]->setVel(velA); |
620 | > | |
621 | > | velB[0] -= rmb * dx; |
622 | > | velB[1] -= rmb * dy; |
623 | > | velB[2] -= rmb * dz; |
624 | > | |
625 | > | atoms[b]->setVel(velB); |
626 | > | |
627 | > | moving[a] = 1; |
628 | > | moving[b] = 1; |
629 | > | done = 0; |
630 | > | } |
631 | } | |
632 | } | |
633 | ||
634 | < | for(i=0; i<nAtoms; i++){ |
634 | > | for (i = 0; i < nAtoms; i++){ |
635 | moved[i] = moving[i]; | |
636 | moving[i] = 0; | |
637 | } | |
638 | < | |
638 | > | |
639 | iteration++; | |
640 | } | |
684 | – | |
685 | – | if( !done ){ |
641 | ||
642 | < | |
643 | < | sprintf( painCave.errMsg, |
644 | < | "Constraint failure in constrainB, too many iterations: %d\n", |
645 | < | iteration ); |
642 | > | if (!done){ |
643 | > | sprintf(painCave.errMsg, |
644 | > | "Constraint failure in constrainB, too many iterations: %d\n", |
645 | > | iteration); |
646 | painCave.isFatal = 1; | |
647 | simError(); | |
648 | < | } |
694 | < | |
648 | > | } |
649 | } | |
650 | ||
651 | < | void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], |
652 | < | double A[3][3] ){ |
651 | > | template<typename T> void Integrator<T>::rotationPropagation |
652 | > | ( DirectionalAtom* dAtom, double ji[3] ){ |
653 | ||
654 | < | int i,j,k; |
654 | > | double angle; |
655 | > | double A[3][3], I[3][3]; |
656 | > | |
657 | > | // use the angular velocities to propagate the rotation matrix a |
658 | > | // full time step |
659 | > | |
660 | > | dAtom->getA(A); |
661 | > | dAtom->getI(I); |
662 | > | |
663 | > | // rotate about the x-axis |
664 | > | angle = dt2 * ji[0] / I[0][0]; |
665 | > | this->rotate( 1, 2, angle, ji, A ); |
666 | > | |
667 | > | // rotate about the y-axis |
668 | > | angle = dt2 * ji[1] / I[1][1]; |
669 | > | this->rotate( 2, 0, angle, ji, A ); |
670 | > | |
671 | > | // rotate about the z-axis |
672 | > | angle = dt * ji[2] / I[2][2]; |
673 | > | this->rotate( 0, 1, angle, ji, A); |
674 | > | |
675 | > | // rotate about the y-axis |
676 | > | angle = dt2 * ji[1] / I[1][1]; |
677 | > | this->rotate( 2, 0, angle, ji, A ); |
678 | > | |
679 | > | // rotate about the x-axis |
680 | > | angle = dt2 * ji[0] / I[0][0]; |
681 | > | this->rotate( 1, 2, angle, ji, A ); |
682 | > | |
683 | > | dAtom->setA( A ); |
684 | > | } |
685 | > | |
686 | > | template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
687 | > | double angle, double ji[3], |
688 | > | double A[3][3]){ |
689 | > | int i, j, k; |
690 | double sinAngle; | |
691 | double cosAngle; | |
692 | double angleSqr; | |
# | Line 709 | Line 698 | void Integrator::rotate( int axes1, int axes2, double | |
698 | ||
699 | // initialize the tempA | |
700 | ||
701 | < | for(i=0; i<3; i++){ |
702 | < | for(j=0; j<3; j++){ |
701 | > | for (i = 0; i < 3; i++){ |
702 | > | for (j = 0; j < 3; j++){ |
703 | tempA[j][i] = A[i][j]; | |
704 | } | |
705 | } | |
706 | ||
707 | // initialize the tempJ | |
708 | ||
709 | < | for( i=0; i<3; i++) tempJ[i] = ji[i]; |
710 | < | |
709 | > | for (i = 0; i < 3; i++) |
710 | > | tempJ[i] = ji[i]; |
711 | > | |
712 | // initalize rot as a unit matrix | |
713 | ||
714 | rot[0][0] = 1.0; | |
# | Line 728 | Line 718 | void Integrator::rotate( int axes1, int axes2, double | |
718 | rot[1][0] = 0.0; | |
719 | rot[1][1] = 1.0; | |
720 | rot[1][2] = 0.0; | |
721 | < | |
721 | > | |
722 | rot[2][0] = 0.0; | |
723 | rot[2][1] = 0.0; | |
724 | rot[2][2] = 1.0; | |
725 | < | |
725 | > | |
726 | // use a small angle aproximation for sin and cosine | |
727 | ||
728 | < | angleSqr = angle * angle; |
728 | > | angleSqr = angle * angle; |
729 | angleSqrOver4 = angleSqr / 4.0; | |
730 | top = 1.0 - angleSqrOver4; | |
731 | bottom = 1.0 + angleSqrOver4; | |
# | Line 748 | Line 738 | void Integrator::rotate( int axes1, int axes2, double | |
738 | ||
739 | rot[axes1][axes2] = sinAngle; | |
740 | rot[axes2][axes1] = -sinAngle; | |
741 | < | |
741 | > | |
742 | // rotate the momentum acoording to: ji[] = rot[][] * ji[] | |
743 | < | |
744 | < | for(i=0; i<3; i++){ |
743 | > | |
744 | > | for (i = 0; i < 3; i++){ |
745 | ji[i] = 0.0; | |
746 | < | for(k=0; k<3; k++){ |
746 | > | for (k = 0; k < 3; k++){ |
747 | ji[i] += rot[i][k] * tempJ[k]; | |
748 | } | |
749 | } | |
# | Line 766 | Line 756 | void Integrator::rotate( int axes1, int axes2, double | |
756 | // calculation as: | |
757 | // transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | |
758 | ||
759 | < | for(i=0; i<3; i++){ |
760 | < | for(j=0; j<3; j++){ |
759 | > | for (i = 0; i < 3; i++){ |
760 | > | for (j = 0; j < 3; j++){ |
761 | A[j][i] = 0.0; | |
762 | < | for(k=0; k<3; k++){ |
763 | < | A[j][i] += tempA[i][k] * rot[j][k]; |
762 | > | for (k = 0; k < 3; k++){ |
763 | > | A[j][i] += tempA[i][k] * rot[j][k]; |
764 | } | |
765 | } | |
766 | } | |
767 | } | |
768 | + | |
769 | + | template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){ |
770 | + | myFF->doForces(calcPot, calcStress); |
771 | + | } |
772 | + | |
773 | + | template<typename T> void Integrator<T>::thermalize(){ |
774 | + | tStats->velocitize(); |
775 | + | } |
776 | + | |
777 | + | template<typename T> double Integrator<T>::getConservedQuantity(void){ |
778 | + | return tStats->getTotalE(); |
779 | + | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |