# | Line 1 | Line 1 | |
---|---|---|
1 | #include <iostream> | |
2 | < | #include <cstdlib> |
3 | < | #include <cmath> |
2 | > | #include <stdlib.h> |
3 | > | #include <math.h> |
4 | ||
5 | #ifdef IS_MPI | |
6 | #include "mpiSimulation.hpp" | |
7 | #include <unistd.h> | |
8 | #endif //is_mpi | |
9 | ||
10 | + | #ifdef PROFILE |
11 | + | #include "mdProfile.hpp" |
12 | + | #endif // profile |
13 | + | |
14 | #include "Integrator.hpp" | |
15 | #include "simError.h" | |
16 | ||
# | Line 25 | Line 29 | template<typename T> Integrator<T>::Integrator(SimInfo | |
29 | if (info->the_integrator != NULL){ | |
30 | delete info->the_integrator; | |
31 | } | |
28 | – | info->the_integrator = this; |
32 | ||
33 | nAtoms = info->n_atoms; | |
34 | + | integrableObjects = info->integrableObjects; |
35 | ||
36 | // check for constraints | |
37 | ||
# | Line 65 | Line 69 | template<typename T> void Integrator<T>::checkConstrai | |
69 | ||
70 | SRI** theArray; | |
71 | for (int i = 0; i < nMols; i++){ | |
72 | < | theArray = (SRI * *) molecules[i].getMyBonds(); |
72 | > | |
73 | > | theArray = (SRI * *) molecules[i].getMyBonds(); |
74 | for (int j = 0; j < molecules[i].getNBonds(); j++){ | |
75 | constrained = theArray[j]->is_constrained(); | |
76 | ||
# | Line 111 | Line 116 | template<typename T> void Integrator<T>::checkConstrai | |
116 | } | |
117 | } | |
118 | ||
119 | + | |
120 | if (nConstrained > 0){ | |
121 | isConstrained = 1; | |
122 | ||
# | Line 132 | Line 138 | template<typename T> void Integrator<T>::checkConstrai | |
138 | } | |
139 | ||
140 | ||
141 | < | // save oldAtoms to check for lode balanceing later on. |
141 | > | // save oldAtoms to check for lode balancing later on. |
142 | ||
143 | oldAtoms = nAtoms; | |
144 | ||
# | Line 147 | Line 153 | template<typename T> void Integrator<T>::integrate(voi | |
153 | ||
154 | ||
155 | template<typename T> void Integrator<T>::integrate(void){ | |
150 | – | int i, j; // loop counters |
156 | ||
157 | double runTime = info->run_time; | |
158 | double sampleTime = info->sampleTime; | |
159 | double statusTime = info->statusTime; | |
160 | double thermalTime = info->thermalTime; | |
161 | + | double resetTime = info->resetTime; |
162 | ||
163 | + | |
164 | double currSample; | |
165 | double currThermal; | |
166 | double currStatus; | |
167 | + | double currReset; |
168 | ||
169 | int calcPot, calcStress; | |
162 | – | int isError; |
170 | ||
171 | tStats = new Thermo(info); | |
172 | statOut = new StatWriter(info); | |
173 | dumpOut = new DumpWriter(info); | |
174 | ||
175 | atoms = info->atoms; | |
169 | – | DirectionalAtom* dAtom; |
176 | ||
177 | dt = info->dt; | |
178 | dt2 = 0.5 * dt; | |
179 | ||
180 | + | readyCheck(); |
181 | + | |
182 | + | // remove center of mass drift velocity (in case we passed in a configuration |
183 | + | // that was drifting |
184 | + | tStats->removeCOMdrift(); |
185 | + | |
186 | // initialize the forces before the first step | |
187 | ||
188 | calcForce(1, 1); | |
189 | < | // myFF->doForces(1,1); |
190 | < | |
189 | > | |
190 | > | if (nConstrained){ |
191 | > | preMove(); |
192 | > | constrainA(); |
193 | > | calcForce(1, 1); |
194 | > | constrainB(); |
195 | > | } |
196 | > | |
197 | if (info->setTemp){ | |
198 | thermalize(); | |
199 | } | |
200 | ||
183 | – | calcPot = 0; |
184 | – | calcStress = 0; |
185 | – | currSample = sampleTime; |
186 | – | currThermal = thermalTime; |
187 | – | currStatus = statusTime; |
188 | – | |
201 | calcPot = 0; | |
202 | calcStress = 0; | |
203 | currSample = sampleTime + info->getTime(); | |
204 | currThermal = thermalTime+ info->getTime(); | |
205 | currStatus = statusTime + info->getTime(); | |
206 | + | currReset = resetTime + info->getTime(); |
207 | ||
208 | dumpOut->writeDump(info->getTime()); | |
209 | statOut->writeStat(info->getTime()); | |
210 | ||
198 | – | readyCheck(); |
211 | ||
212 | #ifdef IS_MPI | |
213 | strcpy(checkPointMsg, "The integrator is ready to go."); | |
214 | MPIcheckPoint(); | |
215 | #endif // is_mpi | |
216 | ||
217 | < | while (info->getTime() < runTime){ |
217 | > | while (info->getTime() < runTime && !stopIntegrator()){ |
218 | if ((info->getTime() + dt) >= currStatus){ | |
219 | calcPot = 1; | |
220 | calcStress = 1; | |
221 | } | |
222 | ||
223 | + | #ifdef PROFILE |
224 | + | startProfile( pro1 ); |
225 | + | #endif |
226 | + | |
227 | integrateStep(calcPot, calcStress); | |
228 | ||
229 | + | #ifdef PROFILE |
230 | + | endProfile( pro1 ); |
231 | + | |
232 | + | startProfile( pro2 ); |
233 | + | #endif // profile |
234 | + | |
235 | info->incrTime(dt); | |
236 | ||
237 | if (info->setTemp){ | |
# | Line 225 | Line 247 | template<typename T> void Integrator<T>::integrate(voi | |
247 | } | |
248 | ||
249 | if (info->getTime() >= currStatus){ | |
250 | < | statOut->writeStat(info->getTime()); |
251 | < | calcPot = 0; |
250 | > | statOut->writeStat(info->getTime()); |
251 | > | calcPot = 0; |
252 | calcStress = 0; | |
253 | currStatus += statusTime; | |
254 | < | } |
254 | > | } |
255 | > | |
256 | > | if (info->resetIntegrator){ |
257 | > | if (info->getTime() >= currReset){ |
258 | > | this->resetIntegrator(); |
259 | > | currReset += resetTime; |
260 | > | } |
261 | > | } |
262 | > | |
263 | > | #ifdef PROFILE |
264 | > | endProfile( pro2 ); |
265 | > | #endif //profile |
266 | ||
267 | #ifdef IS_MPI | |
268 | strcpy(checkPointMsg, "successfully took a time step."); | |
# | Line 237 | Line 270 | template<typename T> void Integrator<T>::integrate(voi | |
270 | #endif // is_mpi | |
271 | } | |
272 | ||
240 | – | dumpOut->writeFinal(info->getTime()); |
241 | – | |
273 | delete dumpOut; | |
274 | delete statOut; | |
275 | } | |
# | Line 246 | Line 277 | template<typename T> void Integrator<T>::integrateStep | |
277 | template<typename T> void Integrator<T>::integrateStep(int calcPot, | |
278 | int calcStress){ | |
279 | // Position full step, and velocity half step | |
280 | + | |
281 | + | #ifdef PROFILE |
282 | + | startProfile(pro3); |
283 | + | #endif //profile |
284 | + | |
285 | preMove(); | |
286 | ||
287 | + | #ifdef PROFILE |
288 | + | endProfile(pro3); |
289 | + | |
290 | + | startProfile(pro4); |
291 | + | #endif // profile |
292 | + | |
293 | moveA(); | |
294 | ||
295 | < | if (nConstrained){ |
296 | < | constrainA(); |
297 | < | } |
295 | > | #ifdef PROFILE |
296 | > | endProfile(pro4); |
297 | > | |
298 | > | startProfile(pro5); |
299 | > | #endif//profile |
300 | ||
301 | ||
302 | #ifdef IS_MPI | |
# | Line 270 | Line 314 | template<typename T> void Integrator<T>::integrateStep | |
314 | MPIcheckPoint(); | |
315 | #endif // is_mpi | |
316 | ||
317 | + | #ifdef PROFILE |
318 | + | endProfile( pro5 ); |
319 | ||
320 | + | startProfile( pro6 ); |
321 | + | #endif //profile |
322 | + | |
323 | // finish the velocity half step | |
324 | ||
325 | moveB(); | |
326 | ||
327 | < | if (nConstrained){ |
328 | < | constrainB(); |
329 | < | } |
327 | > | #ifdef PROFILE |
328 | > | endProfile(pro6); |
329 | > | #endif // profile |
330 | ||
331 | #ifdef IS_MPI | |
332 | strcpy(checkPointMsg, "Succesful moveB\n"); | |
# | Line 287 | Line 336 | template<typename T> void Integrator<T>::moveA(void){ | |
336 | ||
337 | ||
338 | template<typename T> void Integrator<T>::moveA(void){ | |
339 | < | int i, j; |
339 | > | size_t i, j; |
340 | DirectionalAtom* dAtom; | |
341 | double Tb[3], ji[3]; | |
293 | – | double A[3][3], I[3][3]; |
294 | – | double angle; |
342 | double vel[3], pos[3], frc[3]; | |
343 | double mass; | |
344 | + | |
345 | + | for (i = 0; i < integrableObjects.size() ; i++){ |
346 | + | integrableObjects[i]->getVel(vel); |
347 | + | integrableObjects[i]->getPos(pos); |
348 | + | integrableObjects[i]->getFrc(frc); |
349 | + | |
350 | + | mass = integrableObjects[i]->getMass(); |
351 | ||
298 | – | for (i = 0; i < nAtoms; i++){ |
299 | – | atoms[i]->getVel(vel); |
300 | – | atoms[i]->getPos(pos); |
301 | – | atoms[i]->getFrc(frc); |
302 | – | |
303 | – | mass = atoms[i]->getMass(); |
304 | – | |
352 | for (j = 0; j < 3; j++){ | |
353 | // velocity half step | |
354 | vel[j] += (dt2 * frc[j] / mass) * eConvert; | |
# | Line 309 | Line 356 | template<typename T> void Integrator<T>::moveA(void){ | |
356 | pos[j] += dt * vel[j]; | |
357 | } | |
358 | ||
359 | < | atoms[i]->setVel(vel); |
360 | < | atoms[i]->setPos(pos); |
359 | > | integrableObjects[i]->setVel(vel); |
360 | > | integrableObjects[i]->setPos(pos); |
361 | ||
362 | < | if (atoms[i]->isDirectional()){ |
316 | < | dAtom = (DirectionalAtom *) atoms[i]; |
362 | > | if (integrableObjects[i]->isDirectional()){ |
363 | ||
364 | // get and convert the torque to body frame | |
365 | ||
366 | < | dAtom->getTrq(Tb); |
367 | < | dAtom->lab2Body(Tb); |
366 | > | integrableObjects[i]->getTrq(Tb); |
367 | > | integrableObjects[i]->lab2Body(Tb); |
368 | ||
369 | // get the angular momentum, and propagate a half step | |
370 | ||
371 | < | dAtom->getJ(ji); |
371 | > | integrableObjects[i]->getJ(ji); |
372 | ||
373 | for (j = 0; j < 3; j++) | |
374 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
375 | ||
376 | < | // use the angular velocities to propagate the rotation matrix a |
331 | < | // full time step |
376 | > | this->rotationPropagation( integrableObjects[i], ji ); |
377 | ||
378 | < | dAtom->getA(A); |
334 | < | dAtom->getI(I); |
335 | < | |
336 | < | // rotate about the x-axis |
337 | < | angle = dt2 * ji[0] / I[0][0]; |
338 | < | this->rotate(1, 2, angle, ji, A); |
339 | < | |
340 | < | // rotate about the y-axis |
341 | < | angle = dt2 * ji[1] / I[1][1]; |
342 | < | this->rotate(2, 0, angle, ji, A); |
343 | < | |
344 | < | // rotate about the z-axis |
345 | < | angle = dt * ji[2] / I[2][2]; |
346 | < | this->rotate(0, 1, angle, ji, A); |
347 | < | |
348 | < | // rotate about the y-axis |
349 | < | angle = dt2 * ji[1] / I[1][1]; |
350 | < | this->rotate(2, 0, angle, ji, A); |
351 | < | |
352 | < | // rotate about the x-axis |
353 | < | angle = dt2 * ji[0] / I[0][0]; |
354 | < | this->rotate(1, 2, angle, ji, A); |
355 | < | |
356 | < | |
357 | < | dAtom->setJ(ji); |
358 | < | dAtom->setA(A); |
378 | > | integrableObjects[i]->setJ(ji); |
379 | } | |
380 | } | |
381 | + | |
382 | + | if (nConstrained){ |
383 | + | constrainA(); |
384 | + | } |
385 | } | |
386 | ||
387 | ||
388 | template<typename T> void Integrator<T>::moveB(void){ | |
389 | int i, j; | |
366 | – | DirectionalAtom* dAtom; |
390 | double Tb[3], ji[3]; | |
391 | double vel[3], frc[3]; | |
392 | double mass; | |
393 | ||
394 | < | for (i = 0; i < nAtoms; i++){ |
395 | < | atoms[i]->getVel(vel); |
396 | < | atoms[i]->getFrc(frc); |
394 | > | for (i = 0; i < integrableObjects.size(); i++){ |
395 | > | integrableObjects[i]->getVel(vel); |
396 | > | integrableObjects[i]->getFrc(frc); |
397 | ||
398 | < | mass = atoms[i]->getMass(); |
398 | > | mass = integrableObjects[i]->getMass(); |
399 | ||
400 | // velocity half step | |
401 | for (j = 0; j < 3; j++) | |
402 | vel[j] += (dt2 * frc[j] / mass) * eConvert; | |
403 | ||
404 | < | atoms[i]->setVel(vel); |
404 | > | integrableObjects[i]->setVel(vel); |
405 | ||
406 | < | if (atoms[i]->isDirectional()){ |
384 | < | dAtom = (DirectionalAtom *) atoms[i]; |
406 | > | if (integrableObjects[i]->isDirectional()){ |
407 | ||
408 | < | // get and convert the torque to body frame |
408 | > | // get and convert the torque to body frame |
409 | ||
410 | < | dAtom->getTrq(Tb); |
411 | < | dAtom->lab2Body(Tb); |
410 | > | integrableObjects[i]->getTrq(Tb); |
411 | > | integrableObjects[i]->lab2Body(Tb); |
412 | ||
413 | // get the angular momentum, and propagate a half step | |
414 | ||
415 | < | dAtom->getJ(ji); |
415 | > | integrableObjects[i]->getJ(ji); |
416 | ||
417 | for (j = 0; j < 3; j++) | |
418 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
419 | ||
420 | ||
421 | < | dAtom->setJ(ji); |
421 | > | integrableObjects[i]->setJ(ji); |
422 | } | |
423 | } | |
424 | + | |
425 | + | if (nConstrained){ |
426 | + | constrainB(); |
427 | + | } |
428 | } | |
429 | ||
430 | template<typename T> void Integrator<T>::preMove(void){ | |
# | Line 417 | Line 443 | template<typename T> void Integrator<T>::constrainA(){ | |
443 | } | |
444 | ||
445 | template<typename T> void Integrator<T>::constrainA(){ | |
446 | < | int i, j, k; |
446 | > | int i, j; |
447 | int done; | |
448 | double posA[3], posB[3]; | |
449 | double velA[3], velB[3]; | |
# | Line 557 | Line 583 | template<typename T> void Integrator<T>::constrainA(){ | |
583 | painCave.isFatal = 1; | |
584 | simError(); | |
585 | } | |
586 | + | |
587 | } | |
588 | ||
589 | template<typename T> void Integrator<T>::constrainB(void){ | |
590 | < | int i, j, k; |
590 | > | int i, j; |
591 | int done; | |
592 | double posA[3], posB[3]; | |
593 | double velA[3], velB[3]; | |
# | Line 569 | Line 596 | template<typename T> void Integrator<T>::constrainB(vo | |
596 | int a, b, ax, ay, az, bx, by, bz; | |
597 | double rma, rmb; | |
598 | double dx, dy, dz; | |
599 | < | double rabsq, pabsq, rvab; |
573 | < | double diffsq; |
599 | > | double rvab; |
600 | double gab; | |
601 | int iteration; | |
602 | ||
# | Line 660 | Line 686 | template<typename T> void Integrator<T>::constrainB(vo | |
686 | } | |
687 | } | |
688 | ||
689 | + | template<typename T> void Integrator<T>::rotationPropagation |
690 | + | ( StuntDouble* sd, double ji[3] ){ |
691 | + | |
692 | + | double angle; |
693 | + | double A[3][3], I[3][3]; |
694 | + | int i, j, k; |
695 | + | |
696 | + | // use the angular velocities to propagate the rotation matrix a |
697 | + | // full time step |
698 | + | |
699 | + | sd->getA(A); |
700 | + | sd->getI(I); |
701 | + | |
702 | + | if (sd->isLinear()) { |
703 | + | i = sd->linearAxis(); |
704 | + | j = (i+1)%3; |
705 | + | k = (i+2)%3; |
706 | + | |
707 | + | angle = dt2 * ji[j] / I[j][j]; |
708 | + | this->rotate( k, i, angle, ji, A ); |
709 | + | |
710 | + | angle = dt * ji[k] / I[k][k]; |
711 | + | this->rotate( i, j, angle, ji, A); |
712 | + | |
713 | + | angle = dt2 * ji[j] / I[j][j]; |
714 | + | this->rotate( k, i, angle, ji, A ); |
715 | + | |
716 | + | } else { |
717 | + | // rotate about the x-axis |
718 | + | angle = dt2 * ji[0] / I[0][0]; |
719 | + | this->rotate( 1, 2, angle, ji, A ); |
720 | + | |
721 | + | // rotate about the y-axis |
722 | + | angle = dt2 * ji[1] / I[1][1]; |
723 | + | this->rotate( 2, 0, angle, ji, A ); |
724 | + | |
725 | + | // rotate about the z-axis |
726 | + | angle = dt * ji[2] / I[2][2]; |
727 | + | this->rotate( 0, 1, angle, ji, A); |
728 | + | |
729 | + | // rotate about the y-axis |
730 | + | angle = dt2 * ji[1] / I[1][1]; |
731 | + | this->rotate( 2, 0, angle, ji, A ); |
732 | + | |
733 | + | // rotate about the x-axis |
734 | + | angle = dt2 * ji[0] / I[0][0]; |
735 | + | this->rotate( 1, 2, angle, ji, A ); |
736 | + | |
737 | + | } |
738 | + | sd->setA( A ); |
739 | + | } |
740 | + | |
741 | template<typename T> void Integrator<T>::rotate(int axes1, int axes2, | |
742 | double angle, double ji[3], | |
743 | double A[3][3]){ | |
# | Line 725 | Line 803 | template<typename T> void Integrator<T>::rotate(int ax | |
803 | } | |
804 | } | |
805 | ||
806 | < | // rotate the Rotation matrix acording to: |
806 | > | // rotate the Rotation matrix acording to: |
807 | // A[][] = A[][] * transpose(rot[][]) | |
808 | ||
809 | ||
# | Line 750 | Line 828 | template<typename T> void Integrator<T>::thermalize(){ | |
828 | template<typename T> void Integrator<T>::thermalize(){ | |
829 | tStats->velocitize(); | |
830 | } | |
831 | + | |
832 | + | template<typename T> double Integrator<T>::getConservedQuantity(void){ |
833 | + | return tStats->getTotalE(); |
834 | + | } |
835 | + | template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
836 | + | //By default, return a null string |
837 | + | //The reason we use string instead of char* is that if we use char*, we will |
838 | + | //return a pointer point to local variable which might cause problem |
839 | + | return string(); |
840 | + | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |