# | Line 1 | Line 1 | |
---|---|---|
1 | #include <iostream> | |
2 | < | #include <cstdlib> |
3 | < | #include <cmath> |
4 | < | |
2 | > | #include <stdlib.h> |
3 | > | #include <math.h> |
4 | > | #include "Rattle.hpp" |
5 | #ifdef IS_MPI | |
6 | #include "mpiSimulation.hpp" | |
7 | #include <unistd.h> | |
8 | #endif //is_mpi | |
9 | ||
10 | + | #ifdef PROFILE |
11 | + | #include "mdProfile.hpp" |
12 | + | #endif // profile |
13 | + | |
14 | #include "Integrator.hpp" | |
15 | #include "simError.h" | |
16 | ||
# | Line 25 | Line 29 | template<typename T> Integrator<T>::Integrator(SimInfo | |
29 | if (info->the_integrator != NULL){ | |
30 | delete info->the_integrator; | |
31 | } | |
28 | – | info->the_integrator = this; |
32 | ||
33 | nAtoms = info->n_atoms; | |
34 | + | integrableObjects = info->integrableObjects; |
35 | ||
36 | + | rattle = new RattleFramework(info); |
37 | + | |
38 | + | if(rattle == NULL){ |
39 | + | sprintf(painCave.errMsg, |
40 | + | "Integrator::Intergrator() Error: Memory allocation error for RattleFramework" ); |
41 | + | painCave.isFatal = 1; |
42 | + | simError(); |
43 | + | } |
44 | + | |
45 | + | /* |
46 | // check for constraints | |
47 | ||
48 | constrainedA = NULL; | |
# | Line 41 | Line 55 | template<typename T> Integrator<T>::Integrator(SimInfo | |
55 | nConstrained = 0; | |
56 | ||
57 | checkConstraints(); | |
58 | + | */ |
59 | } | |
60 | ||
61 | template<typename T> Integrator<T>::~Integrator(){ | |
62 | + | if (rattle != NULL) |
63 | + | delete rattle; |
64 | + | /* |
65 | if (nConstrained){ | |
66 | delete[] constrainedA; | |
67 | delete[] constrainedB; | |
# | Line 52 | Line 70 | template<typename T> Integrator<T>::~Integrator(){ | |
70 | delete[] moved; | |
71 | delete[] oldPos; | |
72 | } | |
73 | + | */ |
74 | } | |
75 | ||
76 | + | /* |
77 | template<typename T> void Integrator<T>::checkConstraints(void){ | |
78 | isConstrained = 0; | |
79 | ||
# | Line 65 | Line 85 | template<typename T> void Integrator<T>::checkConstrai | |
85 | ||
86 | SRI** theArray; | |
87 | for (int i = 0; i < nMols; i++){ | |
88 | < | theArray = (SRI * *) molecules[i].getMyBonds(); |
88 | > | |
89 | > | theArray = (SRI * *) molecules[i].getMyBonds(); |
90 | for (int j = 0; j < molecules[i].getNBonds(); j++){ | |
91 | constrained = theArray[j]->is_constrained(); | |
92 | ||
# | Line 111 | Line 132 | template<typename T> void Integrator<T>::checkConstrai | |
132 | } | |
133 | } | |
134 | ||
135 | + | |
136 | if (nConstrained > 0){ | |
137 | isConstrained = 1; | |
138 | ||
# | Line 132 | Line 154 | template<typename T> void Integrator<T>::checkConstrai | |
154 | } | |
155 | ||
156 | ||
157 | < | // save oldAtoms to check for lode balanceing later on. |
157 | > | // save oldAtoms to check for lode balancing later on. |
158 | ||
159 | oldAtoms = nAtoms; | |
160 | ||
# | Line 144 | Line 166 | template<typename T> void Integrator<T>::checkConstrai | |
166 | ||
167 | delete[] temp_con; | |
168 | } | |
169 | + | */ |
170 | ||
148 | – | |
171 | template<typename T> void Integrator<T>::integrate(void){ | |
150 | – | int i, j; // loop counters |
172 | ||
173 | double runTime = info->run_time; | |
174 | double sampleTime = info->sampleTime; | |
175 | double statusTime = info->statusTime; | |
176 | double thermalTime = info->thermalTime; | |
177 | + | double resetTime = info->resetTime; |
178 | ||
179 | + | double difference; |
180 | double currSample; | |
181 | double currThermal; | |
182 | double currStatus; | |
183 | + | double currReset; |
184 | ||
185 | int calcPot, calcStress; | |
162 | – | int isError; |
186 | ||
187 | tStats = new Thermo(info); | |
188 | statOut = new StatWriter(info); | |
189 | dumpOut = new DumpWriter(info); | |
190 | ||
191 | atoms = info->atoms; | |
169 | – | DirectionalAtom* dAtom; |
192 | ||
193 | dt = info->dt; | |
194 | dt2 = 0.5 * dt; | |
195 | ||
196 | + | readyCheck(); |
197 | + | |
198 | + | // remove center of mass drift velocity (in case we passed in a configuration |
199 | + | // that was drifting |
200 | + | tStats->removeCOMdrift(); |
201 | + | |
202 | + | // initialize the retraints if necessary |
203 | + | if (info->useSolidThermInt && !info->useLiquidThermInt) { |
204 | + | myFF->initRestraints(); |
205 | + | } |
206 | + | |
207 | // initialize the forces before the first step | |
208 | ||
209 | calcForce(1, 1); | |
210 | + | |
211 | + | //execute constraint algorithm to make sure at the very beginning the system is constrained |
212 | + | rattle->doPreConstraint(); |
213 | + | rattle->doRattleA(); |
214 | + | calcForce(1, 1); |
215 | + | rattle->doRattleB(); |
216 | ||
217 | if (info->setTemp){ | |
218 | thermalize(); | |
219 | } | |
220 | ||
182 | – | calcPot = 0; |
183 | – | calcStress = 0; |
184 | – | currSample = sampleTime; |
185 | – | currThermal = thermalTime; |
186 | – | currStatus = statusTime; |
187 | – | |
221 | calcPot = 0; | |
222 | calcStress = 0; | |
223 | currSample = sampleTime + info->getTime(); | |
224 | currThermal = thermalTime+ info->getTime(); | |
225 | currStatus = statusTime + info->getTime(); | |
226 | + | currReset = resetTime + info->getTime(); |
227 | ||
228 | dumpOut->writeDump(info->getTime()); | |
229 | statOut->writeStat(info->getTime()); | |
230 | ||
197 | – | readyCheck(); |
231 | ||
232 | #ifdef IS_MPI | |
233 | strcpy(checkPointMsg, "The integrator is ready to go."); | |
234 | MPIcheckPoint(); | |
235 | #endif // is_mpi | |
236 | ||
237 | < | while (info->getTime() < runTime){ |
238 | < | if ((info->getTime() + dt) >= currStatus){ |
237 | > | while (info->getTime() < runTime && !stopIntegrator()){ |
238 | > | difference = info->getTime() + dt - currStatus; |
239 | > | if (difference > 0 || fabs(difference) < 1e-4 ){ |
240 | calcPot = 1; | |
241 | calcStress = 1; | |
242 | } | |
243 | ||
244 | + | #ifdef PROFILE |
245 | + | startProfile( pro1 ); |
246 | + | #endif |
247 | + | |
248 | integrateStep(calcPot, calcStress); | |
249 | + | |
250 | + | #ifdef PROFILE |
251 | + | endProfile( pro1 ); |
252 | ||
253 | + | startProfile( pro2 ); |
254 | + | #endif // profile |
255 | + | |
256 | info->incrTime(dt); | |
257 | ||
258 | if (info->setTemp){ | |
# | Line 224 | Line 268 | template<typename T> void Integrator<T>::integrate(voi | |
268 | } | |
269 | ||
270 | if (info->getTime() >= currStatus){ | |
271 | < | statOut->writeStat(info->getTime()); |
272 | < | calcPot = 0; |
271 | > | statOut->writeStat(info->getTime()); |
272 | > | calcPot = 0; |
273 | calcStress = 0; | |
274 | currStatus += statusTime; | |
275 | < | } |
275 | > | } |
276 | ||
277 | + | if (info->resetIntegrator){ |
278 | + | if (info->getTime() >= currReset){ |
279 | + | this->resetIntegrator(); |
280 | + | currReset += resetTime; |
281 | + | } |
282 | + | } |
283 | + | |
284 | + | #ifdef PROFILE |
285 | + | endProfile( pro2 ); |
286 | + | #endif //profile |
287 | + | |
288 | #ifdef IS_MPI | |
289 | strcpy(checkPointMsg, "successfully took a time step."); | |
290 | MPIcheckPoint(); | |
291 | #endif // is_mpi | |
292 | } | |
293 | ||
294 | < | dumpOut->writeFinal(info->getTime()); |
294 | > | // dump out a file containing the omega values for the final configuration |
295 | > | if (info->useSolidThermInt && !info->useLiquidThermInt) |
296 | > | myFF->dumpzAngle(); |
297 | > | |
298 | ||
299 | delete dumpOut; | |
300 | delete statOut; | |
# | Line 245 | Line 303 | template<typename T> void Integrator<T>::integrateStep | |
303 | template<typename T> void Integrator<T>::integrateStep(int calcPot, | |
304 | int calcStress){ | |
305 | // Position full step, and velocity half step | |
248 | – | preMove(); |
306 | ||
307 | + | #ifdef PROFILE |
308 | + | startProfile(pro3); |
309 | + | #endif //profile |
310 | + | |
311 | + | //save old state (position, velocity etc) |
312 | + | rattle->doPreConstraint(); |
313 | + | |
314 | + | #ifdef PROFILE |
315 | + | endProfile(pro3); |
316 | + | |
317 | + | startProfile(pro4); |
318 | + | #endif // profile |
319 | + | |
320 | moveA(); | |
321 | ||
322 | < | if (nConstrained){ |
323 | < | constrainA(); |
324 | < | } |
322 | > | #ifdef PROFILE |
323 | > | endProfile(pro4); |
324 | > | |
325 | > | startProfile(pro5); |
326 | > | #endif//profile |
327 | ||
328 | ||
329 | #ifdef IS_MPI | |
# | Line 259 | Line 331 | template<typename T> void Integrator<T>::integrateStep | |
331 | MPIcheckPoint(); | |
332 | #endif // is_mpi | |
333 | ||
262 | – | |
334 | // calc forces | |
264 | – | |
335 | calcForce(calcPot, calcStress); | |
336 | ||
337 | #ifdef IS_MPI | |
# | Line 269 | Line 339 | template<typename T> void Integrator<T>::integrateStep | |
339 | MPIcheckPoint(); | |
340 | #endif // is_mpi | |
341 | ||
342 | + | #ifdef PROFILE |
343 | + | endProfile( pro5 ); |
344 | ||
345 | + | startProfile( pro6 ); |
346 | + | #endif //profile |
347 | + | |
348 | // finish the velocity half step | |
349 | ||
350 | moveB(); | |
351 | ||
352 | < | if (nConstrained){ |
353 | < | constrainB(); |
354 | < | } |
352 | > | #ifdef PROFILE |
353 | > | endProfile(pro6); |
354 | > | #endif // profile |
355 | ||
356 | #ifdef IS_MPI | |
357 | strcpy(checkPointMsg, "Succesful moveB\n"); | |
# | Line 286 | Line 361 | template<typename T> void Integrator<T>::moveA(void){ | |
361 | ||
362 | ||
363 | template<typename T> void Integrator<T>::moveA(void){ | |
364 | < | int i, j; |
364 | > | size_t i, j; |
365 | DirectionalAtom* dAtom; | |
366 | double Tb[3], ji[3]; | |
292 | – | double A[3][3], I[3][3]; |
293 | – | double angle; |
367 | double vel[3], pos[3], frc[3]; | |
368 | double mass; | |
369 | < | |
370 | < | for (i = 0; i < nAtoms; i++){ |
371 | < | atoms[i]->getVel(vel); |
372 | < | atoms[i]->getPos(pos); |
373 | < | atoms[i]->getFrc(frc); |
374 | < | |
375 | < | mass = atoms[i]->getMass(); |
369 | > | double omega; |
370 | > | |
371 | > | for (i = 0; i < integrableObjects.size() ; i++){ |
372 | > | integrableObjects[i]->getVel(vel); |
373 | > | integrableObjects[i]->getPos(pos); |
374 | > | integrableObjects[i]->getFrc(frc); |
375 | > | |
376 | > | mass = integrableObjects[i]->getMass(); |
377 | ||
378 | for (j = 0; j < 3; j++){ | |
379 | // velocity half step | |
# | Line 308 | Line 382 | template<typename T> void Integrator<T>::moveA(void){ | |
382 | pos[j] += dt * vel[j]; | |
383 | } | |
384 | ||
385 | < | atoms[i]->setVel(vel); |
386 | < | atoms[i]->setPos(pos); |
385 | > | integrableObjects[i]->setVel(vel); |
386 | > | integrableObjects[i]->setPos(pos); |
387 | ||
388 | < | if (atoms[i]->isDirectional()){ |
315 | < | dAtom = (DirectionalAtom *) atoms[i]; |
388 | > | if (integrableObjects[i]->isDirectional()){ |
389 | ||
390 | // get and convert the torque to body frame | |
391 | ||
392 | < | dAtom->getTrq(Tb); |
393 | < | dAtom->lab2Body(Tb); |
392 | > | integrableObjects[i]->getTrq(Tb); |
393 | > | integrableObjects[i]->lab2Body(Tb); |
394 | ||
395 | // get the angular momentum, and propagate a half step | |
396 | ||
397 | < | dAtom->getJ(ji); |
397 | > | integrableObjects[i]->getJ(ji); |
398 | ||
399 | for (j = 0; j < 3; j++) | |
400 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
401 | ||
402 | < | // use the angular velocities to propagate the rotation matrix a |
330 | < | // full time step |
402 | > | this->rotationPropagation( integrableObjects[i], ji ); |
403 | ||
404 | < | dAtom->getA(A); |
333 | < | dAtom->getI(I); |
334 | < | |
335 | < | // rotate about the x-axis |
336 | < | angle = dt2 * ji[0] / I[0][0]; |
337 | < | this->rotate(1, 2, angle, ji, A); |
338 | < | |
339 | < | // rotate about the y-axis |
340 | < | angle = dt2 * ji[1] / I[1][1]; |
341 | < | this->rotate(2, 0, angle, ji, A); |
342 | < | |
343 | < | // rotate about the z-axis |
344 | < | angle = dt * ji[2] / I[2][2]; |
345 | < | this->rotate(0, 1, angle, ji, A); |
346 | < | |
347 | < | // rotate about the y-axis |
348 | < | angle = dt2 * ji[1] / I[1][1]; |
349 | < | this->rotate(2, 0, angle, ji, A); |
350 | < | |
351 | < | // rotate about the x-axis |
352 | < | angle = dt2 * ji[0] / I[0][0]; |
353 | < | this->rotate(1, 2, angle, ji, A); |
354 | < | |
355 | < | |
356 | < | dAtom->setJ(ji); |
357 | < | dAtom->setA(A); |
404 | > | integrableObjects[i]->setJ(ji); |
405 | } | |
406 | } | |
407 | + | |
408 | + | rattle->doRattleA(); |
409 | } | |
410 | ||
411 | ||
412 | template<typename T> void Integrator<T>::moveB(void){ | |
413 | int i, j; | |
365 | – | DirectionalAtom* dAtom; |
414 | double Tb[3], ji[3]; | |
415 | double vel[3], frc[3]; | |
416 | double mass; | |
417 | ||
418 | < | for (i = 0; i < nAtoms; i++){ |
419 | < | atoms[i]->getVel(vel); |
420 | < | atoms[i]->getFrc(frc); |
418 | > | for (i = 0; i < integrableObjects.size(); i++){ |
419 | > | integrableObjects[i]->getVel(vel); |
420 | > | integrableObjects[i]->getFrc(frc); |
421 | ||
422 | < | mass = atoms[i]->getMass(); |
422 | > | mass = integrableObjects[i]->getMass(); |
423 | ||
424 | // velocity half step | |
425 | for (j = 0; j < 3; j++) | |
426 | vel[j] += (dt2 * frc[j] / mass) * eConvert; | |
427 | ||
428 | < | atoms[i]->setVel(vel); |
428 | > | integrableObjects[i]->setVel(vel); |
429 | ||
430 | < | if (atoms[i]->isDirectional()){ |
383 | < | dAtom = (DirectionalAtom *) atoms[i]; |
430 | > | if (integrableObjects[i]->isDirectional()){ |
431 | ||
432 | < | // get and convert the torque to body frame |
432 | > | // get and convert the torque to body frame |
433 | ||
434 | < | dAtom->getTrq(Tb); |
435 | < | dAtom->lab2Body(Tb); |
434 | > | integrableObjects[i]->getTrq(Tb); |
435 | > | integrableObjects[i]->lab2Body(Tb); |
436 | ||
437 | // get the angular momentum, and propagate a half step | |
438 | ||
439 | < | dAtom->getJ(ji); |
439 | > | integrableObjects[i]->getJ(ji); |
440 | ||
441 | for (j = 0; j < 3; j++) | |
442 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
443 | ||
444 | ||
445 | < | dAtom->setJ(ji); |
445 | > | integrableObjects[i]->setJ(ji); |
446 | } | |
447 | } | |
448 | + | |
449 | + | rattle->doRattleB(); |
450 | } | |
451 | ||
452 | + | /* |
453 | template<typename T> void Integrator<T>::preMove(void){ | |
454 | int i, j; | |
455 | double pos[3]; | |
# | Line 416 | Line 466 | template<typename T> void Integrator<T>::constrainA(){ | |
466 | } | |
467 | ||
468 | template<typename T> void Integrator<T>::constrainA(){ | |
469 | < | int i, j, k; |
469 | > | int i, j; |
470 | int done; | |
471 | double posA[3], posB[3]; | |
472 | double velA[3], velB[3]; | |
# | Line 556 | Line 606 | template<typename T> void Integrator<T>::constrainA(){ | |
606 | painCave.isFatal = 1; | |
607 | simError(); | |
608 | } | |
609 | + | |
610 | } | |
611 | ||
612 | template<typename T> void Integrator<T>::constrainB(void){ | |
613 | < | int i, j, k; |
613 | > | int i, j; |
614 | int done; | |
615 | double posA[3], posB[3]; | |
616 | double velA[3], velB[3]; | |
# | Line 568 | Line 619 | template<typename T> void Integrator<T>::constrainB(vo | |
619 | int a, b, ax, ay, az, bx, by, bz; | |
620 | double rma, rmb; | |
621 | double dx, dy, dz; | |
622 | < | double rabsq, pabsq, rvab; |
572 | < | double diffsq; |
622 | > | double rvab; |
623 | double gab; | |
624 | int iteration; | |
625 | ||
# | Line 658 | Line 708 | template<typename T> void Integrator<T>::constrainB(vo | |
708 | simError(); | |
709 | } | |
710 | } | |
711 | + | */ |
712 | + | template<typename T> void Integrator<T>::rotationPropagation |
713 | + | ( StuntDouble* sd, double ji[3] ){ |
714 | + | |
715 | + | double angle; |
716 | + | double A[3][3], I[3][3]; |
717 | + | int i, j, k; |
718 | + | |
719 | + | // use the angular velocities to propagate the rotation matrix a |
720 | + | // full time step |
721 | + | |
722 | + | sd->getA(A); |
723 | + | sd->getI(I); |
724 | ||
725 | + | if (sd->isLinear()) { |
726 | + | i = sd->linearAxis(); |
727 | + | j = (i+1)%3; |
728 | + | k = (i+2)%3; |
729 | + | |
730 | + | angle = dt2 * ji[j] / I[j][j]; |
731 | + | this->rotate( k, i, angle, ji, A ); |
732 | + | |
733 | + | angle = dt * ji[k] / I[k][k]; |
734 | + | this->rotate( i, j, angle, ji, A); |
735 | + | |
736 | + | angle = dt2 * ji[j] / I[j][j]; |
737 | + | this->rotate( k, i, angle, ji, A ); |
738 | + | |
739 | + | } else { |
740 | + | // rotate about the x-axis |
741 | + | angle = dt2 * ji[0] / I[0][0]; |
742 | + | this->rotate( 1, 2, angle, ji, A ); |
743 | + | |
744 | + | // rotate about the y-axis |
745 | + | angle = dt2 * ji[1] / I[1][1]; |
746 | + | this->rotate( 2, 0, angle, ji, A ); |
747 | + | |
748 | + | // rotate about the z-axis |
749 | + | angle = dt * ji[2] / I[2][2]; |
750 | + | sd->addZangle(angle); |
751 | + | this->rotate( 0, 1, angle, ji, A); |
752 | + | |
753 | + | // rotate about the y-axis |
754 | + | angle = dt2 * ji[1] / I[1][1]; |
755 | + | this->rotate( 2, 0, angle, ji, A ); |
756 | + | |
757 | + | // rotate about the x-axis |
758 | + | angle = dt2 * ji[0] / I[0][0]; |
759 | + | this->rotate( 1, 2, angle, ji, A ); |
760 | + | |
761 | + | } |
762 | + | sd->setA( A ); |
763 | + | } |
764 | + | |
765 | template<typename T> void Integrator<T>::rotate(int axes1, int axes2, | |
766 | double angle, double ji[3], | |
767 | double A[3][3]){ | |
# | Line 724 | Line 827 | template<typename T> void Integrator<T>::rotate(int ax | |
827 | } | |
828 | } | |
829 | ||
830 | < | // rotate the Rotation matrix acording to: |
830 | > | // rotate the Rotation matrix acording to: |
831 | // A[][] = A[][] * transpose(rot[][]) | |
832 | ||
833 | ||
# | Line 749 | Line 852 | template<typename T> void Integrator<T>::thermalize(){ | |
852 | template<typename T> void Integrator<T>::thermalize(){ | |
853 | tStats->velocitize(); | |
854 | } | |
855 | + | |
856 | + | template<typename T> double Integrator<T>::getConservedQuantity(void){ |
857 | + | return tStats->getTotalE(); |
858 | + | } |
859 | + | template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
860 | + | //By default, return a null string |
861 | + | //The reason we use string instead of char* is that if we use char*, we will |
862 | + | //return a pointer point to local variable which might cause problem |
863 | + | return string(); |
864 | + | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |