# | Line 11 | Line 11 | |
---|---|---|
11 | #include "simError.h" | |
12 | ||
13 | ||
14 | < | Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){ |
15 | < | |
14 | > | template<typename T> Integrator<T>::Integrator(SimInfo* theInfo, |
15 | > | ForceFields* the_ff){ |
16 | info = theInfo; | |
17 | myFF = the_ff; | |
18 | isFirst = 1; | |
# | Line 21 | Line 21 | Integrator::Integrator( SimInfo *theInfo, ForceFields* | |
21 | nMols = info->n_mol; | |
22 | ||
23 | // give a little love back to the SimInfo object | |
24 | – | |
25 | – | if( info->the_integrator != NULL ) delete info->the_integrator; |
26 | – | info->the_integrator = this; |
24 | ||
25 | + | if (info->the_integrator != NULL){ |
26 | + | delete info->the_integrator; |
27 | + | } |
28 | + | |
29 | nAtoms = info->n_atoms; | |
30 | ||
30 | – | std::cerr << "integ nAtoms = " << nAtoms << "\n"; |
31 | – | |
31 | // check for constraints | |
32 | < | |
33 | < | constrainedA = NULL; |
34 | < | constrainedB = NULL; |
32 | > | |
33 | > | constrainedA = NULL; |
34 | > | constrainedB = NULL; |
35 | constrainedDsqr = NULL; | |
36 | < | moving = NULL; |
37 | < | moved = NULL; |
38 | < | oldPos = NULL; |
39 | < | |
36 | > | moving = NULL; |
37 | > | moved = NULL; |
38 | > | oldPos = NULL; |
39 | > | |
40 | nConstrained = 0; | |
41 | ||
42 | checkConstraints(); | |
43 | } | |
44 | ||
45 | < | Integrator::~Integrator() { |
46 | < | |
48 | < | if( nConstrained ){ |
45 | > | template<typename T> Integrator<T>::~Integrator(){ |
46 | > | if (nConstrained){ |
47 | delete[] constrainedA; | |
48 | delete[] constrainedB; | |
49 | delete[] constrainedDsqr; | |
# | Line 53 | Line 51 | Integrator::~Integrator() { | |
51 | delete[] moved; | |
52 | delete[] oldPos; | |
53 | } | |
56 | – | |
54 | } | |
55 | ||
56 | < | void Integrator::checkConstraints( void ){ |
60 | < | |
61 | < | |
56 | > | template<typename T> void Integrator<T>::checkConstraints(void){ |
57 | isConstrained = 0; | |
58 | ||
59 | < | Constraint *temp_con; |
60 | < | Constraint *dummy_plug; |
59 | > | Constraint* temp_con; |
60 | > | Constraint* dummy_plug; |
61 | temp_con = new Constraint[info->n_SRI]; | |
62 | nConstrained = 0; | |
63 | int constrained = 0; | |
64 | < | |
64 | > | |
65 | SRI** theArray; | |
66 | < | for(int i = 0; i < nMols; i++){ |
67 | < | |
68 | < | theArray = (SRI**) molecules[i].getMyBonds(); |
74 | < | for(int j=0; j<molecules[i].getNBonds(); j++){ |
75 | < | |
66 | > | for (int i = 0; i < nMols; i++){ |
67 | > | theArray = (SRI * *) molecules[i].getMyBonds(); |
68 | > | for (int j = 0; j < molecules[i].getNBonds(); j++){ |
69 | constrained = theArray[j]->is_constrained(); | |
70 | ||
71 | < | std::cerr << "Is the folowing bond constrained \n"; |
72 | < | theArray[j]->printMe(); |
73 | < | |
74 | < | if(constrained){ |
75 | < | |
83 | < | std::cerr << "Yes\n"; |
71 | > | if (constrained){ |
72 | > | dummy_plug = theArray[j]->get_constraint(); |
73 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
74 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
75 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
76 | ||
77 | < | dummy_plug = theArray[j]->get_constraint(); |
78 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
79 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
88 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
89 | < | |
90 | < | nConstrained++; |
91 | < | constrained = 0; |
92 | < | } |
93 | < | else std::cerr << "No.\n"; |
77 | > | nConstrained++; |
78 | > | constrained = 0; |
79 | > | } |
80 | } | |
81 | ||
82 | < | theArray = (SRI**) molecules[i].getMyBends(); |
83 | < | for(int j=0; j<molecules[i].getNBends(); j++){ |
98 | < | |
82 | > | theArray = (SRI * *) molecules[i].getMyBends(); |
83 | > | for (int j = 0; j < molecules[i].getNBends(); j++){ |
84 | constrained = theArray[j]->is_constrained(); | |
85 | < | |
86 | < | if(constrained){ |
87 | < | |
88 | < | dummy_plug = theArray[j]->get_constraint(); |
89 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
90 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
91 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
92 | < | |
93 | < | nConstrained++; |
109 | < | constrained = 0; |
85 | > | |
86 | > | if (constrained){ |
87 | > | dummy_plug = theArray[j]->get_constraint(); |
88 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
89 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
90 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
91 | > | |
92 | > | nConstrained++; |
93 | > | constrained = 0; |
94 | } | |
95 | } | |
96 | ||
97 | < | theArray = (SRI**) molecules[i].getMyTorsions(); |
98 | < | for(int j=0; j<molecules[i].getNTorsions(); j++){ |
115 | < | |
97 | > | theArray = (SRI * *) molecules[i].getMyTorsions(); |
98 | > | for (int j = 0; j < molecules[i].getNTorsions(); j++){ |
99 | constrained = theArray[j]->is_constrained(); | |
100 | < | |
101 | < | if(constrained){ |
102 | < | |
103 | < | dummy_plug = theArray[j]->get_constraint(); |
104 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
105 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
106 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
107 | < | |
108 | < | nConstrained++; |
126 | < | constrained = 0; |
100 | > | |
101 | > | if (constrained){ |
102 | > | dummy_plug = theArray[j]->get_constraint(); |
103 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
104 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
105 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
106 | > | |
107 | > | nConstrained++; |
108 | > | constrained = 0; |
109 | } | |
110 | } | |
111 | } | |
112 | ||
113 | < | if(nConstrained > 0){ |
132 | < | |
113 | > | if (nConstrained > 0){ |
114 | isConstrained = 1; | |
115 | ||
116 | < | if(constrainedA != NULL ) delete[] constrainedA; |
117 | < | if(constrainedB != NULL ) delete[] constrainedB; |
118 | < | if(constrainedDsqr != NULL ) delete[] constrainedDsqr; |
116 | > | if (constrainedA != NULL) |
117 | > | delete[] constrainedA; |
118 | > | if (constrainedB != NULL) |
119 | > | delete[] constrainedB; |
120 | > | if (constrainedDsqr != NULL) |
121 | > | delete[] constrainedDsqr; |
122 | ||
123 | < | constrainedA = new int[nConstrained]; |
124 | < | constrainedB = new int[nConstrained]; |
123 | > | constrainedA = new int[nConstrained]; |
124 | > | constrainedB = new int[nConstrained]; |
125 | constrainedDsqr = new double[nConstrained]; | |
126 | < | |
127 | < | for( int i = 0; i < nConstrained; i++){ |
144 | < | |
126 | > | |
127 | > | for (int i = 0; i < nConstrained; i++){ |
128 | constrainedA[i] = temp_con[i].get_a(); | |
129 | constrainedB[i] = temp_con[i].get_b(); | |
130 | constrainedDsqr[i] = temp_con[i].get_dsqr(); | |
148 | – | |
131 | } | |
132 | ||
133 | < | |
133 | > | |
134 | // save oldAtoms to check for lode balanceing later on. | |
135 | < | |
135 | > | |
136 | oldAtoms = nAtoms; | |
137 | < | |
137 | > | |
138 | moving = new int[nAtoms]; | |
139 | < | moved = new int[nAtoms]; |
139 | > | moved = new int[nAtoms]; |
140 | ||
141 | < | oldPos = new double[nAtoms*3]; |
141 | > | oldPos = new double[nAtoms * 3]; |
142 | } | |
143 | < | |
143 | > | |
144 | delete[] temp_con; | |
145 | } | |
146 | ||
147 | ||
148 | < | void Integrator::integrate( void ){ |
148 | > | template<typename T> void Integrator<T>::integrate(void){ |
149 | ||
150 | < | int i, j; // loop counters |
151 | < | |
152 | < | double runTime = info->run_time; |
171 | < | double sampleTime = info->sampleTime; |
172 | < | double statusTime = info->statusTime; |
150 | > | double runTime = info->run_time; |
151 | > | double sampleTime = info->sampleTime; |
152 | > | double statusTime = info->statusTime; |
153 | double thermalTime = info->thermalTime; | |
154 | + | double resetTime = info->resetTime; |
155 | ||
156 | + | |
157 | double currSample; | |
158 | double currThermal; | |
159 | double currStatus; | |
160 | < | double currTime; |
161 | < | |
160 | > | double currReset; |
161 | > | |
162 | int calcPot, calcStress; | |
181 | – | int isError; |
163 | ||
164 | < | tStats = new Thermo( info ); |
165 | < | statOut = new StatWriter( info ); |
166 | < | dumpOut = new DumpWriter( info ); |
164 | > | tStats = new Thermo(info); |
165 | > | statOut = new StatWriter(info); |
166 | > | dumpOut = new DumpWriter(info); |
167 | ||
168 | atoms = info->atoms; | |
188 | – | DirectionalAtom* dAtom; |
169 | ||
170 | dt = info->dt; | |
171 | dt2 = 0.5 * dt; | |
172 | ||
173 | + | readyCheck(); |
174 | + | |
175 | // initialize the forces before the first step | |
176 | ||
177 | < | myFF->doForces(1,1); |
178 | < | |
179 | < | if( info->setTemp ){ |
180 | < | |
181 | < | tStats->velocitize(); |
177 | > | calcForce(1, 1); |
178 | > | |
179 | > | if (nConstrained){ |
180 | > | preMove(); |
181 | > | constrainA(); |
182 | > | calcForce(1, 1); |
183 | > | constrainB(); |
184 | } | |
185 | ||
186 | < | dumpOut->writeDump( 0.0 ); |
187 | < | statOut->writeStat( 0.0 ); |
188 | < | |
186 | > | if (info->setTemp){ |
187 | > | thermalize(); |
188 | > | } |
189 | > | |
190 | calcPot = 0; | |
191 | calcStress = 0; | |
192 | < | currSample = sampleTime; |
193 | < | currThermal = thermalTime; |
194 | < | currStatus = statusTime; |
195 | < | currTime = 0.0;; |
192 | > | currSample = sampleTime + info->getTime(); |
193 | > | currThermal = thermalTime+ info->getTime(); |
194 | > | currStatus = statusTime + info->getTime(); |
195 | > | currReset = resetTime + info->getTime(); |
196 | ||
197 | + | dumpOut->writeDump(info->getTime()); |
198 | + | statOut->writeStat(info->getTime()); |
199 | ||
213 | – | readyCheck(); |
200 | ||
201 | + | |
202 | #ifdef IS_MPI | |
203 | < | strcpy( checkPointMsg, |
217 | < | "The integrator is ready to go." ); |
203 | > | strcpy(checkPointMsg, "The integrator is ready to go."); |
204 | MPIcheckPoint(); | |
205 | #endif // is_mpi | |
206 | ||
207 | < | while( currTime < runTime ){ |
208 | < | |
223 | < | if( (currTime+dt) >= currStatus ){ |
207 | > | while (info->getTime() < runTime){ |
208 | > | if ((info->getTime() + dt) >= currStatus){ |
209 | calcPot = 1; | |
210 | calcStress = 1; | |
211 | } | |
212 | ||
213 | < | std::cerr << currTime << "\n"; |
213 | > | integrateStep(calcPot, calcStress); |
214 | ||
215 | < | integrateStep( calcPot, calcStress ); |
231 | < | |
232 | < | currTime += dt; |
215 | > | info->incrTime(dt); |
216 | ||
217 | < | if( info->setTemp ){ |
218 | < | if( currTime >= currThermal ){ |
219 | < | tStats->velocitize(); |
220 | < | currThermal += thermalTime; |
217 | > | if (info->setTemp){ |
218 | > | if (info->getTime() >= currThermal){ |
219 | > | thermalize(); |
220 | > | currThermal += thermalTime; |
221 | } | |
222 | } | |
223 | ||
224 | < | if( currTime >= currSample ){ |
225 | < | dumpOut->writeDump( currTime ); |
224 | > | if (info->getTime() >= currSample){ |
225 | > | dumpOut->writeDump(info->getTime()); |
226 | currSample += sampleTime; | |
227 | } | |
228 | ||
229 | < | if( currTime >= currStatus ){ |
230 | < | statOut->writeStat( currTime ); |
229 | > | if (info->getTime() >= currStatus){ |
230 | > | statOut->writeStat(info->getTime()); |
231 | calcPot = 0; | |
232 | calcStress = 0; | |
233 | currStatus += statusTime; | |
234 | } | |
235 | ||
236 | + | if (info->resetIntegrator){ |
237 | + | if (info->getTime() >= currReset){ |
238 | + | this->resetIntegrator(); |
239 | + | currReset += resetTime; |
240 | + | } |
241 | + | } |
242 | + | |
243 | #ifdef IS_MPI | |
244 | < | strcpy( checkPointMsg, |
255 | < | "successfully took a time step." ); |
244 | > | strcpy(checkPointMsg, "successfully took a time step."); |
245 | MPIcheckPoint(); | |
246 | #endif // is_mpi | |
258 | – | |
247 | } | |
248 | ||
249 | < | dumpOut->writeFinal(currTime); |
249 | > | dumpOut->writeFinal(info->getTime()); |
250 | ||
251 | delete dumpOut; | |
252 | delete statOut; | |
253 | } | |
254 | ||
255 | < | void Integrator::integrateStep( int calcPot, int calcStress ){ |
256 | < | |
269 | < | |
270 | < | |
255 | > | template<typename T> void Integrator<T>::integrateStep(int calcPot, |
256 | > | int calcStress){ |
257 | // Position full step, and velocity half step | |
272 | – | |
258 | preMove(); | |
259 | + | |
260 | moveA(); | |
275 | – | if( nConstrained ) constrainA(); |
261 | ||
262 | + | |
263 | + | |
264 | + | |
265 | + | #ifdef IS_MPI |
266 | + | strcpy(checkPointMsg, "Succesful moveA\n"); |
267 | + | MPIcheckPoint(); |
268 | + | #endif // is_mpi |
269 | + | |
270 | + | |
271 | // calc forces | |
272 | ||
273 | < | myFF->doForces(calcPot,calcStress); |
273 | > | calcForce(calcPot, calcStress); |
274 | ||
275 | + | #ifdef IS_MPI |
276 | + | strcpy(checkPointMsg, "Succesful doForces\n"); |
277 | + | MPIcheckPoint(); |
278 | + | #endif // is_mpi |
279 | + | |
280 | + | |
281 | // finish the velocity half step | |
282 | < | |
282 | > | |
283 | moveB(); | |
284 | < | if( nConstrained ) constrainB(); |
285 | < | |
284 | > | |
285 | > | |
286 | > | |
287 | > | #ifdef IS_MPI |
288 | > | strcpy(checkPointMsg, "Succesful moveB\n"); |
289 | > | MPIcheckPoint(); |
290 | > | #endif // is_mpi |
291 | } | |
292 | ||
293 | ||
294 | < | void Integrator::moveA( void ){ |
290 | < | |
294 | > | template<typename T> void Integrator<T>::moveA(void){ |
295 | int i, j; | |
296 | DirectionalAtom* dAtom; | |
297 | double Tb[3], ji[3]; | |
294 | – | double A[3][3], I[3][3]; |
295 | – | double angle; |
298 | double vel[3], pos[3], frc[3]; | |
299 | double mass; | |
300 | ||
301 | < | for( i=0; i<nAtoms; i++ ){ |
301 | > | for (i = 0; i < nAtoms; i++){ |
302 | > | atoms[i]->getVel(vel); |
303 | > | atoms[i]->getPos(pos); |
304 | > | atoms[i]->getFrc(frc); |
305 | ||
301 | – | atoms[i]->getVel( vel ); |
302 | – | atoms[i]->getPos( pos ); |
303 | – | atoms[i]->getFrc( frc ); |
304 | – | |
306 | mass = atoms[i]->getMass(); | |
307 | ||
308 | < | for (j=0; j < 3; j++) { |
308 | > | for (j = 0; j < 3; j++){ |
309 | // velocity half step | |
310 | < | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
310 | > | vel[j] += (dt2 * frc[j] / mass) * eConvert; |
311 | // position whole step | |
312 | pos[j] += dt * vel[j]; | |
313 | } | |
314 | ||
315 | < | atoms[i]->setVel( vel ); |
316 | < | atoms[i]->setPos( pos ); |
315 | > | atoms[i]->setVel(vel); |
316 | > | atoms[i]->setPos(pos); |
317 | ||
318 | < | if( atoms[i]->isDirectional() ){ |
318 | > | if (atoms[i]->isDirectional()){ |
319 | > | dAtom = (DirectionalAtom *) atoms[i]; |
320 | ||
319 | – | dAtom = (DirectionalAtom *)atoms[i]; |
320 | – | |
321 | // get and convert the torque to body frame | |
322 | – | |
323 | – | dAtom->getTrq( Tb ); |
324 | – | dAtom->lab2Body( Tb ); |
322 | ||
323 | + | dAtom->getTrq(Tb); |
324 | + | dAtom->lab2Body(Tb); |
325 | + | |
326 | // get the angular momentum, and propagate a half step | |
327 | ||
328 | < | dAtom->getJ( ji ); |
328 | > | dAtom->getJ(ji); |
329 | ||
330 | < | for (j=0; j < 3; j++) |
330 | > | for (j = 0; j < 3; j++) |
331 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
332 | – | |
333 | – | // use the angular velocities to propagate the rotation matrix a |
334 | – | // full time step |
332 | ||
333 | < | dAtom->getA(A); |
337 | < | dAtom->getI(I); |
338 | < | |
339 | < | // rotate about the x-axis |
340 | < | angle = dt2 * ji[0] / I[0][0]; |
341 | < | this->rotate( 1, 2, angle, ji, A ); |
333 | > | this->rotationPropagation( dAtom, ji ); |
334 | ||
335 | < | // rotate about the y-axis |
336 | < | angle = dt2 * ji[1] / I[1][1]; |
337 | < | this->rotate( 2, 0, angle, ji, A ); |
346 | < | |
347 | < | // rotate about the z-axis |
348 | < | angle = dt * ji[2] / I[2][2]; |
349 | < | this->rotate( 0, 1, angle, ji, A); |
350 | < | |
351 | < | // rotate about the y-axis |
352 | < | angle = dt2 * ji[1] / I[1][1]; |
353 | < | this->rotate( 2, 0, angle, ji, A ); |
354 | < | |
355 | < | // rotate about the x-axis |
356 | < | angle = dt2 * ji[0] / I[0][0]; |
357 | < | this->rotate( 1, 2, angle, ji, A ); |
358 | < | |
335 | > | dAtom->setJ(ji); |
336 | > | } |
337 | > | } |
338 | ||
339 | < | dAtom->setJ( ji ); |
340 | < | dAtom->setA( A ); |
362 | < | |
363 | < | } |
339 | > | if (nConstrained){ |
340 | > | constrainA(); |
341 | } | |
342 | } | |
343 | ||
344 | ||
345 | < | void Integrator::moveB( void ){ |
345 | > | template<typename T> void Integrator<T>::moveB(void){ |
346 | int i, j; | |
347 | DirectionalAtom* dAtom; | |
348 | double Tb[3], ji[3]; | |
349 | double vel[3], frc[3]; | |
350 | double mass; | |
351 | ||
352 | < | for( i=0; i<nAtoms; i++ ){ |
353 | < | |
354 | < | atoms[i]->getVel( vel ); |
378 | < | atoms[i]->getFrc( frc ); |
352 | > | for (i = 0; i < nAtoms; i++){ |
353 | > | atoms[i]->getVel(vel); |
354 | > | atoms[i]->getFrc(frc); |
355 | ||
356 | mass = atoms[i]->getMass(); | |
357 | ||
358 | // velocity half step | |
359 | < | for (j=0; j < 3; j++) |
360 | < | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
385 | < | |
386 | < | atoms[i]->setVel( vel ); |
387 | < | |
388 | < | if( atoms[i]->isDirectional() ){ |
359 | > | for (j = 0; j < 3; j++) |
360 | > | vel[j] += (dt2 * frc[j] / mass) * eConvert; |
361 | ||
362 | < | dAtom = (DirectionalAtom *)atoms[i]; |
362 | > | atoms[i]->setVel(vel); |
363 | ||
364 | + | if (atoms[i]->isDirectional()){ |
365 | + | dAtom = (DirectionalAtom *) atoms[i]; |
366 | + | |
367 | // get and convert the torque to body frame | |
368 | ||
369 | < | dAtom->getTrq( Tb ); |
370 | < | dAtom->lab2Body( Tb ); |
369 | > | dAtom->getTrq(Tb); |
370 | > | dAtom->lab2Body(Tb); |
371 | ||
372 | // get the angular momentum, and propagate a half step | |
373 | ||
374 | < | dAtom->getJ( ji ); |
374 | > | dAtom->getJ(ji); |
375 | ||
376 | < | for (j=0; j < 3; j++) |
376 | > | for (j = 0; j < 3; j++) |
377 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
403 | – | |
378 | ||
379 | < | dAtom->setJ( ji ); |
379 | > | |
380 | > | dAtom->setJ(ji); |
381 | } | |
382 | } | |
383 | + | |
384 | + | if (nConstrained){ |
385 | + | constrainB(); |
386 | + | } |
387 | } | |
388 | ||
389 | < | void Integrator::preMove( void ){ |
389 | > | template<typename T> void Integrator<T>::preMove(void){ |
390 | int i, j; | |
391 | double pos[3]; | |
392 | ||
393 | < | if( nConstrained ){ |
393 | > | if (nConstrained){ |
394 | > | for (i = 0; i < nAtoms; i++){ |
395 | > | atoms[i]->getPos(pos); |
396 | ||
397 | < | for(i=0; i < nAtoms; i++) { |
398 | < | |
418 | < | atoms[i]->getPos( pos ); |
419 | < | |
420 | < | for (j = 0; j < 3; j++) { |
421 | < | oldPos[3*i + j] = pos[j]; |
397 | > | for (j = 0; j < 3; j++){ |
398 | > | oldPos[3 * i + j] = pos[j]; |
399 | } | |
423 | – | |
400 | } | |
401 | < | } |
401 | > | } |
402 | } | |
403 | ||
404 | < | void Integrator::constrainA(){ |
405 | < | |
430 | < | int i,j,k; |
404 | > | template<typename T> void Integrator<T>::constrainA(){ |
405 | > | int i, j; |
406 | int done; | |
407 | double posA[3], posB[3]; | |
408 | double velA[3], velB[3]; | |
# | Line 442 | Line 417 | void Integrator::constrainA(){ | |
417 | double gab; | |
418 | int iteration; | |
419 | ||
420 | < | for( i=0; i<nAtoms; i++){ |
420 | > | for (i = 0; i < nAtoms; i++){ |
421 | moving[i] = 0; | |
422 | < | moved[i] = 1; |
422 | > | moved[i] = 1; |
423 | } | |
424 | ||
425 | iteration = 0; | |
426 | done = 0; | |
427 | < | while( !done && (iteration < maxIteration )){ |
428 | < | |
429 | < | done = 1; |
455 | < | for(i=0; i<nConstrained; i++){ |
456 | < | |
427 | > | while (!done && (iteration < maxIteration)){ |
428 | > | done = 1; |
429 | > | for (i = 0; i < nConstrained; i++){ |
430 | a = constrainedA[i]; | |
431 | b = constrainedB[i]; | |
459 | – | |
460 | – | ax = (a*3) + 0; |
461 | – | ay = (a*3) + 1; |
462 | – | az = (a*3) + 2; |
432 | ||
433 | < | bx = (b*3) + 0; |
434 | < | by = (b*3) + 1; |
435 | < | bz = (b*3) + 2; |
433 | > | ax = (a * 3) + 0; |
434 | > | ay = (a * 3) + 1; |
435 | > | az = (a * 3) + 2; |
436 | ||
437 | < | if( moved[a] || moved[b] ){ |
438 | < | |
439 | < | atoms[a]->getPos( posA ); |
440 | < | atoms[b]->getPos( posB ); |
441 | < | |
442 | < | for (j = 0; j < 3; j++ ) |
437 | > | bx = (b * 3) + 0; |
438 | > | by = (b * 3) + 1; |
439 | > | bz = (b * 3) + 2; |
440 | > | |
441 | > | if (moved[a] || moved[b]){ |
442 | > | atoms[a]->getPos(posA); |
443 | > | atoms[b]->getPos(posB); |
444 | > | |
445 | > | for (j = 0; j < 3; j++) |
446 | pab[j] = posA[j] - posB[j]; | |
475 | – | |
476 | – | //periodic boundary condition |
447 | ||
448 | < | info->wrapVector( pab ); |
448 | > | //periodic boundary condition |
449 | ||
450 | < | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
450 | > | info->wrapVector(pab); |
451 | ||
452 | < | rabsq = constrainedDsqr[i]; |
483 | < | diffsq = rabsq - pabsq; |
452 | > | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
453 | ||
454 | < | // the original rattle code from alan tidesley |
455 | < | if (fabs(diffsq) > (tol*rabsq*2)) { |
487 | < | rab[0] = oldPos[ax] - oldPos[bx]; |
488 | < | rab[1] = oldPos[ay] - oldPos[by]; |
489 | < | rab[2] = oldPos[az] - oldPos[bz]; |
454 | > | rabsq = constrainedDsqr[i]; |
455 | > | diffsq = rabsq - pabsq; |
456 | ||
457 | < | info->wrapVector( rab ); |
457 | > | // the original rattle code from alan tidesley |
458 | > | if (fabs(diffsq) > (tol * rabsq * 2)){ |
459 | > | rab[0] = oldPos[ax] - oldPos[bx]; |
460 | > | rab[1] = oldPos[ay] - oldPos[by]; |
461 | > | rab[2] = oldPos[az] - oldPos[bz]; |
462 | ||
463 | < | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
463 | > | info->wrapVector(rab); |
464 | ||
465 | < | rpabsq = rpab * rpab; |
465 | > | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
466 | ||
467 | + | rpabsq = rpab * rpab; |
468 | ||
498 | – | if (rpabsq < (rabsq * -diffsq)){ |
469 | ||
470 | + | if (rpabsq < (rabsq * -diffsq)){ |
471 | #ifdef IS_MPI | |
472 | < | a = atoms[a]->getGlobalIndex(); |
473 | < | b = atoms[b]->getGlobalIndex(); |
472 | > | a = atoms[a]->getGlobalIndex(); |
473 | > | b = atoms[b]->getGlobalIndex(); |
474 | #endif //is_mpi | |
475 | < | sprintf( painCave.errMsg, |
476 | < | "Constraint failure in constrainA at atom %d and %d.\n", |
477 | < | a, b ); |
478 | < | painCave.isFatal = 1; |
479 | < | simError(); |
480 | < | } |
475 | > | sprintf(painCave.errMsg, |
476 | > | "Constraint failure in constrainA at atom %d and %d.\n", a, |
477 | > | b); |
478 | > | painCave.isFatal = 1; |
479 | > | simError(); |
480 | > | } |
481 | ||
482 | < | rma = 1.0 / atoms[a]->getMass(); |
483 | < | rmb = 1.0 / atoms[b]->getMass(); |
482 | > | rma = 1.0 / atoms[a]->getMass(); |
483 | > | rmb = 1.0 / atoms[b]->getMass(); |
484 | ||
485 | < | gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); |
485 | > | gab = diffsq / (2.0 * (rma + rmb) * rpab); |
486 | ||
487 | dx = rab[0] * gab; | |
488 | dy = rab[1] * gab; | |
489 | dz = rab[2] * gab; | |
490 | ||
491 | < | posA[0] += rma * dx; |
492 | < | posA[1] += rma * dy; |
493 | < | posA[2] += rma * dz; |
491 | > | posA[0] += rma * dx; |
492 | > | posA[1] += rma * dy; |
493 | > | posA[2] += rma * dz; |
494 | ||
495 | < | atoms[a]->setPos( posA ); |
495 | > | atoms[a]->setPos(posA); |
496 | ||
497 | < | posB[0] -= rmb * dx; |
498 | < | posB[1] -= rmb * dy; |
499 | < | posB[2] -= rmb * dz; |
497 | > | posB[0] -= rmb * dx; |
498 | > | posB[1] -= rmb * dy; |
499 | > | posB[2] -= rmb * dz; |
500 | ||
501 | < | atoms[b]->setPos( posB ); |
501 | > | atoms[b]->setPos(posB); |
502 | ||
503 | dx = dx / dt; | |
504 | dy = dy / dt; | |
505 | dz = dz / dt; | |
506 | ||
507 | < | atoms[a]->getVel( velA ); |
507 | > | atoms[a]->getVel(velA); |
508 | ||
509 | < | velA[0] += rma * dx; |
510 | < | velA[1] += rma * dy; |
511 | < | velA[2] += rma * dz; |
509 | > | velA[0] += rma * dx; |
510 | > | velA[1] += rma * dy; |
511 | > | velA[2] += rma * dz; |
512 | ||
513 | < | atoms[a]->setVel( velA ); |
513 | > | atoms[a]->setVel(velA); |
514 | ||
515 | < | atoms[b]->getVel( velB ); |
515 | > | atoms[b]->getVel(velB); |
516 | ||
517 | < | velB[0] -= rmb * dx; |
518 | < | velB[1] -= rmb * dy; |
519 | < | velB[2] -= rmb * dz; |
517 | > | velB[0] -= rmb * dx; |
518 | > | velB[1] -= rmb * dy; |
519 | > | velB[2] -= rmb * dz; |
520 | ||
521 | < | atoms[b]->setVel( velB ); |
521 | > | atoms[b]->setVel(velB); |
522 | ||
523 | < | moving[a] = 1; |
524 | < | moving[b] = 1; |
525 | < | done = 0; |
526 | < | } |
523 | > | moving[a] = 1; |
524 | > | moving[b] = 1; |
525 | > | done = 0; |
526 | > | } |
527 | } | |
528 | } | |
529 | < | |
530 | < | for(i=0; i<nAtoms; i++){ |
560 | < | |
529 | > | |
530 | > | for (i = 0; i < nAtoms; i++){ |
531 | moved[i] = moving[i]; | |
532 | moving[i] = 0; | |
533 | } | |
# | Line 565 | Line 535 | void Integrator::constrainA(){ | |
535 | iteration++; | |
536 | } | |
537 | ||
538 | < | if( !done ){ |
539 | < | |
540 | < | sprintf( painCave.errMsg, |
541 | < | "Constraint failure in constrainA, too many iterations: %d\n", |
572 | < | iteration ); |
538 | > | if (!done){ |
539 | > | sprintf(painCave.errMsg, |
540 | > | "Constraint failure in constrainA, too many iterations: %d\n", |
541 | > | iteration); |
542 | painCave.isFatal = 1; | |
543 | simError(); | |
544 | } | |
545 | ||
546 | } | |
547 | ||
548 | < | void Integrator::constrainB( void ){ |
549 | < | |
581 | < | int i,j,k; |
548 | > | template<typename T> void Integrator<T>::constrainB(void){ |
549 | > | int i, j; |
550 | int done; | |
551 | double posA[3], posB[3]; | |
552 | double velA[3], velB[3]; | |
# | Line 587 | Line 555 | void Integrator::constrainB( void ){ | |
555 | int a, b, ax, ay, az, bx, by, bz; | |
556 | double rma, rmb; | |
557 | double dx, dy, dz; | |
558 | < | double rabsq, pabsq, rvab; |
591 | < | double diffsq; |
558 | > | double rvab; |
559 | double gab; | |
560 | int iteration; | |
561 | ||
562 | < | for(i=0; i<nAtoms; i++){ |
562 | > | for (i = 0; i < nAtoms; i++){ |
563 | moving[i] = 0; | |
564 | moved[i] = 1; | |
565 | } | |
566 | ||
567 | done = 0; | |
568 | iteration = 0; | |
569 | < | while( !done && (iteration < maxIteration ) ){ |
603 | < | |
569 | > | while (!done && (iteration < maxIteration)){ |
570 | done = 1; | |
571 | ||
572 | < | for(i=0; i<nConstrained; i++){ |
607 | < | |
572 | > | for (i = 0; i < nConstrained; i++){ |
573 | a = constrainedA[i]; | |
574 | b = constrainedB[i]; | |
575 | ||
576 | < | ax = (a*3) + 0; |
577 | < | ay = (a*3) + 1; |
578 | < | az = (a*3) + 2; |
576 | > | ax = (a * 3) + 0; |
577 | > | ay = (a * 3) + 1; |
578 | > | az = (a * 3) + 2; |
579 | ||
580 | < | bx = (b*3) + 0; |
581 | < | by = (b*3) + 1; |
582 | < | bz = (b*3) + 2; |
580 | > | bx = (b * 3) + 0; |
581 | > | by = (b * 3) + 1; |
582 | > | bz = (b * 3) + 2; |
583 | ||
584 | < | if( moved[a] || moved[b] ){ |
584 | > | if (moved[a] || moved[b]){ |
585 | > | atoms[a]->getVel(velA); |
586 | > | atoms[b]->getVel(velB); |
587 | ||
588 | < | atoms[a]->getVel( velA ); |
589 | < | atoms[b]->getVel( velB ); |
590 | < | |
624 | < | vxab = velA[0] - velB[0]; |
625 | < | vyab = velA[1] - velB[1]; |
626 | < | vzab = velA[2] - velB[2]; |
588 | > | vxab = velA[0] - velB[0]; |
589 | > | vyab = velA[1] - velB[1]; |
590 | > | vzab = velA[2] - velB[2]; |
591 | ||
592 | < | atoms[a]->getPos( posA ); |
593 | < | atoms[b]->getPos( posB ); |
594 | < | |
595 | < | for (j = 0; j < 3; j++) |
592 | > | atoms[a]->getPos(posA); |
593 | > | atoms[b]->getPos(posB); |
594 | > | |
595 | > | for (j = 0; j < 3; j++) |
596 | rab[j] = posA[j] - posB[j]; | |
633 | – | |
634 | – | info->wrapVector( rab ); |
635 | – | |
636 | – | rma = 1.0 / atoms[a]->getMass(); |
637 | – | rmb = 1.0 / atoms[b]->getMass(); |
597 | ||
598 | < | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
640 | < | |
641 | < | gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); |
598 | > | info->wrapVector(rab); |
599 | ||
600 | < | if (fabs(gab) > tol) { |
601 | < | |
645 | < | dx = rab[0] * gab; |
646 | < | dy = rab[1] * gab; |
647 | < | dz = rab[2] * gab; |
648 | < | |
649 | < | velA[0] += rma * dx; |
650 | < | velA[1] += rma * dy; |
651 | < | velA[2] += rma * dz; |
600 | > | rma = 1.0 / atoms[a]->getMass(); |
601 | > | rmb = 1.0 / atoms[b]->getMass(); |
602 | ||
603 | < | atoms[a]->setVel( velA ); |
603 | > | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
604 | ||
605 | < | velB[0] -= rmb * dx; |
656 | < | velB[1] -= rmb * dy; |
657 | < | velB[2] -= rmb * dz; |
605 | > | gab = -rvab / ((rma + rmb) * constrainedDsqr[i]); |
606 | ||
607 | < | atoms[b]->setVel( velB ); |
608 | < | |
609 | < | moving[a] = 1; |
610 | < | moving[b] = 1; |
611 | < | done = 0; |
612 | < | } |
607 | > | if (fabs(gab) > tol){ |
608 | > | dx = rab[0] * gab; |
609 | > | dy = rab[1] * gab; |
610 | > | dz = rab[2] * gab; |
611 | > | |
612 | > | velA[0] += rma * dx; |
613 | > | velA[1] += rma * dy; |
614 | > | velA[2] += rma * dz; |
615 | > | |
616 | > | atoms[a]->setVel(velA); |
617 | > | |
618 | > | velB[0] -= rmb * dx; |
619 | > | velB[1] -= rmb * dy; |
620 | > | velB[2] -= rmb * dz; |
621 | > | |
622 | > | atoms[b]->setVel(velB); |
623 | > | |
624 | > | moving[a] = 1; |
625 | > | moving[b] = 1; |
626 | > | done = 0; |
627 | > | } |
628 | } | |
629 | } | |
630 | ||
631 | < | for(i=0; i<nAtoms; i++){ |
631 | > | for (i = 0; i < nAtoms; i++){ |
632 | moved[i] = moving[i]; | |
633 | moving[i] = 0; | |
634 | } | |
635 | < | |
635 | > | |
636 | iteration++; | |
637 | } | |
675 | – | |
676 | – | if( !done ){ |
638 | ||
639 | < | |
640 | < | sprintf( painCave.errMsg, |
641 | < | "Constraint failure in constrainB, too many iterations: %d\n", |
642 | < | iteration ); |
639 | > | if (!done){ |
640 | > | sprintf(painCave.errMsg, |
641 | > | "Constraint failure in constrainB, too many iterations: %d\n", |
642 | > | iteration); |
643 | painCave.isFatal = 1; | |
644 | simError(); | |
645 | < | } |
685 | < | |
645 | > | } |
646 | } | |
647 | ||
648 | < | void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], |
649 | < | double A[3][3] ){ |
648 | > | template<typename T> void Integrator<T>::rotationPropagation |
649 | > | ( DirectionalAtom* dAtom, double ji[3] ){ |
650 | ||
651 | < | int i,j,k; |
651 | > | double angle; |
652 | > | double A[3][3], I[3][3]; |
653 | > | |
654 | > | // use the angular velocities to propagate the rotation matrix a |
655 | > | // full time step |
656 | > | |
657 | > | dAtom->getA(A); |
658 | > | dAtom->getI(I); |
659 | > | |
660 | > | // rotate about the x-axis |
661 | > | angle = dt2 * ji[0] / I[0][0]; |
662 | > | this->rotate( 1, 2, angle, ji, A ); |
663 | > | |
664 | > | // rotate about the y-axis |
665 | > | angle = dt2 * ji[1] / I[1][1]; |
666 | > | this->rotate( 2, 0, angle, ji, A ); |
667 | > | |
668 | > | // rotate about the z-axis |
669 | > | angle = dt * ji[2] / I[2][2]; |
670 | > | this->rotate( 0, 1, angle, ji, A); |
671 | > | |
672 | > | // rotate about the y-axis |
673 | > | angle = dt2 * ji[1] / I[1][1]; |
674 | > | this->rotate( 2, 0, angle, ji, A ); |
675 | > | |
676 | > | // rotate about the x-axis |
677 | > | angle = dt2 * ji[0] / I[0][0]; |
678 | > | this->rotate( 1, 2, angle, ji, A ); |
679 | > | |
680 | > | dAtom->setA( A ); |
681 | > | } |
682 | > | |
683 | > | template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
684 | > | double angle, double ji[3], |
685 | > | double A[3][3]){ |
686 | > | int i, j, k; |
687 | double sinAngle; | |
688 | double cosAngle; | |
689 | double angleSqr; | |
# | Line 700 | Line 695 | void Integrator::rotate( int axes1, int axes2, double | |
695 | ||
696 | // initialize the tempA | |
697 | ||
698 | < | for(i=0; i<3; i++){ |
699 | < | for(j=0; j<3; j++){ |
698 | > | for (i = 0; i < 3; i++){ |
699 | > | for (j = 0; j < 3; j++){ |
700 | tempA[j][i] = A[i][j]; | |
701 | } | |
702 | } | |
703 | ||
704 | // initialize the tempJ | |
705 | ||
706 | < | for( i=0; i<3; i++) tempJ[i] = ji[i]; |
707 | < | |
706 | > | for (i = 0; i < 3; i++) |
707 | > | tempJ[i] = ji[i]; |
708 | > | |
709 | // initalize rot as a unit matrix | |
710 | ||
711 | rot[0][0] = 1.0; | |
# | Line 719 | Line 715 | void Integrator::rotate( int axes1, int axes2, double | |
715 | rot[1][0] = 0.0; | |
716 | rot[1][1] = 1.0; | |
717 | rot[1][2] = 0.0; | |
718 | < | |
718 | > | |
719 | rot[2][0] = 0.0; | |
720 | rot[2][1] = 0.0; | |
721 | rot[2][2] = 1.0; | |
722 | < | |
722 | > | |
723 | // use a small angle aproximation for sin and cosine | |
724 | ||
725 | < | angleSqr = angle * angle; |
725 | > | angleSqr = angle * angle; |
726 | angleSqrOver4 = angleSqr / 4.0; | |
727 | top = 1.0 - angleSqrOver4; | |
728 | bottom = 1.0 + angleSqrOver4; | |
# | Line 739 | Line 735 | void Integrator::rotate( int axes1, int axes2, double | |
735 | ||
736 | rot[axes1][axes2] = sinAngle; | |
737 | rot[axes2][axes1] = -sinAngle; | |
738 | < | |
738 | > | |
739 | // rotate the momentum acoording to: ji[] = rot[][] * ji[] | |
740 | < | |
741 | < | for(i=0; i<3; i++){ |
740 | > | |
741 | > | for (i = 0; i < 3; i++){ |
742 | ji[i] = 0.0; | |
743 | < | for(k=0; k<3; k++){ |
743 | > | for (k = 0; k < 3; k++){ |
744 | ji[i] += rot[i][k] * tempJ[k]; | |
745 | } | |
746 | } | |
# | Line 757 | Line 753 | void Integrator::rotate( int axes1, int axes2, double | |
753 | // calculation as: | |
754 | // transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | |
755 | ||
756 | < | for(i=0; i<3; i++){ |
757 | < | for(j=0; j<3; j++){ |
756 | > | for (i = 0; i < 3; i++){ |
757 | > | for (j = 0; j < 3; j++){ |
758 | A[j][i] = 0.0; | |
759 | < | for(k=0; k<3; k++){ |
760 | < | A[j][i] += tempA[i][k] * rot[j][k]; |
759 | > | for (k = 0; k < 3; k++){ |
760 | > | A[j][i] += tempA[i][k] * rot[j][k]; |
761 | } | |
762 | } | |
763 | } | |
764 | } | |
765 | + | |
766 | + | template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){ |
767 | + | myFF->doForces(calcPot, calcStress); |
768 | + | } |
769 | + | |
770 | + | template<typename T> void Integrator<T>::thermalize(){ |
771 | + | tStats->velocitize(); |
772 | + | } |
773 | + | |
774 | + | template<typename T> double Integrator<T>::getConservedQuantity(void){ |
775 | + | return tStats->getTotalE(); |
776 | + | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |