# | Line 7 | Line 7 | |
---|---|---|
7 | #include <unistd.h> | |
8 | #endif //is_mpi | |
9 | ||
10 | + | #ifdef PROFILE |
11 | + | #include "mdProfile.hpp" |
12 | + | #endif // profile |
13 | + | |
14 | #include "Integrator.hpp" | |
15 | #include "simError.h" | |
16 | ||
# | Line 27 | Line 31 | template<typename T> Integrator<T>::Integrator(SimInfo | |
31 | } | |
32 | ||
33 | nAtoms = info->n_atoms; | |
34 | + | integrableObjects = info->integrableObjects; |
35 | ||
36 | // check for constraints | |
37 | ||
# | Line 64 | Line 69 | template<typename T> void Integrator<T>::checkConstrai | |
69 | ||
70 | SRI** theArray; | |
71 | for (int i = 0; i < nMols; i++){ | |
72 | < | theArray = (SRI * *) molecules[i].getMyBonds(); |
72 | > | |
73 | > | theArray = (SRI * *) molecules[i].getMyBonds(); |
74 | for (int j = 0; j < molecules[i].getNBonds(); j++){ | |
75 | constrained = theArray[j]->is_constrained(); | |
76 | ||
# | Line 110 | Line 116 | template<typename T> void Integrator<T>::checkConstrai | |
116 | } | |
117 | } | |
118 | ||
119 | + | |
120 | if (nConstrained > 0){ | |
121 | isConstrained = 1; | |
122 | ||
# | Line 131 | Line 138 | template<typename T> void Integrator<T>::checkConstrai | |
138 | } | |
139 | ||
140 | ||
141 | < | // save oldAtoms to check for lode balanceing later on. |
141 | > | // save oldAtoms to check for lode balancing later on. |
142 | ||
143 | oldAtoms = nAtoms; | |
144 | ||
# | Line 153 | Line 160 | template<typename T> void Integrator<T>::integrate(voi | |
160 | double thermalTime = info->thermalTime; | |
161 | double resetTime = info->resetTime; | |
162 | ||
163 | < | |
163 | > | double difference; |
164 | double currSample; | |
165 | double currThermal; | |
166 | double currStatus; | |
# | Line 172 | Line 179 | template<typename T> void Integrator<T>::integrate(voi | |
179 | ||
180 | readyCheck(); | |
181 | ||
182 | + | // remove center of mass drift velocity (in case we passed in a configuration |
183 | + | // that was drifting |
184 | + | tStats->removeCOMdrift(); |
185 | + | |
186 | // initialize the forces before the first step | |
187 | ||
177 | – | std::cerr << "Before initial Force calc\n"; |
178 | – | |
188 | calcForce(1, 1); | |
189 | < | |
189 | > | |
190 | if (nConstrained){ | |
191 | preMove(); | |
192 | constrainA(); | |
193 | calcForce(1, 1); | |
194 | constrainB(); | |
186 | – | std::cerr << "premove done\n"; |
195 | } | |
196 | < | |
189 | < | |
190 | < | |
196 | > | |
197 | if (info->setTemp){ | |
198 | thermalize(); | |
199 | } | |
# | Line 203 | Line 209 | template<typename T> void Integrator<T>::integrate(voi | |
209 | statOut->writeStat(info->getTime()); | |
210 | ||
211 | ||
206 | – | |
212 | #ifdef IS_MPI | |
213 | strcpy(checkPointMsg, "The integrator is ready to go."); | |
214 | MPIcheckPoint(); | |
215 | #endif // is_mpi | |
216 | ||
217 | < | while (info->getTime() < runTime){ |
218 | < | if ((info->getTime() + dt) >= currStatus){ |
217 | > | while (info->getTime() < runTime && !stopIntegrator()){ |
218 | > | difference = info->getTime() + dt - currStatus; |
219 | > | if (difference > 0 || fabs(difference) < 1e-4 ){ |
220 | calcPot = 1; | |
221 | calcStress = 1; | |
222 | } | |
223 | ||
224 | + | #ifdef PROFILE |
225 | + | startProfile( pro1 ); |
226 | + | #endif |
227 | + | |
228 | integrateStep(calcPot, calcStress); | |
229 | ||
230 | + | #ifdef PROFILE |
231 | + | endProfile( pro1 ); |
232 | + | |
233 | + | startProfile( pro2 ); |
234 | + | #endif // profile |
235 | + | |
236 | info->incrTime(dt); | |
237 | ||
238 | if (info->setTemp){ | |
# | Line 244 | Line 260 | template<typename T> void Integrator<T>::integrate(voi | |
260 | currReset += resetTime; | |
261 | } | |
262 | } | |
263 | + | |
264 | + | #ifdef PROFILE |
265 | + | endProfile( pro2 ); |
266 | + | #endif //profile |
267 | ||
248 | – | std::cerr << "done with time = " << info->getTime() << "\n"; |
249 | – | |
268 | #ifdef IS_MPI | |
269 | strcpy(checkPointMsg, "successfully took a time step."); | |
270 | MPIcheckPoint(); | |
271 | #endif // is_mpi | |
272 | } | |
273 | ||
256 | – | |
257 | – | // write the last frame |
258 | – | dumpOut->writeDump(info->getTime()); |
259 | – | |
274 | delete dumpOut; | |
275 | delete statOut; | |
276 | } | |
# | Line 264 | Line 278 | template<typename T> void Integrator<T>::integrateStep | |
278 | template<typename T> void Integrator<T>::integrateStep(int calcPot, | |
279 | int calcStress){ | |
280 | // Position full step, and velocity half step | |
281 | + | |
282 | + | #ifdef PROFILE |
283 | + | startProfile(pro3); |
284 | + | #endif //profile |
285 | + | |
286 | preMove(); | |
287 | ||
288 | < | moveA(); |
288 | > | #ifdef PROFILE |
289 | > | endProfile(pro3); |
290 | ||
291 | + | startProfile(pro4); |
292 | + | #endif // profile |
293 | ||
294 | + | moveA(); |
295 | ||
296 | + | #ifdef PROFILE |
297 | + | endProfile(pro4); |
298 | + | |
299 | + | startProfile(pro5); |
300 | + | #endif//profile |
301 | ||
302 | + | |
303 | #ifdef IS_MPI | |
304 | strcpy(checkPointMsg, "Succesful moveA\n"); | |
305 | MPIcheckPoint(); | |
# | Line 286 | Line 315 | template<typename T> void Integrator<T>::integrateStep | |
315 | MPIcheckPoint(); | |
316 | #endif // is_mpi | |
317 | ||
318 | + | #ifdef PROFILE |
319 | + | endProfile( pro5 ); |
320 | ||
321 | + | startProfile( pro6 ); |
322 | + | #endif //profile |
323 | + | |
324 | // finish the velocity half step | |
325 | ||
326 | moveB(); | |
327 | ||
328 | + | #ifdef PROFILE |
329 | + | endProfile(pro6); |
330 | + | #endif // profile |
331 | ||
295 | – | |
332 | #ifdef IS_MPI | |
333 | strcpy(checkPointMsg, "Succesful moveB\n"); | |
334 | MPIcheckPoint(); | |
# | Line 301 | Line 337 | template<typename T> void Integrator<T>::moveA(void){ | |
337 | ||
338 | ||
339 | template<typename T> void Integrator<T>::moveA(void){ | |
340 | < | int i, j; |
340 | > | size_t i, j; |
341 | DirectionalAtom* dAtom; | |
342 | double Tb[3], ji[3]; | |
343 | double vel[3], pos[3], frc[3]; | |
344 | double mass; | |
345 | + | |
346 | + | for (i = 0; i < integrableObjects.size() ; i++){ |
347 | + | integrableObjects[i]->getVel(vel); |
348 | + | integrableObjects[i]->getPos(pos); |
349 | + | integrableObjects[i]->getFrc(frc); |
350 | + | |
351 | + | mass = integrableObjects[i]->getMass(); |
352 | ||
310 | – | for (i = 0; i < nAtoms; i++){ |
311 | – | atoms[i]->getVel(vel); |
312 | – | atoms[i]->getPos(pos); |
313 | – | atoms[i]->getFrc(frc); |
314 | – | |
315 | – | mass = atoms[i]->getMass(); |
316 | – | |
353 | for (j = 0; j < 3; j++){ | |
354 | // velocity half step | |
355 | vel[j] += (dt2 * frc[j] / mass) * eConvert; | |
# | Line 321 | Line 357 | template<typename T> void Integrator<T>::moveA(void){ | |
357 | pos[j] += dt * vel[j]; | |
358 | } | |
359 | ||
360 | < | atoms[i]->setVel(vel); |
361 | < | atoms[i]->setPos(pos); |
360 | > | integrableObjects[i]->setVel(vel); |
361 | > | integrableObjects[i]->setPos(pos); |
362 | ||
363 | < | if (atoms[i]->isDirectional()){ |
328 | < | dAtom = (DirectionalAtom *) atoms[i]; |
363 | > | if (integrableObjects[i]->isDirectional()){ |
364 | ||
365 | // get and convert the torque to body frame | |
366 | ||
367 | < | dAtom->getTrq(Tb); |
368 | < | dAtom->lab2Body(Tb); |
367 | > | integrableObjects[i]->getTrq(Tb); |
368 | > | integrableObjects[i]->lab2Body(Tb); |
369 | ||
370 | // get the angular momentum, and propagate a half step | |
371 | ||
372 | < | dAtom->getJ(ji); |
372 | > | integrableObjects[i]->getJ(ji); |
373 | ||
374 | for (j = 0; j < 3; j++) | |
375 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
376 | ||
377 | < | this->rotationPropagation( dAtom, ji ); |
377 | > | this->rotationPropagation( integrableObjects[i], ji ); |
378 | ||
379 | < | dAtom->setJ(ji); |
379 | > | integrableObjects[i]->setJ(ji); |
380 | } | |
381 | } | |
382 | ||
# | Line 353 | Line 388 | template<typename T> void Integrator<T>::moveB(void){ | |
388 | ||
389 | template<typename T> void Integrator<T>::moveB(void){ | |
390 | int i, j; | |
356 | – | DirectionalAtom* dAtom; |
391 | double Tb[3], ji[3]; | |
392 | double vel[3], frc[3]; | |
393 | double mass; | |
394 | ||
395 | < | for (i = 0; i < nAtoms; i++){ |
396 | < | atoms[i]->getVel(vel); |
397 | < | atoms[i]->getFrc(frc); |
395 | > | for (i = 0; i < integrableObjects.size(); i++){ |
396 | > | integrableObjects[i]->getVel(vel); |
397 | > | integrableObjects[i]->getFrc(frc); |
398 | ||
399 | < | mass = atoms[i]->getMass(); |
399 | > | mass = integrableObjects[i]->getMass(); |
400 | ||
401 | // velocity half step | |
402 | for (j = 0; j < 3; j++) | |
403 | vel[j] += (dt2 * frc[j] / mass) * eConvert; | |
404 | ||
405 | < | atoms[i]->setVel(vel); |
405 | > | integrableObjects[i]->setVel(vel); |
406 | ||
407 | < | if (atoms[i]->isDirectional()){ |
374 | < | dAtom = (DirectionalAtom *) atoms[i]; |
407 | > | if (integrableObjects[i]->isDirectional()){ |
408 | ||
409 | // get and convert the torque to body frame | |
410 | ||
411 | < | dAtom->getTrq(Tb); |
412 | < | dAtom->lab2Body(Tb); |
411 | > | integrableObjects[i]->getTrq(Tb); |
412 | > | integrableObjects[i]->lab2Body(Tb); |
413 | ||
414 | // get the angular momentum, and propagate a half step | |
415 | ||
416 | < | dAtom->getJ(ji); |
416 | > | integrableObjects[i]->getJ(ji); |
417 | ||
418 | for (j = 0; j < 3; j++) | |
419 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
420 | ||
421 | ||
422 | < | dAtom->setJ(ji); |
422 | > | integrableObjects[i]->setJ(ji); |
423 | } | |
424 | } | |
425 | ||
# | Line 655 | Line 688 | template<typename T> void Integrator<T>::rotationPropa | |
688 | } | |
689 | ||
690 | template<typename T> void Integrator<T>::rotationPropagation | |
691 | < | ( DirectionalAtom* dAtom, double ji[3] ){ |
691 | > | ( StuntDouble* sd, double ji[3] ){ |
692 | ||
693 | double angle; | |
694 | double A[3][3], I[3][3]; | |
695 | + | int i, j, k; |
696 | ||
697 | // use the angular velocities to propagate the rotation matrix a | |
698 | // full time step | |
699 | ||
700 | < | dAtom->getA(A); |
701 | < | dAtom->getI(I); |
700 | > | sd->getA(A); |
701 | > | sd->getI(I); |
702 | ||
703 | < | // rotate about the x-axis |
704 | < | angle = dt2 * ji[0] / I[0][0]; |
705 | < | this->rotate( 1, 2, angle, ji, A ); |
706 | < | |
707 | < | // rotate about the y-axis |
708 | < | angle = dt2 * ji[1] / I[1][1]; |
709 | < | this->rotate( 2, 0, angle, ji, A ); |
703 | > | if (sd->isLinear()) { |
704 | > | i = sd->linearAxis(); |
705 | > | j = (i+1)%3; |
706 | > | k = (i+2)%3; |
707 | > | |
708 | > | angle = dt2 * ji[j] / I[j][j]; |
709 | > | this->rotate( k, i, angle, ji, A ); |
710 | ||
711 | < | // rotate about the z-axis |
712 | < | angle = dt * ji[2] / I[2][2]; |
679 | < | this->rotate( 0, 1, angle, ji, A); |
711 | > | angle = dt * ji[k] / I[k][k]; |
712 | > | this->rotate( i, j, angle, ji, A); |
713 | ||
714 | < | // rotate about the y-axis |
715 | < | angle = dt2 * ji[1] / I[1][1]; |
683 | < | this->rotate( 2, 0, angle, ji, A ); |
714 | > | angle = dt2 * ji[j] / I[j][j]; |
715 | > | this->rotate( k, i, angle, ji, A ); |
716 | ||
717 | < | // rotate about the x-axis |
718 | < | angle = dt2 * ji[0] / I[0][0]; |
719 | < | this->rotate( 1, 2, angle, ji, A ); |
720 | < | |
721 | < | dAtom->setA( A ); |
717 | > | } else { |
718 | > | // rotate about the x-axis |
719 | > | angle = dt2 * ji[0] / I[0][0]; |
720 | > | this->rotate( 1, 2, angle, ji, A ); |
721 | > | |
722 | > | // rotate about the y-axis |
723 | > | angle = dt2 * ji[1] / I[1][1]; |
724 | > | this->rotate( 2, 0, angle, ji, A ); |
725 | > | |
726 | > | // rotate about the z-axis |
727 | > | angle = dt * ji[2] / I[2][2]; |
728 | > | this->rotate( 0, 1, angle, ji, A); |
729 | > | |
730 | > | // rotate about the y-axis |
731 | > | angle = dt2 * ji[1] / I[1][1]; |
732 | > | this->rotate( 2, 0, angle, ji, A ); |
733 | > | |
734 | > | // rotate about the x-axis |
735 | > | angle = dt2 * ji[0] / I[0][0]; |
736 | > | this->rotate( 1, 2, angle, ji, A ); |
737 | > | |
738 | > | } |
739 | > | sd->setA( A ); |
740 | } | |
741 | ||
742 | template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |